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SystemC transaction-level modeling (TLM) is widely used to enable early exploration for both hardware
and software designs. It can reduce the overall design and validation effort of complex system-on-chip
(SOC) architectures. However, due to lack of automated techniques coupled with limited reuse of validation
efforts between abstraction levels, SOC validation is becoming a major bottleneck. This article presents a
novel top-down methodology for automatically generating register transfer-level (RTL) tests from SystemC
TLM specifications. It makes two important contributions: i) it proposes a method that can automatically
generate TLM tests using various coverage metrics, and (ii) it develops a test refinement specification for
automatically converting TLM tests to RTL tests in order to reduce overall validation effort. We have devel-
oped a tool which incorporates these activities to enable automated RTL test generation from SystemC TLM
specifications. Case studies using a router example and a 64-bit Alpha AXP pipelined processor demonstrate
that our approach can achieve intended functional coverage of the RTL designs, as well as capture various
functional errors and inconsistencies between specifications and implementations.
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1. INTRODUCTION

The increasing complexity of SOC architectures creates demand for high-level abstrac-
tions and analysis of SOC designs [Abrar and Thimmapuram 2010]. The functional
errors of high-level specifications may result in inevitable malfunctions in low-level
implementations. Therefore, it is a major challenge to guarantee the correctness of

This work was partially supported by grants from Intel Corporation, National Science Foundation Faculty
Early Career Development (CAREER) award 0746261, Doctoral Fund of Ministry of Education of China No.
20110076120025, and National Natural Science Foundation of China No. 61021004.
A preliminary version of this paper [Chen and Mishra 2007] appeared in Proceedings of the IEEE Interna-
tional High-Level Design Validation and Test Workshop (HLDVT).
Authors’ addresses: M. Chen, Software Engineering Institute, East China Normal University, Shanghai
200062; email: mschen@sei.ecnu.edu.cn; P. Mishra, Department of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL 32611; email: prabhat@cise.ufl.edu; D. Kalita, Intel
Corporation, Folsom, CA 95630; email: dhrubajyoti.kalita@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/07-ART38 $15.00

DOI 10.1145/2220336.2220350 http://doi.acm.org/10.1145/2220336.2220350

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 38, Publication date: July 2012.



38:2 M. Chen et al.

different abstractions [Bombieri et al. 2007; Bruce et al. 2006]. Validating each ab-
straction is necessary but time-consuming, because it requires profound understand-
ing of the design. In addition, the inconsistency between different abstraction levels
and the lack of automation techniques in each level aggravate the overall validation
difficulty and workload. It is necessary to develop an approach that can automate the
validation of high-level abstractions and reuse the validation effort among abstraction
levels.

In SOC design, the top-down SOC design process starts from transaction-level mod-
eling (TLM) [Cai and Gajski 2003] to register transfer-level (RTL) implementation. As
a system-level modeling specification, SystemC TLM [Rose et al. 2005] establishes a
standard for enabling fast simulation speed and easy model interoperability for hard-
ware/software codesign. It mainly focuses on the communication between different
functional components of a system and data processing in each component. Unlike
TLM, RTL contains detailed information (such as interface and timing information)
to describe the hardware behaviors. These differences limit the degree of validation
reuse between TLM and RTL models. In the absence of significant reuse of design
and validation efforts between different abstraction levels, the overall functional
validation effort will increase, since designers have to verify TLM as well as RTL
models. Furthermore, the consistency between different abstraction levels should be
guaranteed.

Existing SOC validation techniques for both TLM and RTL designs widely employ
a combination of simulation-based techniques and formal methods. Simulation-based
validation uses random or directed test vectors to check the correctness of the design.
Certain heuristics are used to generate random tests. However, due to the bottom-up
nature and localized view of these heuristics, the generated tests may not yield good
coverage. The directed tests can exactly focus on testing targets, thus reducing the
validation effort, since fewer tests can achieve the same coverage goal compared to
random tests. A major challenge for enabling directed test generation is that of auto-
matically extracting a formal representation from the TLM specifications and develop-
ing an efficient coverage metric that allows coverage-driven directed test generation.
The goal of directed testing is to generate a small set of directed tests that will cover
all the functionalities of the TLM design and reduce the validation effort at the TLM
level. Furthermore, complete reuse of such TLM tests will lead to a drastic reduction
of RTL validation effort as well.

In this article, we propose a top-down, directed test generation methodology for
both TLM and RTL designs. The basic idea is to use TLM specifications to perform
coverage-based TLM test generation and generate RTL tests from TLM tests using
a set of transformation rules. A tool which incorporates this flow has been developed
to enable automated, directed RTL test generation from SystemC TLM specifications.
Our framework first automatically extracts a formal model from the TLM specifica-
tions. Then, based on the coverage of the fault models, a set of properties indicating
the validation adequacy are derived. The counterexamples generated from derived
properties can be used as the tests for the TLM validation. Finally, the generated
TLM tests can be converted to RTL tests by applying our proposed Test Refinement
Specification (TRS) which defines the rules for constructing the relation between the
TLM and RTL models. Because the generated TLM and RTL tests check the same
functionality of the system, they essentially can ensure the consistency between TLM
specifications and RTL designs.

This article makes two major contributions. First, we propose a method which
enables automatic TLM test generation using various coverage criteria. Second, we
develop the TRS that can convert TLM tests to RTL tests. The rest of the article
is organized as follows. Section 2 describes related work addressing TLM-based
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validation approaches. Section 3 presents our test generation methodology, followed
by case studies in Section 4. Finally, Section 5 concludes the article.

2. RELATED WORK

Compared to RTL designs, TLM provides a rapid prototyping platform for architec-
ture exploration and hardware/software integration [Ghenassia 2005]. To guarantee
the correctness of SystemC TLMs in the top-down design flow, there are three kinds
of techniques: i) simulation-based techniques using random and constrained random
tests, ii) formal-verification-based techniques, such as model checking, and iii) hybrid
techniques that combine the simulation and formal verification techniques.

