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Abstract—Functional verification is one of the major bot-
tlenecks in system-on-chip design due to the combined effects
of increasing complexity and lack of automated techniques
for generating efficient tests. Several promising ideas using
bounded model checking are proposed over the years to efficiently
generate counterexamples (tests). The existing researchers have
used incremental satisfiability to improve the counterexample
generation, involving only one property by sharing knowledge
across instances of the same property with incremental bounds.
In this paper, we present a framework that can efficiently reduce
the overall test generation time by exploiting the similarity
among different properties. This paper makes two primary
contributions: 1) it proposes novel methods to cluster similar
properties; and 2) it develops efficient learning techniques that
can significantly reduce the overall test generation time for the
properties in a cluster by sharing knowledge across similar test
generation instances. Our experimental results using both soft-
ware and hardware benchmarks demonstrate that our approach
can drastically reduce (on average three to five times) the overall
test generation time compared to existing methods.

Index Terms—Bounded model checking, functional verifica-
tion, property clustering, SAT, test generation.

1. INTRODUCTION

UNCTIONAL verification is one of the most time-

consuming and costly phases in the system-on-chip
(SOC) design flow due to the combined effects of increasing
design complexity and decreasing time-to-market. Existing
validation approaches use a combination of simulation-based
techniques and formal methods. Simulation is the most widely
used form of SOC validation using random, constrained-
random, and directed test vectors. As expected, the directed
tests exploit the structural and functional information of a
system. As a result, the directed tests can achieve the same
coverage goal using orders-of-magnitude less tests compared
to random or constrained-random tests, and therefore can
drastically reduce the overall simulation time and validation
effort. However, directed test generation is mostly performed
by human intervention. Hand-written tests entail laborious and
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time-consuming effort of verification engineers who have deep
knowledge of the design under verification. For a complex
design, it is infeasible to manually generate all directed tests
to achieve a comprehensive coverage goal. Therefore, it is
necessary to develop tools and techniques for automated
directed test generation.

Boolean satisfiability (SAT) based bounded model checking
(BMO) [1], [2] is very promising for automated generation of
directed tests. Given a model M, a safety property p, and a
bound k&, BMC will unfold the model k times and encode it
using the following logic formula. Here, /(s¢) means the initial
state of the system, 7(s;, s;+;) describes the state transition
from state s; to state s;.1, and p(s;) tests whether property p
holds on state s;. This formula is transformed to conjunctive
normal form (CNF) and checked by a SAT solver [3], [4]. If
there is a satisfiable assignment, the property is false and the
assignment will be reported as a counterexample. Recent SAT
solvers use conflict analysis techniques to trace the reason for
a conflict. It saves the knowledge using conflict clauses and
adds them to the original clauses, in order to avoid the same
conflicts in the future

k=1 k
BMC(M. p. k) = 1s0) A J\ Tisivsisr) A\ =p(s). (D)
i=0 i=0

Incremental SAT-based BMC [5] can reduce test generation
complexity by exploiting similarity between incremental SAT
instances. However, existing approaches are restricted for a
test generation scenario consisting of one design and only
one property (with varying bounds). According to (1), a
set of similar properties will have a large overlap between
their CNF clauses, since the equation shares the system part
[transition relation T'(s;, s;+1)] and partial property checking
part [p(s;)]. Such a large overlap of CNF clauses indicates
that when searching a counterexample for a property, some
learned knowledge (conflict clauses) can be reused by other
similar properties. If the shared information can be exploited
and reutilized across the similar properties, many repeated
verification efforts can be avoided. Therefore, knowledge
sharing can reduce complexity and improve the overall ver-
ification effort. A major challenge in implementing this idea
is to identify the property similarities and perform efficient
clustering to share learning and thereby reduce the overall
test generation time. This paper makes two primary con-
tributions to address this problem: 1) we propose several
methods to efficiently cluster the similar properties; and 2) we
develop a number of conceptually simple, but very effective,
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learning techniques to generate tests for a cluster of similar
properties.

The rest of this paper is organized as follows. Section II
presents related work addressing test generation approaches
using model checking. Sections III-VI present our method-
ology for functional test generation using property clustering
and learning techniques. Section VII presents our experimental
results using both software and hardware benchmarks. Finally,
Section VIII concludes this paper.