Simulation-based methods validate systems using test vectors. They terminate
when the required testing adequacy is achieved. Wang and Ye [2005] described a
coverage-directed method for transaction-level verification. The approach is based
on random test generation, and the coverage is increased by using a fault insertion
method. Although simulation is fast, it is difficult to automate the test generation
process. To enable automated analysis, various researchers have tried to extract for-
mal representations from SystemC TLM specifications. Abdi and Gajski [2005] intro-
duced Model Algebra, a formalism for representing SOC designs at the system level.
The work by Kroening and Sharygina [2005] formalized the semantics of SystemC
by means of labeled Kripke structures. Moy et al. [2005] provided a compiler front-
end that can extract architecture and synchronization information from the SystemC
TLM design using HPIOM. Karlsson et al. [2006] translated SystemC models into a
Petri-Net-based representation PRES+. This model can be used for model checking of
properties expressed in a timed temporal logic. Habibi and Tahar [2006] proposed a
method that adopts the formal model AsmL. A state machine generated from AsmL
can be verified and then can be translated to both SystemC code and properties for
low-level verification. All these modeling techniques focus on the formal modeling and
translation of SystemC specifications, rather than directed test generation. It is hard
to guarantee the correctness of the given specifications. Our test case generation ap-
proach is different from these preceding verification techniques, since it is based on
property falsification. The assumption of our method is that the given specification is
correct. Therefore, we can get one directed test for each false property.

Completeness is an important issue during validation. Since formal approaches are
good at handling corner cases, hybrid techniques can converge to the required coverage
quickly. As a hybrid method, assertion-based verification (ABV) using property speci-
fication language (PSL)1 is accepted as a promising approach for functional validation.
Lahbib et al. [2005] discussed the issues faced within SystemC environments for incor-
porating PSL assertions. It also proposed an automatic solution that enhances SOC
system-level design flow with PSL assertions embedded into SystemC designs. Habibi
and Tahar [2004] presented a method for efficiently verifying SystemC assertions. It
is based on both static code analysis and genetic algorithms to optimize test genera-
tion in order to get more efficient coverage of assertions. However, due to the lack of
coverage metrics, hybrid methods often fail to guarantee the overall correctness of sys-
tem implementations due to incomplete properties. To address this problem, Fin et al.
[2003] proposed a SystemC framework that can evaluate property validation incom-
pleteness in a completely automatic way. For a large complex system, it is necessary to
efficiently handle coverage metrics. Fedeli et al. [2007] presented a methodology based
on a combination of static and dynamic verification, which can reduce the property
evaluation time. However, such coverage metrics are for RTL designs only. Inspired

1IEEE P1850. Property Specification Language Homepage. http://www.eda.org/ieee-1850/.
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Fig. 1. Proposed RTL test generation methodology.

by their work, we propose two fault models for the transaction coverage evaluation in
our method.

Reusing validation efforts between abstraction levels can reduce the overall
validation time. There exists various research on validation reuse between TLM
and RTL levels. Bombieri et al. [2006] showed that transactor-based verification is
at least as efficient as a fully RTL verification methodology, which converts TLM
assertions into RTL properties and creates new RTL testbenches. They also presented
an incremental ABV methodology [Bombieri et al. 2007] to check the correctness of
TLM-to-RTL refinement by reusing assertions. Jindal and Jain [2003] presented a
method for reducing the verification time by reusing earlier RTL testbenches. Ara
and Suzuki [2003] proposed an approach which combines transaction-level languages
(e.g., SystemC) with RTL-level language (e.g., Verilog) based on component wrapper
language (CWL). By defining various test patterns using CWL, RTL verification suites
from original specifications can be quickly generated. Thus, it can yield much shorter
verification periods versus conventional methods.

As just described, most existing TLM validation approaches focus on system-level
validation or validation effort reuse. To the best of our knowledge, our methodology
is the first attempt to automatically bridge the validation gap between TLM and RTL
designs.

3. RTL TEST GENERATION FROM TLM SPECIFICATIONS

Figure 1 shows the framework of our RTL test generation methodology. This method-
ology has three important steps: i) translating SystemC TLM to formal SMV speci-
fications, ii) deriving properties based on proposed fault models to enable automated
test generation, and iii) refining TLM tests to RTL tests using our proposed TRS. It
is important to note that the test refinement is independent of how TLM tests are
generated. In other words, test refinement can accept TLM tests generated by other
approaches, such as random test generation. The generated TLM tests can be used to
validate TLM specifications. The refined RTL tests can be applied on the RTL imple-
mentation for functional validation.

In this section, we demonstrate the processes of TLM to SMV transformation, as
well as test refinement, using a router example (details are described in Section 4.1).
The remainder of this section is organized as follows. Section 3.1 describes the
formal model that is used during the TLM to SMV translation. Section 3.2 presents
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the procedure for converting TLM specifications into SMV descriptions. Section 3.3
outlines our automated property generation and TLM test generation approaches.
Section 3.4 presents our TLM to RTL test translation using TRS. Finally, Section 3.5
gives a brief introduction to our prototype tool which incorporates our methodology.

3.1 Formal Modeling of SystemC TLMs

As a high-level specification, SystemC TLM emphasizes the functionality of the data
transfers, instead of actual implementation. A SystemC TLM design interconnects a
set of processes communicating with each other using transaction data token (i.e., C++
objects). The initial process starts a communication, and the target process passively
responds to the communication. Similar to that of the producer/consumer models, each
process does the following tasks: consume data, process data, and produce data.

Since SystemC is based on C++, it supports various programming constructs (e.g.,
template, inheritance, etc.). Although the concept of some TLM components (signals,
ports, etc.) is easy, their C++ implementation details are really complex. Therefore,
directly translating their behaviors to enable automated validation is difficult. In our
framework, we abstract such SystemC components and hide the implementation de-
tails using predefined SMV constructs. Furthermore, the underlying complex SystemC
scheduler aggravates the modeling complexity. For SystemC TLM, in order to mimic
the parallel execution of processes, the SystemC scheduler activates the ready-to-run
processes in a nondeterministic way. However, since SMV is parallel in essence, it is
not necessary to model the SystemC scheduler explicitly.

For TLM, the two most important factors are transaction data and transaction flow,
so the extracted formal model of TLM specifications should reflect both information.
In our test generation framework, it is required that the extracted models not only
can guide the generation of SMV specifications but also can be used to automatically
derive the properties for TLM test generation. Definition 1 gives the formal model
representation of SystemC TLM designs. It is based on a simplified version of Colored
Petri-net [Jensen 1997].