II. RELATED WORK

Formal verification techniques such as model checking
[6] have been successfully used in software and hardware
verification domain as a test generation engine [7], [8]. Tra-
ditional model checking techniques do not scale well due
to the state explosion problem. Biere et al. [1] introduced
the framework of SAT-based BMC which can complement
the existing model checking techniques. SAT-based BMC is
an incomplete method that cannot guarantee a true or false
determination when a counterexample does not exist within
a given bound. However, once the bound of a counterexam-
ple is known, large designs can be falsified very fast, and
searching a counterexample in an arbitrary order consumes
much less memory than traditional techniques. Several recent
developments in related techniques have been presented in
[5]. The performance of bounded and unbounded algorithms
was analyzed on a set of industrial benchmarks in [9]. An
Intel study [10] shows that BMC has better capacity and
productivity over unbounded model checking for real designs
taken from the Pentium-4 processor. The performance of SAT
based test generation and validation can be further improved
by employing various approaches. Clarke et al. [11] used
a combination of integer linear programming and machine
learning for abstraction refinement to enable faster verification
of safety properties. Cheng and Hsiao [12] proposed a novel
framework for software verification that combines data mining
with BMC. After mining a set of high-level potential property
invariants from the dynamic execution data of software, this
method uses it as the constraint to prune the search space
during assertion checking. However, these approaches use
learning to improve verification time involving only one prop-
erty, whereas our approach tries to improve overall verification
time by exploiting similarities across properties.

Incremental SAT approaches [13]-[17] try to leverage
the similarity between the elements of a sequence of SAT
instances—most do so by re-utilizing learned knowledge
(conflict clauses). Majority of the existing approaches exploit
incremental satisfiability to improve the test generation time
involving only one property with different bounds. There are
very few approaches such as [18] where both static and
dynamic learning is used across test generation instances
for path-delay fault model by dynamically excluding the
untestable path during the test generation. Since the learning is
employed across all test scenarios without efficient clustering
methods, the improvement in test generation time is small
(6% on average) and have a wide variation (—7% to 27%)
on different ISCAS circuits. To the best of our knowledge,
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Fig. 1. Our test generation methodology.

our approach is the first attempt to cluster similar test genera-
tion instances involving multiple properties and utilize shared
knowledge across similar instances in the context of directed
test generation.

III. TEST GENERATION USING PROPERTY CLUSTERING
AND LEARNING TECHNIQUES

Fig. 1 shows the overall methodology of our test generation
framework. The proposed methodology has three important
steps: coverage-driven property generation, clustering of sim-
ilar properties, and test generation using learning techniques.
It is important to note that each of these three steps can be
independent. For example, this paper uses a graph model of
the design and a fault model based on functional coverage
to enable coverage-driven property generation. The other two
steps (primary contributions of this paper) will produce bene-
ficial results even if other design or fault models are used to
generate properties. Designers can even add various properties
manually to the set of generated properties without affecting
the usefulness of our approach.

While each of these steps can work independently, there
is a strong correlation between them. Automated property
generation methods can be helpful for property clustering.
For example, property clustering based on textual overlap
(discussed in Section V-B) will benefit if the property gen-
eration is performed using a uniform method compared to if
the same set of properties is written by different designers.
Similarly, property clustering can significantly influence the
learning efficiency during test generation. Our experiments
show that certain clustering techniques perform better than
others in many scenarios. Moreover, clustering techniques that
can generate a small number of large clusters are beneficial
in terms of overall test generation time compared to the ones
that create many small clusters.
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Fig. 2. Graph model of a VLIW MIPS processor.

The following three sections describe three important steps
in this methodology. Section IV describes how to generate
properties based on specific fault models. Next, Section V
describes how to efficiently cluster the generated properties
using design and property related information such as structure
or behavior similarity. Finally, Section VI presents a set of
learning techniques that can share knowledge for solving a set
of similar properties to reduce the overall test generation time.

IV. COVERAGE-DRIVEN PROPERTY GENERATION

Property generation is a crucial step in automated generation
of directed tests. To automatically generate properties, we need
to have a model of the design and specific fault models.
Clearly, the model of the design is dependent on the fault
model and vice versa. For example, it is infeasible to use a
high-level design model for a low-level fault model. This paper
uses a graph-based model of the design and a high-level fault
model for property generation.

Graph-based modeling of hardware and software designs
is widely used as a suitable high-level specification. For
software designs, it can be viewed as a task graph where
each node is an activity (task), and an edge between two
nodes (activities) indicates data communication. Similarly, for
hardware designs such as SOC designs, the nodes in the graph
correspond to SOC components and edges correspond to the
connectivity between components. For example, consider the
multi-issue microprocessor without interlocked pipeline stages
(MIPS) processor [19] shown in Fig. 2. The figure shows
the graph model of the processor that can issue up to four
operations (an integer arithmetic logic unit (ALU) operation,
a floating-point addition operation, a multiply operation, and a
divide operation). In the figure, rectangular boxes denote units,
dashed rectangles are storages, bold edges are instruction-
transfer (pipeline) edges, and dashed edges are data-transfer
edges. Such a graph model for the MIPS processor can

be automatically generated from an architecture description
language specification [20].

Fault model plays an important role in directed test gener-
ation. The efficiency of directed tests is directly related to the
generated properties which in turn are related to the associated
fault model. Our proposed fault model considers the following
four types of faults (errors) in the graph-based model of the
design. It is important to note that these fault models are by no
means the “golden” model rather it is a representative model
which can be refined or modified for improved verification
methodology. For example, the fault model presented below
considers only valid execution for each node. This model can
be extended by considering other possible states for each node
such as performing a specific computation, stalled, interrupted,
encountered exception, and so on.

1) Node Fault: Each node is faulty. For example, a node
cannot be activated.

2) Edge Fault: Each edge is faulty. For example, the
respective nodes cannot be activated in that order.

3) Path Fault: Each execution path is faulty. For example,
the associated nodes and edges are either faulty or their
behavior cannot be composed correctly to activate the
path.

4) Interaction Fault: Each interaction is faulty. For exam-
ple, an interaction involving a set of nodes cannot be
activated simultaneously.

We generate one property for each fault in a fault model.
So the transformation from the fault model to the properties
(in the form of temporal logic [6]) is a one-to-one mapping.
Because a fault is already a negation of the system required
behavior, it can be directly used to derive a property for
test generation. Since in this paper we focus only on safety
property generation for the above fault models, the majority
of the properties will be in the form of ~F (p) or G(~p).
However, other forms of safety properties are also possible
and allowed in our framework. The following example shows
four properties (one for each fault type) for the graph model
shown in Fig. 2.

Prop 1: The node Fetch cannot be activated.
“F (fetch_active = 1)

Prop 2: The edge between node MUL4 and MULS
cannot be activated.
“F(muld4_active=1 -> X(mul5_active = 1))
Prop 3: The path of FADD cannot be activated.

“F (fetch_active = 1 & decode_active =1
& faddl_active = 1 & fadd2_active
& fadd3_active = 1 & fadd4_active =
& mem_active = 1 & writeback_active
DIV, FADD4 and MUL7 cannot be
activated at the same time.
“F(div_active = 1 & fadd4_active = 1

& mul7_active = 1)

I = =

1)
Prop 4:

The functional coverage can be defined based on the
fault coverage in fault models applied on graph models.
As indicated earlier, our framework generates one property
for each fault in the fault model. For example, consider a
graph model with n nodes, e edges, and p paths, then we
need to generate n properties for node fault, e properties for
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Algorithm 1: Property Clustering

Inputs: i) A set of properties, P
ii) Similarity strategy CS, and threshold Wy,
Outputs: Clusters consisting of similar properties
Begin
PropClusters = ¢;
1. Construct a graph, G where each node is a property.
for each pair of nodes n; and n; in G
Weight w{ = ComputeSimilarity(n;, n;);
if (w! > Wy,) then
Create an edge (n;, n;) with weight w;.
endif
2. k = 1; /* first cluster */
while G is not empty
Basey = Node with highest edge weight.
Cluster;, = all the nodes connected to Basey.
G = G - Clustery,
PropClusters = PropClusters U Clustery
k=k+1;
endwhile
return PropertyClusters ;
End

edge fault, and p properties for path fault. The number of
properties required for interaction fault depends on the number
of simultaneous interactions. For example, if we allow up to
two node interactions, the total number of properties will be
n(n—1)/2. Due to the overlap between different fault models,
some of the generated properties may lead to redundant
tests. Therefore, property compaction can be employed to
reduce the number of properties without affecting coverage
goals [21].