Definition 1. The formal model of a SystemC TLM design is an eight-tuple (�, P, T,
A, E, M, I, F).

(1) � is a set of transaction data tokens.
(2) P = {p1, p2, . . . , pm} is a set of places.
(3) T = {t1, t2, . . . , tn} is a set of transitions.
(4) A ⊆ {P × T} ∪ {T × P} is a set of arcs between places and transitions.
(5) E = {e1, e2, . . . , ek} is a set of arc expressions. The mapping Expression(ai) = ei (ai ∈

A , 1 ≤ i ≤ k) gives the enable condition ei for ai. A token can pass arc ai only when
ei is true.

(6) M : 2P×� × T → 2P×� is a function that describes the internal operations on input
transaction data and output transaction data of a transition.

(7) I ∈ 2P×� specifies the initial state.
(8) F ⊆ 2P×� specifies the final states.

We use this formal model as an immediate form for capturing the execution as well
as the interconnection of processes. In our framework, each TLM data is described by a
transaction data token, each TLM module is described by a transition, and each inter-
connection (port, channel, etc.) between two TLM modules is described by a place. As
an example, Figure 2(a) shows an interconnection of six modules. Each arrow indicates
a port binding between two modules. Figure 2(b) shows the graph representation of
its corresponding formal model. In the formal model, each circle is called a place that
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Fig. 2. Mapping from a SystemC structure to its corresponding formal model.

is used to indicate the input or output buffer of a module. It can temporarily hold the
transaction data for later processing. The vertical bars are transitions which are used
to indicate modules which contain processes for manipulating input and output trans-
action data tokens. The places without incoming arcs are initial places which start a
transition. The places without outgoing arcs are target places. Transaction data to-
kens flow from the initial places to the target places, and token values may change
in transitions when necessary. The transaction flow is synchronized by the transition,
and the internal logic of a transition determines the flow of the transaction.

3.2 Transformation from SystemC TLM to SMV

Model checking techniques are very promising for directed test generation in hard-
ware and software domains [Ammann et al. 1998; Beyer et al. 2004; Kupferman and
Vardi 1999; Mishra and Dutt 2008]. In our framework, we adopt SMV as the formal
specification for describing both the structure and behavior information of SystemC
TLMs for the following reasons. First, the underlying semantics of SMV is similar to
the semantics of the SystemC scheduler, so we can mimic most of TLM’s behaviors us-
ing SMV without modeling complex scheduler behavior. Second, SMV and TLM have
a similar structure hierarchy. Each processing unit encapsulated by a TLM module
corresponds to a SMV module. The interconnections (e.g., channels, ports, and sock-
ets) between TLM modules can be abstracted by using module parameters in SMV.
Third, like SystemC, SMV provides a rich set of programming language constructs,
such as if-then-else, case-switch, and for loop statements. Fourth, SMV’s main module
connects each component of the system, similar that of to SystemC. Finally, SMV sup-
ports various kinds of data types and data operations, and especially, users can define
their own data type. All of these SMV features facilitate the translation from TLMs to
SMV specification.

Currently, there are many complex TLM constructs, such as FIFO channels, direct
memory interface, etc., which cannot be mapped to their SMV counterparts directly.
This is mainly due to the limitation of the description power of the SMV model checker.
To the best of our knowledge, so far only the synthesizable code can be translated au-
tomatically to its corresponding SMV code by some verification tools, such as vl2smv
(the translator from synchronous verilog to SMV).2 Not all the TLM constructs can
be synthesized easily to low-level implementations (i.e., RTL). Therefore our TLM-to-
SMV translation framework only supports the translation of a small subset of TLM

2Cadence Berkeley Labs. The Cadence SMV Model Checker. http://www.kenmcmil.com/.
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Fig. 3. An example of data type transformation.

constructs which are synthesizable. It is important to note that our method for au-
tomated test generation is based on model checking techniques. To scale down the
complexity, it is necessary to apply abstraction on complex SystemC TLM components.
Since the standard TLM components are predefined and assumed to be correct, we
also predefine the corresponding SMV counterparts and use them directly during the
translation. Furthermore, due to the expressiveness of the SMV language, currently
our framework only supports loosely timed modeling. We plan to use the timed au-
tomata checker (such as UPPAAL [Larsen et al. 1997]) in our framework to enable the
timing verification of transactions.

As an intermediate form for TLM to SMV translation, the formal model provides
both structure and behavior information. Such information needs to be collected for a
translation to a SMV representation in order to enable automated directed test gen-
eration. The structure information includes the data-type definition and connectivity
between modules. It corresponds to the description of the transaction data token as
well as to the interconnection of transitions and places in the formal model. The be-
havior information contains token processing and token routing. In the formal model,
it represents the internal processing of a transition. This section discusses how to
extract both structural and behavioral information and transform them into a SMV
specification.

3.2.1 Structure Extraction. Before simulation, SystemC performs the elaboration which
creates required data structures to support the simulation. During elaboration, all
the parts of the system hierarchy (modules, ports, channels, processes, and etc.) are
created, and ports and exports are bound to channels or to each other. When parsing
TLM specifications, our transformation procedures will extract all such information in
order to construct the skeleton of the SMV specifications.

In TLM, the content of a transaction data token indicates the transaction flow and
the output of each component, so it is the key part of TLM tests. Generally, a transac-
tion token consists of several attributes with different data types. Because data type
determines the size of the specified variable, which in turn affects the model checking
performance, it is necessary to figure out the data type of a token. Besides all native
C++ types, SystemC defines a set of data-type classes within the namespace sc dt to
represent values with application-specific word lengths applicable to digital hardware.
SMV also supports various data types, such as array, Boolean, integer, struct, and so
on. Such data-type definitions facilitate the mapping of data types between SystemC
TLM and SMV specification. During the transformation, the word length of the user-
defined data type needs to be considered. For example, sc uint < 2 > has two bits and
will be transformed to a range 0 · · · 3 in SMV. Figure 3 gives an example of the router
packet in the form of SystemC TLM and SMV, respectively.

Derived from the base class sc module, TLM modules are the main processing
units for the transaction data. Generally, each sc module contains the definitions
of processes whose types are SC METHOD or SC THREAD. Modules communicate
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Fig. 4. An example of a SystemC TLM module.

Fig. 5. An example of an SMV module.

with each other by sending and receiving transaction data tokens via output and
input ports. SystemC provides a communication wrapper for the system components
(modules). In SystemC, there exists various binding mechanisms (e.g., port-to-export
binding, export-to-export binding, and port-to-channel binding) for establishing
interconnection between modules. Usually, each binding corresponds to a channel,
such as a first-in-first-out (FIFO) channel, to temporarily hold transaction tokens.

Figure 4 shows the TLM module structure of a router. The class sc export can be used
as a port for communicating with other modules. Because the interface type of port
packet in is tlm put if<packet>, it is an input port. In contrast, packet outx (x = 0,1,2)
have the interface tlm f if o get if<packet>, so they are output ports. During the router
communication, each connection between a port and an export uses a FIFO channel to
temporarily hold a packet.

Structurally similar to SystemC TLMs, SMV specification is also modularized and
hierarchically organized, so the extraction of structure information needs to map the
TLM constructs into the right place of the SMV specification. Figure 5 shows the SMV
module skeleton corresponding to example in Figure 4 after the structure extraction.
In SMV, a module uses the parameters as the input and output ports to both communi-
cate with other modules and configures the system status defined in the main module.
In the example of Figure 5, the SMV module has one input port and three output ports.
The type of the input and output ports is packet. All the declarations of member vari-
ables, except for the FIFO channels, are declared in the SMV specification. Because
an FIFO channel together with its port pairs are abstracted as an SMV parameter, it
is not necessary to create a variable in SMV explicitly. Based on context during the
elaboration, some of the declared variables will be initialized. In SMV specification,
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Fig. 6. An example of a TLM process.

each output port and local variable needs to be initialized. For example, packet out0 is
a parameter which refers to an output port, so it will be initialized with a value “0”.
In our framework, it is required that all such module connections should be defined in
the module sc top.

3.2.2 Behavior Extraction. TLM behavior describes the runtime information of TLMs,
including transaction creation, transaction manipulation, and module communication.
Transaction creation initializes a transaction by creating a data token (i.e., a C++ ob-
ject) with proper values. Transaction execution describes the transaction flow among
the modules. A module is a container which has a cluster of relevant processes. Such
processes will handle the incoming transaction tokens and decide where to send them
according to the specified conditions. Thus different values of a token will lead to differ-
ent transaction flows. In our current prototype release, there are two kinds of process
communication supported in transaction flows: 1) direct procedure call from one pro-
cess to another process and 2) channel-based events triggered by the procedure call.
For example, in the blocking mode, a process can fetch a transaction data token from
the specified input port only when the corresponding channel is not empty. Otherwise,
the operation “get” will be blocked until there is an event triggered by the “put” oper-
ation by other processes.

Figure 6 gives the module process route of the router example. The process receives
a packet from the driver via channel input and then decides where to send data based
on the packet header information to chan.

TLM modeling provides some synchronization mechanism for the communications
between modules. As shown in Figure 6, the router can fetch the data from the FIFO
queue input only when the driver puts a package and the FIFO channel event ok to get
is triggered. Thus, the synchronization between two modules is implicitly achieved.

SMV supports many constructs similar to the common programming language, such
as if-then-else, switch-case, and for loop, so these constructs facilitate the behavior
modeling of processes from TLM to SMV specification. Figure 7 is the translated SMV
specification of the TLM example presented in Figure 6. During the translation from
TLM to SMV, we abstract a channel as an implicit buffer between two ports, so an
SMV module will get the input data from its input ports. There is no mapping of the
channel in transformed SMV specification. For example, the tmp packet is assigned
with the value of packet in instead of the value of input shown in the TLM example of
Figure 6.
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Fig. 7. An example of an SMV process.

3.3 Automatic TLM Test Generation

For model-checking-based testing, a test is derived from the counterexample of a
false safety property. A safety property in the temporal logic form !F(p) asserts that
a specified scenario cannot happen (i.e., property p cannot be true). Otherwise, a
counterexample which explains the reason of the error will be reported by a model
checker. In other words, such a counterexample can then be extracted to a test to
validate the specified scenario. In our method, the quality of the generated TLM tests
is determined by the corresponding properties, so during the property generation,
it is necessary to guarantee that the generated properties can sufficiently validate
the system. This section first proposes fault models for enabling automatic property
generation, then we introduce the TLM test generation method using model checking.

3.3.1 Property Generation Based on Fault Models. The coverage metrics play an impor-
tant role in testing to indicate the testing adequacy. Test generation using model
checking techniques requires that the automatically generated properties can cover
as many desired scenarios in the design as possible. In our framework, properties are
derived from a fault model which represents a complete set of specific errors. Each
fault in the fault model indicates a potential design error which can be described by
a temporal logic property. The test generated from such a property can be applied on
the design to check the specific scenario (negation of the fault). For example, when
validating a desired scenario described by an LTL formula p, we use the negation !p as
a fault. By checking the property !p, we can derive a test to check the scenario where
property p holds.

The properties generated from a fault model can guarantee the specific fault cover-
age in a design; therefore, the testing coverage can be assured. In other words, a proper
fault model with a good fault coverage determines the success of TLM test generation.
Our TLM fault models are inspired by the fault model based on bit failures and con-
dition failures proposed in Ferrandi et al. [1999]. All such fault models are simple but
effective. They easily can be obtained by anlyzing the syntax of TLM models. In our
method, we did not consider complex functional scenarios like “if communication C1
occurs before communication C2, then condition C3 will hold until communication C4
is asserted,” because the major concern of our method is automation for directed test
generation. By parsing the syntax of OSCI TLM models, it is difficult to figure out the
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Fig. 8. Examples of two kinds of faults and their corresponding properties.

complex dynamic semantics of a design automatically. However, our framework does
not exclude any properties written manually. The verification engineer can insert their
properties after the SMV file generation, and the corresponding TLM and RTL tests
can be generated automatically as well.

In TLM, transaction data and transaction flow are two most important aspects.
They indicate both the structure and behavior information. In our framework, we
define two fault models based on them as follows.