V. CLUSTERING OF SIMILAR PROPERTIES

Given a set of properties, a clustering method determines
how to divide the properties into several groups such that each
group contains similar properties that can benefit from each
other during test generation. The similarity can be structural
or behavioral but the assumption is that there is a significant
overlap between the counterexample generation traces involv-
ing a set of similar properties.

Algorithm 1 outlines the major steps in property clustering.
The first step constructs a property graph' where the properties
are nodes and edges represent similarity. An edge is added be-
tween two properties (nodes) when they are similar. Each edge
e; includes weight information (w;, 0 < w; < 1) to quantify
the similarity. An edge with weight O or 1 is not possible since
an weight of 0 means no similarity, and an weight of 1 implies
same (identical) property. To compute the weight information
for each edge we propose four methods: structural, textual,

'In this paper, we use three different types of graphs in three different
purposes. The graph model of the design (or design graph in short) is used
to model the design. The implication graph is used to store the dependence
of variable assignments that is used for conflict analysis. The property graph
models the similarity between properties and used for clustering.

influence, and CNF intersection based similarity. Each method
will use a similarity threshold for clustering. In other words,
there will be no edge between two properties when the weight
value is below certain threshold. The second step determines
the clusters based on the base property. The base property is
the property (node) with highest weight (summation of weights
of all edges connected to that node). The cluster is formed
by adding all the adjacent nodes with the base property. All
the nodes selected for a cluster are deleted from the property
graph for the next iteration. The remainder of this section
describes four different ways of computing similarity between
two properties.

A. Similarity Based on Structural Overlap

A simple and natural way to cluster properties is to exploit
the structural information of the design model and its proper-
ties. The intuition is that two structure similar properties will
share similar variable assignments (global variables and local
variables?) in the counterexamples. In fact, a conflict clause
is a constraint on the assignment of the variables. Therefore,
properties with similar structural information will share a lot
of conflict clauses.

As mentioned earlier, in the context of directed test gener-
ation, properties are generated based on functional coverage
of the design. These properties try to cover different parts of
the design (e.g., all computation nodes, various interactions,
and so on). Therefore, we can cluster the properties that try
to cover a specific functionality or interactions. For example,
in an SOC environment, the properties can be clustered
based on whether they are related to verifying the processor,
coprocessor, field-programmable gate array, memory, bus syn-
chronization, or controllers. Each cluster can be further refined
based on structural details of each component. For example,
the processor related properties can be further divided based
on which execution path they activate such as ALU pipeline,
load-store pipeline, and so on.

In the pipelined processor example in Fig. 2, there are four
execution pipelines: IALU, MUL, FADD, and DIV. The
corresponding paths are as follows:

1) pp=FET - DEC — IALU - MEM — WB;

2) po = FET - DEC —- MUL1--- - MUL7 - MEM —
WB;

3) p3=FET - DEC — FADD]---
WB;

4) py = FET - DEC — DIV —- MEM — WB.

— FADD4 — MEM —

Consider two properties pl =~ F(fadd3 active = 1) and
property p2 =~F(fadd4 active = 1). They share the same
path ps3, and the bound of pl is just one smaller than p2.
So we can cluster them together. Also for the interaction
property p3 =~ F(fadd4 active = 1 & mul3 _active = 1)
and p4 =~ F(fadd3 active = 1 & mul4 _active = 1), the
two interactions are related to the same set of paths p, and p;
and have similar bounds. Therefore, clustering them together
is a good choice.

2A local variable is defined locally in a node whereas the scope of a global
variable is valid across nodes.
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B. Similarity Based on Textual Overlap

Another simple way to quantify similarity is to measure the
textual differences between two properties. For example, the
similarity between ~F(a & b & ¢) and ~F(b & ¢ & d) is 67%
since they share a common sub-expression consisting of two
variables b and c. In this paper, we focus on bounded model
checking of invariants (safety properties) such as the property
in the form ~F(p). Informally, BMC(M, p, k) is true means
from cycle O to cycle k, the property will be false. So the
invariant cannot always be true and one counter example will
be reported. Because the part I(sg) A /\f.:()l T(s;, siz1) comes
from the design, so for different properties this part is the
same. The part \/ff=0 —p(s;) usually determines the difference
among the properties.