(1) Transaction data fault model investigates the content of the variables relevant to
the transaction. For each variable, it is assumed that a specific value cannot be
assigned in a faulty scenario.

(2) Transaction flow fault model investigates the controls along the path where the
transaction flows. For each transaction path, it is assumed that it cannot be acti-
vated in a faulty scenario.

The transaction data fault model deals with the possible variable assignments for each
part of the transaction data. However, in property generation, trying all the possible
values of a data is time consuming and impossible, due to the large size of value space.
In our experiment, we use the data bit fault model which checks each bit of a vari-
able respectively. This model not only can partially guarantee the TLM data content
coverage but also can increase the toggle coverage for the corresponding RTL designs.
Since a transaction flow is a sequence of transactions, it can be used to reason the
transaction ordering indirectly. The transaction flow fault model deals with the con-
trols along the transaction flow. To ensure transaction flow coverage, all the branch
conditions, like if-then-else, switch-case statements, along the transaction flow should
be investigate. The goal is to check all possible transaction flows. It is important to
note that these preceding models are not golden models. It is allowed that users can
provide their own fault models to derive false properties for test generation. Based on
the router example shown in Section 4.1, Figure 8 presents two examples for these two
fault models.

3.3.2 TLM Test Generation Using Model Checking. A model checking falsification algo-
rithm is promising for automated generation of directed test [Kupferman and Vardi
1999; Mishra and Dutt 2008]. The algorithm has two inputs: i) the model of the design
in SMV specification and ii) a set of properties derived from the specified fault models
described in Section 3.3.1. During test generation, the model checker will generate
one counterexample for each property. The generated counterexample is a sequence
of variable assignments which can be transformed to a TLM test. Figure 9 shows an
example of a generated TLM test based on a transaction flow fault of the router exam-
ple. It is derived from the condition of an if-then-else statement of the router example
shown in Section 4.1. By applying this test on the TLM specification of the router
example, the specified condition is assumed to be activated.

Clearly, model-checking-based approaches may be time consuming in the presence
of complex designs properties. In these circumstances, various learning [Chen and
Mishra 2010, 2011; Chen et al. 2010; Strichman 2001] and decomposition [Chen and
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Fig. 9. The TLM test for a transaction control fault.

Mishra 2011; Koo and Mishra 2009] based optimization approaches can be used to
reduce the overall complexity of test generation.

3.4 Translation from TLM Tests to RTL Tests

A major challenge in test translation is how to bridge the abstraction gap between
TLM and RTL. For the same TLM specification, RTL designs may differ because
of input/output definitions, timing details, programming styles, and so on, so when
converting TLM tests to RTL tests, it is necessary to provide information, such as
the input/output mappings between TLM and RTL, as well as the timing details of
RTL input signals. For example, p→to chan in TLM is mapped to an input signal for
D AT A[1 : 0] in RTL.

In our framework, we developed the language TRS which allows specifying rules for
TLM-to-RTL test transformation. Since TLM tests only reflect the transaction data
information, our TRS can analyze the transaction data in TLM tests and generate the
corresponding RTL tests which are consistent with that of the interface protocol. One
might argue that it may be easier to write RTL tests than to write TRSs. However,
for the TLM tests which will be refined to the same RTL components, they share the
same RTL input/output interface protocol. Generally, for each testing component, we
will generate a large set of TLM tests. Most of them are only different with transaction
data values. In other words, a large cluster of TLM tests can share one TRS. Therefore,
we just need to write several TRSs to cover all the testing scenarios, which is time ef-
ficient. In addition, the repeated subscenarios can be reused across TRSs. The overall
automatic RTL test generation time can be significantly reduced. Generally, the TRS
contains the following three parts.

— Input/Output mappings specify the correspondence between TLM I/O variables and
RTL I/O signals.

— Patterns are templates which define small segments of the test behavior. They can
be used to compose various testing scenarios.

— Timing sequence describes a complete scenario of input signals with timing
information.

In this section, we discuss each part of TRS in detail with illustrative examples. All
these examples are based on the router example shown in Section 4.1.

3.4.1 Input/Output Mappings. During the TLM-to-RTL test translation, one important
step is mapping TLM test data to its corresponding RTL test stimulus. Because of the
difference between TLM data and RTL data, in the mapping, we need to give the size
information of each RTL signal, as well as the bit correspondence between TLM data
and RTL data.
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Fig. 10. An example of a mapping between TLM data and RTL data.

Fig. 11. Two examples of patterns.

In each mapping rule, the left-hand side is the RTL data declaration, and the right-
hand side is the bit mapping from TLM data to RTL data. Our TRS language allows
the user to specify the RTL data using the concatenation of several TLM data. Also, it
supports the mapping from an array of TLM data to an array of RTL data. Figure 10
gives an example of the data mappings. In the example, parity is an RTL data with
eight bits. It maps to the TLM variable packet.parity. The header is an RTL data
whose most significant six bits correspond to the TLM data payload sz, and the least
significant two bits correspond to the TLM data to chan. The RTL data payload is
an array where the width of each element is eight bits. The ith element payload[i]
corresponds to the ith element of the TLM data packet.payload[i].

3.4.2 Patterns. When writing tests, some subscenarios may occur several times. To
enable the reuse of segments of a scenario, TRS introduces the construct pattern to
group several statements together. Essentially, like a macro, the content of a pattern
will substitute for the pattern statements in the timing sequence. Thus, the usage of
the pattern can reduce the programming time as well as increase the programming
flexibility.

In TRS, a pattern can have parameters. During pattern text substitution, the tags
defined in patterns will be replaced with the given value of parameters. Figure 11
presents two examples of patterns, reset and slave read. The pattern reset has no pa-
rameters, so its content will be directly embedded at the place of the pattern statement.
The pattern slave read has two parameters to indicate which slave will be enabled.

3.4.3 Timing Sequence. The timing sequence in TRS composes a sequence of state-
ments and pattern instances for describing a testing scenario. According to the
definition of input/output mappings and patterns, the compiler will translate testing
scenarios described in timing sequences to corresponding RTL tests. Figure 12
presents an example of a timing sequence. It describes a testing scenario of the packet
delivering for a router as follows: i) a master sends a packet to a router, ii) the router
holds the packet and notifies the corresponding slave to fetch the packet, and iii) the
slave receives the packet.
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Fig. 12. An example of a timing sequence.

Fig. 13. The structure of our prototype tool.

3.5 ARTEST : A Prototype Tool for TLM-to-RTL Test Generation

We developed a prototype tool Automatic RTL Test gEnerator from SystemC TLM
(ARTEST) which incorporates the proposed methods. Figure 13 shows both the struc-
ture and workflow of our tool. The following sections will present its three key compo-
nents: i) TLM2SMV for SMV model and property generation, ii) TLM test generation
using model checking, and iii) TLM2RTL for RTL test generation.

3.5.1 TLM2SMV. Implemented based on the C++ parser Elsa,3 TLM2SMV can au-
tomatically translate the SystemC TLM to a SMV specification and derive properties
based on the fault models. Due to the complex data type definition and complex

3http://www.eecs.berkeley.edu/∼smcpeak
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constructs defined in SystemC TLM library files, direct translation to SMV would
cause state space explosion, so in our tool, we simplify such definitions and predefine
them for SMV transformation. For example, we restrict the queue size for TLM FIFO
channels. In SystemC, an integer is 32-bit (with 232states). However, we reduce its size
to eight bits (with 28states) during the SMV transformation.

Before the TLM-to-SMV translation, the preprocessing procedure of TLM2SMV will
do the following three tasks: i) eliminate the header files and the comments, ii) add
the necessary predefine constructs, and iii) convert the data type if necessary. Then
TLM2SMV will start to transform the TLM specification. As described in Section 3.2,
TLM2SMV will extract both static and dynamic information. In the mean time, it also
explores information such as transaction-relevant data and branch conditions for the
property generation. Finally, based on the collected information, we can get both a
formal specification in SMV and properties derived by specified fault models. By using
the Cadence SMV verifier,4 we can get a set of counterexamples. The TLM tests are
extracted from these counterexamples.

3.5.2 TLM Test Generation. When a specified safety property is false, the SMV model
checker will generate a counterexample to falsify it. A generated TLM counterexample
is in the form of a sequence of state assignments. This sequence starts from first state
(initial state) and ends at the error state which violates the property. If the cone of
influence (COI) is enabled during property checking, each state would only contain the
variables which are relevant to the specified property. The generated counterexample
is refined to produce the TLM test.

3.5.3 TLM2RTL. Because SystemC TLM focuses on system-level modeling, the gen-
erated TLM tests lack implementation-level knowledge, so the generated TLM tests
are different from RTL tests and cannot be directly used to validate RTL implementa-
tion. For example, most loosely timed TLM models are too abstract and assume that a
transaction happened in one or a sequence of function calls. However, an RTL design
has many more pins, and it needs the detailed timing information for each signal. In
our framework, the user should provide a TRS which provides the mapping rules for
the TLM-to-RTL test translation. With the generated TLM tests and the TRS as in-
puts, the TLM2RTL can translate the TLM tests to RTL tests. Finally, the coverage
of the TLM implementation will be reported when simulating the generated RTL tests
on the RTL design.

4. CASE STUDY

We applied our method on various practical examples. In this section, two case stud-
ies are presented to show the effectiveness of our method. The results are obtained
while running our tool on a 2 GHz AMD Opetron Processor with 8G RAM using Linux
operating system.

4.1 A Router Example

Figure 14 shows the TLM structure of the router. The router consists of five modules:
one master, one router, and three slaves. It consists of four classes, eight functions,
and 143 lines of code. The main function of the router is to analyze and distribute the
packets received from the master to target slaves.

4Cadence Berkeley Labs. The Cadence SMV Model Checker. http://www.kenmcmil.com/.
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Fig. 14. The TLM structure of the router.

Fig. 15. The packet format of the router in TLM and RTL.

At the beginning of a transaction, the master module creates a packet which is in the
form shown in Figure 15(a). The packet consists of three parts: header, payload, and
parity. The header has eight bits, with bit 0 and bit 1 used as the address of the output
port. The other six bits indicate the size of the payload, so the maximum payload size
is 63. The last byte of the packet is the parity of both header and payload. Then, the
driver sends the packet to the router for package distribution. The router has one input
port and three output ports. Each port is connected to an FIFO buffer (channel) which
temporarily stores packets. The router has one process route which is implemented as
an SC METHOD. The route first collects a packet from the channel connected to the
driver, decodes the packet header to get the target address of a slave, and then sends
the packet to the channel connected to the target slave. Finally, the slave modules
will read the packets when data is available in the respective FIFOs. The transaction
data (i.e., packet) flows from the master to its target slave via the router. The flow is
determined by the address to chan in the packet header.

In the following sections, we present the workflow of the RTL test generation and
provide the validation result of the router implementation.

4.1.1 RTL Tests Generation. By using the tool ARTEST, we can get the SMV input
from the SystemC TLM specification described in Section 3.2. Also, according to dif-
ferent fault models defined in Section 3.3.1, we can generate a set of properties. For
each property, we can derive a test from its counterexample. As a high-level mod-
eling language, SystemC TLM lacks the information of pins and timing in low-level
implementations. The generated TLM tests are not appropriate as the inputs of RTL
designs. Therefore, it is necessary to provide an interface mapping to enable TLM-to-
RTL test translation.
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Fig. 16. The router’s block diagram with interface information.

Fig. 17. Timing chart for the router example.

Figure 16 shows the input/output interfaces of the router. This RTL information
and other TLM details (such as the packet description in Figure 15) are used to per-
form mapping between TLM variables and RTL signals. For example, packet.to chan
in TLM corresponds to the RTL data header[1 : 0], and packet.payload sz corresponds
to header[7 : 2]. Also, the array of TLM data packet.payload will be mapped to RTL
data payload. Such information should be defined in the mapping definition of TRS, as
shown in Figure 10.