The negative format of each literal in the conflict clause is a
false assignment for the logic formula BMC(M, p, k). In fact,
the conflict clause can be regarded as a constraint for the vari-
able assignment. Let P and Q be two properties of the model,
the properties P, PAQ and PV Q can be expanded as follows.

1) BMC{(M, P, k)

= 1(50) A Ny Tty 5i41) A Vg = P(s).
2) BMC>(M, P A Q,k)

= 1(s0) A NSy TGt sie1) A Vg =(P A Q)(s)

= 1(s0) A N TGt sie1) A Vg(=P(st) vV =Q(s:)).
3) BMCs(M, PV Q. k)

= 1(s0) A NS TG 511) A V(= Ps1) A =Q(s1)-

In the expanded CNFs above, we assume that the same
variable in respective expansion has the same meaning. Let A
be a partial assignment of the CNF variables that can make
the whole CNF false, then A [ BMC, implies A [ BMCs,
A ¥ BMC, implies A = BMC,, and A ¢ BMC, implies
A [ BMCj;. In other words, the conflict clauses of BMC,
can be forwarded to BMC3, and conflict clause of BMC, can
be forwarded to both BMC, and BMCs5.

In most existing BMC tools, the variables in the generated
CNF file are not well mapped. The conflict clauses of the
stronger property cannot be directly forwarded to some weaker
properties. For example, some conflict clauses of property P A
Q cannot be forwarded to check property P v Q. However,
when properties have the relation of implication, and their
textual similarity is high, clustering them together will have a
positive effect. If two properties are in the same format and
have a significant (more than 50%) textual overlap, the two
properties can benefit from each other.

Textual clustering is very fast but it may not be very
accurate. For example, the properties ~F(a) and ~F(c) have
no overlap, however, it is possible that both variables are very
closely related in the design model (such as activates the same
path), and therefore they are good candidates for clustering.
Unfortunately, in the absence of such structural information,
pure textual clustering may not generate significant savings
in test generation time. Textual clustering is beneficial when
information regarding the design or original fault model is not
available and/or when there are too many properties.

C. Similarity Based on Influence

An assignment to a global variable determines the state
transition of various components in the design (graph) model.
For example, in the MIPS pipeline model, when the instruction
buffer contains only division instruction, only the components
in DIV path will be activated. However, it is time consuming
to analyze all the global and local variables of the model since
it needs to consider the state transition of each component.
Based on the structure of the graph model, we can determine
various cause-effect relations. For example, the state change of
MULG6 will be one clock cycle later than MULS. This means
the execution of MULS has an influence on the execution of
MULSG6. The influence nodes indirectly reflect the assignment
of the global variables, since the assignment of global variables
is relevant to the variable assignment in the counterexample.

Prior to clustering, we need to figure out the influence
node set for each node in the graph model. We can compute
the influence node set for each node using depth first search
(DFS) algorithm. If there is a path starting from the start
node to the current node, then all the nodes on this path are
influence nodes for the current node. DFS can explore all the
paths (except the paths with loops) from the start node to the
current node. For example, the influence node sets for MUL?2,
FADD3 and WB are as follows.

1) InfluencecMUL2) ={FET, DEC, MUL1, MUL?2}.

2) Influence(FADD3) ={FET, DEC, FADDI,

FADD2, FADD3}.

3) Influence(WB) = {n| n is a node in the MIPS graph

model}.

A property corresponds to several nodes (modules) in the
graph model. So the influence node set of a property is the
union of the influence of all relevant nodes. When comparing
the similarity of two properties, we need to compute the
intersection of influence sets. For example, the influence set
of property ~F(mul2 active = 1 & fadd3 active = 1)
is Si= {FET, DEC, MUL1, MUL2, FADD1, FADD?2,
FADD?3} and the influence set for ~F(mul3 active = 1 &
fadd3 _active =1) is S,= {FET, DEC, MUL1, MUL?2,
MUL3, FADD1, FADD2, FADD3}. The two sets share
a large intersection. For set S, the similarity with S, is
7/7 = 100%. For set S, the similarity with S is 7/8 = 87.5%.
Based on our experience, when the overlap of influence sets
is larger than 70%, forwarding conflict clauses is beneficial.
In this example, S| and S, can be clustered together.