The TRS of the RTL tests are derived from the timing specification of the RTL im-
plementation. Figure 17 presents the timing chart of a testing scenario. From this
chart, we can extract the timing specification for the router as follows. All input/output
signals are active high and are synchronized to the falling edge of the clock. The
PKT VALID signal has to be asserted on the same clock when the first byte of the
packet (the header byte) is driven onto the data bus. Each subsequent byte of data
should be driven on the data bus with each new falling clock. After the last payload
byte has been driven, on the next falling clock, the PKT VALID signal must be de-
asserted (before the parity byte is driven). The packet parity byte should be driven
on the next falling clock edge. The router asserts the VLDx (x ∈ {0, 1, 2}) signal when
valid data appears on the CHANx output. The ENBx input signal must then be as-
serted on the falling clock edge in which data is read from the CHANx bus. As long
as the ENBx signal remains active, the CHANx bus drives a valid byte on each rising
clock edge. Such timing information needs to be extracted and described in the timing
sequence of TRS.
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Fig. 18. TLM-to-RTL test transformation in the router example.

Section 3.4 gives the details of the router TRS. The RTL tests can be obtained by
using this specification. Figure 18 shows both TLM and RTL tests corresponding to
the transaction flow fault shown in Figure 8. The first part of the RTL test contains the
initialization of the RTL input variables. The second part contains the reset sequence.
The third part contains the assignment to the PKT VALID signal. The subsequent
entries in the RTL test is generated by transforming corresponding TLM entries by
using a combination of name mapping, delay insertion, and composition of values
(used in one case). Finally, the PKT VALID signal needs to be low before sending
the parity followed by assignment of read enable signals for four time steps (to read
four entries: header, two data elements, and parity) so that the slaves can read the
packet.

To increase the RTL coverage, we also manually generated several RTL tests which
are not related to the proposed fault models. These tests are necessary to cover the
additional functionalities in RTL that are not available in TLM. For example, TLM
does not have a notion of the reset signal; therefore, we needed to generate RTL tests
related to reset check operations and so on.

4.1.2 RTL Validation and Analysis. We generated a total of 92 TLM tests: four based
on the transaction flow fault model and 88 on the transaction data fault model. It is
important to note that TLM test generation and RTL test translation are independent.
In other words, TLM tests can come from multiple sources. However, our tool will
automatically convert TLM tests to RTL tests. Due to the lack of FIFO channel
information, we manually created four RTL tests based on FIFO overflow, reset
check, and asynchronous read. Finally, we got 92 TLM tests and 96 RTL tests for
validation.
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Table I. RTL Coverage Results for the Router Example

Test Type & Line Condition FSM (%) Toggle (%) Path Time
Number (%) (%) State / Transition Regs / Nets (%) (minute)

Rand100 98.63 51.06 75.0/37.5 56.76/48.91 51.39 0.07

Rand1000 99.92 53.19 100/62.5 56.76/57.61 56.94 1.23
Rand10000 99.99 46.81 75/37.5 64.86/70.65 58.33 17.63

Directed 98.89 72.34 75.0/37.5 59.46/68.48 68.06 0.08

Rand100 + Directed 99.55 72.34 75.0/37.5 78.38/81.52 68.08 0.08

Rand1000 + Directed 99.97 78.72 100/62.5 78.38/84.78 73.61 1.35
Rand10000 + Directed 99.99 78.72 100/62.5 81.08/85.87 73.61 17.43

Extended + Directed 99.48 78.72 100/75 79.97/80.43 73.61 0.10

To show the effectiveness of our directed tests, we applied both random tests and di-
rected tests on the RTL implementation of the router and measured various coverage
metrics using Synopsys VCS cmView.5 Table I shows the coverage results. The first
row indicates the RTL coverage metrics. The second to fourth rows show various cov-
erage using 100, 1,000, and 10,000 random tests, respectively. Although the number of
random tests increases exponentially, there is no drastic improvement on the coverage
ratio. The fifth row shows the coverage results using our directed tests. It shows that
the method using directed tests can achieve better RTL coverage with significantly
fewer tests. The sixth to eighth rows present the coverage results that combine
both random tests and our directed tests. The results indicate that our method can
activate the functional scenarios that are difficult to activate by the random method.
For example, in the third and seventh row, we can find that coverage using the
random method can be further improved by adding our directed tests, because our
directed tests are derived from TLM designs and carry system-level information.
To further improve the coverage result using directed method in the fifth row, the
last row gives the coverage with four extended manual tests. It can achieve the best
coverage (except the line coverage and toggle coverage) with much shorter simulation
times.

We have identified several fatal errors during validation of the RTL implementa-
tion using our generated tests. The first error is encountered when an FIFO buffer
is empty, but when a slave tries to read the corresponding channel, the empty FIFO
buffer becomes full! This is due to the incorrect implementation of FIFO size, which
is always decremented without zero check. The second one occurs if the destination
of the packet is channel 3. In this case, the packet should be discarded, but in RTL,
the data is written to channel 0. Also, one of the tests identified an inconsistency be-
tween TLM and RTL FIFO implementations: the overflow in TLM level is 16 packets,
whereas the overflow in RTL is 16 bytes.

4.2 A Pipelined Processor Example

In this section, we first present the TLM model of the pipelined processor and associ-
ated TLM test generation. Next, we present the TRS specification for RTL test gen-
eration. Finally, we discuss the results of the RTL design validation using generated
tests.

4.2.1 TLM Test Generation. Figure 19 shows a simplified version of the Alpha AXP pro-
cessor. It consists of five stages: Fetch (IF), Decode (ID), Execute (EX), Memory (MEM),

5Synopsys VCS verification library. http://www.synopsys.com.
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Fig. 19. The TLM structure of an Alpha AXP processor.

Fig. 20. A TLM test for the Alpha AXP processor.

and Writeback (WB). The IF module fetches instructions from the instruction memory;
the ID module decodes instructions and reads the values of the operands if necessary.
The EX module does ALU operations; also, it will notify whether the conditional or
unconditional branch happens. The MEM module reads and writes data to the data
memory, and the WB module stores the result to specified registers. Communication
between two modules uses the port binding associated with a blocking FIFO channel
with one slot. For example, there is a binding from the port of the IF module to the
export of the ID module, and the export of the ID module binds to a blocking FIFO
channel for holding incoming instructions. So each time, the IF module can only issue
one instruction to the ID module; otherwise, it will be blocked. The whole TLM design
contains 6 classes, 11 functions, and 797 lines of code.