D. Similarity Based on CNF Intersection

One obvious, but costly, way to determine property simi-
larity for clustering is to compute the intersections of CNF
clauses between properties. We can cluster the properties that
have a relatively large number of clauses in the intersection.
Based on our experience, a threshold of 0.9 is beneficial. In
other words, when two properties share at least 90% common
clauses, it is beneficial to forward conflict clauses between
two instances. This method is very time consuming because
it requires O(n?) intersections for n properties. When n is
large, this method is not feasible, because the calculation
of intersection of irrelevant properties may waste more time
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than actual SAT solution time. Moreover, in certain scenarios,
forwarding conflict clauses may not improve the overall test
generation time for a cluster, since it may change variable
ordering and searching heuristics. CNF based clustering is a
good choice when the number of properties is small or when
other methods fail to find beneficial clusters.

E. Determination of Base Property

Determination of the base property in a cluster is crucial
for success of test generation using learning techniques. The
base property is solved first and its conflict clauses are shared
between the remaining properties in the cluster. Although, any
property in the cluster can be used as the base property for that
cluster, our studies have shown that certain properties serve
better as base property and thereby generate better overall
savings for the cluster. We need to consider two important
factors while choosing a base property for a cluster. First, the
base property should be able to generate a large number of
conflict clauses. In other words, a weak base property may find
the satisfiable assignment quickly without making mistakes
(generating conflict clauses). In this scenario, the remaining
properties have nothing to learn from the base property.
Moreover, the SAT checking time for the base property should
be relatively small. This will ensure that the overall gain is
maximized by reducing the solution time of the properties
which takes longer time to solve. None of these requirements
can be determined without actually solving them. Based on
our experience, we have observed that the following heuristics
works well most of the time.

1) Choose a property that has significant variable and/or
sub-expression overlap with other properties in the
cluster.

2) If bound for each property is known, choose the property
whose bound is closest to the remaining properties.

3) Compute intersections for every pair of properties in the
cluster, and choose the one that shares the most with the
remaining properties.

VI. TEST GENERATION USING LEARNING TECHNIQUES

The basic idea of our test generation approach is to learn
from solving one property and share learning (through conflict
clauses) for solving the similar properties in the cluster. While
solving the first property (base property), the SAT solver
may have taken many wrong decisions (lead to conflicts)
and therefore needs long time to find a counterexample.
Forwarding conflict clauses ensures that these wrong decisions
are avoided while solving the similar properties. An important
question is whether all the wrong decisions of the first property
are relevant to all the other properties in the clusters? Since
the properties are similar but not the same, some of the
decisions are not relevant. In our approach, we determine
the common CNF clauses by computing the intersection of
clauses and use this intersection information to exactly identify
the conflict clauses that are relevant to solving the respective
properties. The remainder of this section describes how to
identify relevant conflict clauses and how to use such learning
knowledge for test generation.

A. Identification and Reuse of Common Conflict Clauses

Our implementation of relevant conflict clause determina-
tion is motivated by the work of [17] which proved that for
two sets of CNF clauses C; and C,, and their intersection ¢,
use of conflict clauses generated from ¢ when checking C;
will not affect the satisfiability of the CNF clauses C, ] .
Therefore, the conflict clauses generated from the intersection
when checking the base property can be shared by other
properties in the cluster. Strichman [17] suggested an isolation
procedure that can isolate the conflict clauses which are
deduced solely from the intersection of two CNF clause sets.
We have modified the isolation procedure to improve the
efficiency of test generation for a cluster of properties. We have
modified zChaff [22] SAT solver and used it in our framework.
The zChaff provides utilities for implementing incremental
satisfiability. For each clause, it uses 32 bits to store a group
id to identify the group where this clause belongs. Use of
group id allows us to generate the conflict clauses for different
properties when checking the base property. If the ith bit of
the clause’s group id is 1, it implies that the clause is shared
by the CNF clauses of property P;. If the clause of the base
property is not shared by any property, the field will be 0.