During the TLM-to-SMV translation, the global data structure (such as register
file, data memory, etc.) is defined in the SMV main function, and they are used as
the input and output parameters by each modules. Initially, the program counter (PC)
starts from 0, and the value of registers and memories are all 0. In this example, we
use both the transaction data fault model and transaction flow fault model to derive
properties. Figure 20 presents an example of the test generation for a transaction data
fault.

4.2.2 RTL Test Generation. In the Alpha AXP processor, there are four types of instruc-
tions: CALL PAL, OPERATE, BRANCH, and MEMORY. For OPERATE instructions,
there are three different instruction formats. Figure 21 shows a partial TRS descrip-
tion that is used to translate the processor TLM tests to RTL tests. There are two
input ports for the RTL design of the processor: RESET for resetting all five stages
and a 64-bit signal Imem2proc bus which contains two 32-bit instructions. Every two
clock cycles, the processor fetches one 32-bit instruction from the instruction memory
through the bus connected to the instruction memory. Because there are four different
types of instructions, in the mapping def part, it is necessary to list four different in-
struction formats, and in the timing sequence part, the input signals to Imem2proc bus
will be determined by the instruction class information included in TLM tests.
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Fig. 21. A test refinement specification for the Alpha AXP processor.

Fig. 22. The TLM-to-RTL instruction mapping of the Alpha AXP processor.

Figure 22 shows the mapping from a TLM instruction to an RTL instruction. Be-
cause the given TLM test is of memory type, according to the TRS mapping infor-
mation defined in Figure 21, the 32-bit instruction contains four segments: opcode,
register rega, register regb , and memory address displacement. The mapping rules
provide both value and place information for the transformation.

We apply the Alpha AXP TRS on the TLM tests generated from the SMV coun-
terexamples. Figure 23 shows an example of the transformation from a TLM test to
an RTL test. The left part shows a TLM test with two TLM instructions, and the
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Fig. 23. A TLM-to-RTL test transformation in the Alpha AXP processor.

right part presents its corresponding RTL test. During the test transformation, each
TLM instruction in the left part will be composed and mapped to a 64-bit input RTL
signal.

4.2.3 Validation Results. The test generation for the Alpha AXP processor is based on
the transaction data and flow fault models. The transaction data faults mainly in-
dicate the bit value change for each transaction variable and global variable, such
as data memory, register file, data forward, and branch status. The transaction flow
faults indicate the instruction category and instruction execution. Overall, there are
212 TLM tests generated, including 86 tests for condition faults and 126 tests for data
bit faults. It costs 311.47 minutes to achieve all these tests using the Cadence SMV
verifier.6 We also use the Bounded Model Checker NuSMV7 to optimize the test gen-
eration time. By using NuSMV, the test generation time just needs 3.23 minutes.

Since some of the generated tests are redundant (same test) and can be removed, we
finally get 112 TLM tests, including 50 tests for transaction flow faults and 62 tests for
transaction data faults. We applied both random tests and directed tests on the RTL
implementation to measure the effectiveness of our directed tests. We derived 100,
500, 5,000, and 50,000 random RTL tests, respectively. The directed RTL tests are
generated using the TRS presented in Section 4.2.2. The coverage results are shown
in Table II. For the condition coverage, there is no improvement with more random
tests. It is important to note that, in this example, the test generation of 50,000 ran-
dom tests costs 23.18 minutes, while our 212 directed tests derived using the bounded
model checker just needs 3.23 minutes. Moreover, our method can achieve better cov-
erage results (except line coverage) than the random method with less time. We also
combined both random tests and directed tests. The result shows that our directed
method can activate the functional scenarios that are difficult for random methods to

6Cadence Berkeley Labs. The Cadence SMV Model Checker. http://www.kenmcmil.com/.
7ITC-IRST and CMU: NuSMV. http://nusmv.fbk.eu/NuSMV/.
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Table II. RTL Coverage Results for the Alpha AXP Processor

Test Type & Line Condition FSM (%) Toggle (%) Path Time
Number (%) (%) State / Transition Regs/Nets (%) (minute)

Random100 97.63 82.93 NA 67.69/65.89 60.27 0.20

Random500 99.68 82.93 NA 69.23/66.36 72.60 0.35
Random5,000 99.98 82.93 NA 70.77/68.22 80.82 2.32

Random50,000 99.99 82.93 NA 70.77/68.22 80.82 23.18

Directed 98.94 95.73 NA 87.69/81.32 86.30 0.83

Directed + Random100 99.92 96.34 NA 89.23/82.24 90.41 1.20
Directed + Random500 99.98 96.34 NA 89.23/82.24 90.41 1.10

Directed + Random5,000 99.99 96.34 NA 89.23/82.24 90.41 3.10
Directed + Random50,000 99.99 97.56 NA 89.23/82.24 95.89 23.30

explore. For the example in the fifth row, when 50,000 random tests are applied, the
path coverage ratio is 80.82%. However, by adding our directed tests incrementally in
the tenth row, the path coverage ratio increases to 95.89%.

5. CONCLUSIONS

This article presented an automatic RTL test generation methodology based on TLM
specifications. Our approach has various advantages. First, TLM validation efforts can
be reused during RTL validation, thereby significantly reducing the RTL validation
effort. Next, the generated tests contain information of the system-level requirements
which are hard to capture at the RTL level without ad hoc reverse-engineering efforts.
Moreover, the tests and their accompanying transformation rules enable consistency
checking between different abstraction levels. Finally, the RTL tests can be ready
before the RTL implementation is available.

We implemented a prototype tool ARTEST which can be downloaded from
http://www.cise.ufl.edu/∼prabhat/research/tlmValidation/. This tool can auto-
matically generate TLM tests from TLM specifications. The generated TLM tests
would be automatically transformed to RTL tests using our proposed test-refinement
specification. The case studies demonstrated that the RTL tests generated by our
method can achieve the intended functional coverage.

Clearly, the model-checking-based approach would not be suitable for test gener-
ation of complex SOC designs due to state space explosion. We plan to investigate
two complementary directions in which to address this issue: development of efficient
automatic decomposition techniques in model-checking-based test generation and
development of test generation techniques using property clustering and learning
techniques.
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