In our approach, each conflict side clause has a group id
which is marked during the preprocessing step or marked
during the conflict analysis if it is a conflict clause. The
procedure of group id determination of a conflict clause is
described in Algorithm 2. This algorithm traces back from the
conflicting assignment to a cut such as first unique implication
point (UIP) [23] in zChaff. The conflict side will contain all
the implications of the variable assignments of the reason side.
For UIP, they are implication variable assignments in the same
decision level as the conflicting variable assignment which led
to the conflict. The group id of the conflict clause is the logical
“AND” value of all the group ids of the conflict side clauses.
This algorithm can guarantee that if the ith bit of the group
id of the conflict clause is 1, then this conflict clause can be
forwarded to the ith CNF clause set.

Fig. 3 illustrates how this computation is done. The implica-
tion graph belongs to a base property of a cluster. Each clause
in this graph is marked with the group id information. Here
we use four bits to express the group id. For example, the
group id of clause (x3’ + x4’) is “1010.” This means that this
clause exists both in CNF clause set 2 and CNF clause set 4.
The group id of the conflict clause is the logical “AND” of all
conflict side clauses, and the result is 0010. That means, this
conflict clause can be forwarded to clause set C,. Therefore,
the use of this conflict clause in solving P, will reduce the
SAT solving (test generation) time.

B. Test Generation Using Learning Techniques

Algorithm 3 describes our test generation methodology.
It accepts a list of clusters where each cluster consists of
a set of similar properties. Since one property is used to
generate a test, the number of input properties is exactly the
same as the number of output tests. The first step generates
the CNF clauses for all the properties in each cluster using
the design and respective bounds. The second step performs
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Algorithm 2: Determination group ID of conflict clauses

Algorithm 3: Test Generation using Learning Techniques

Inputs: i) Conflicting node N
Outputs: Conflict clause with its group id
Begin
Visited = {N};
ConflictAssign = {};
grouplID = group id of N’s antecedent clause;
while the set Visited is not empty
1. v = RemoveOneElement(Visited) ;
2. clause = AntecedentOf(v);
grouplD = groupID “AND” group id of clause;
if v is on the conflict side
3. Put all the nodes of clause in implication
graph except v to the set Visited;
else
4. ConflictAssign = ConflictAssign U {v};
endif
endwhile
5. ConflictClause = Logical disjunction of negated
assignments of all elements in ConflictAssign;
return ConflictClause and grouplID ;
End

Conflict Clause
(X1" + X5 4+ x6 +x7")

Conflict Side Clauses

Clauses Group id

4 321

(2 +x3+x8) 0111
(x3+x7'+x8) 1.0 1 0
(X2+xd4+x6) 1 1 11
(x3 +x4") 1010

x1"+x4+x5) 1 110

A Decision Vertex .O Implication Vertex ° Conflicting Vertex ——= Implicate

Fig. 3. Example of conflict clause reuse.
name substitution to maximize knowledge sharing. The third
step computes the intersection of CNF clauses between the
base property and all the remaining properties in the cluster.
The first three steps can be omitted, if CNF intersection based
clustering is employed. The fourth step marks the clauses in
the base property to indicate whether a particular clause is
also in the clause set of another property in the cluster. The
next step uses a SAT solver to generate the conflict clauses
and the counterexample for the base property. Based on the
intersection information with the base property, the set of
conflict clauses is filtered to identify the relevant ones for
solving the remaining properties in step 6. The final step uses
the relevant conflict clauses to solve the remaining properties
using our approach. The algorithm reports all the generated
counterexamples.

We use a simple example to illustrate how Algorithm 3
works. Let us assume that we are generating tests using n
properties for a design. The input is a list of m (m < n)

Inputs: i) Design model, D
ii) Clusters of similar properties
Output: Tests
Begin
for each cluster, i, of properties
Generate CNF for the base property Pi, CNF!
for j is from 2 to the size; of cluster i
/% Pj is the j” property in the i cluster */
1. Generate CNF, CNF} = BMC(D, P, bound;)
2. Perform name substitution on CN F ; '
3. INT; = ComputeIntersectipn(CNF{, CNF P
4. Mark the clauses of CNFj using INT;
endfor
/* Generate a counterexample and conflict clauses */
5. (ConflictClauses;, test‘i) = SAT(CNF{)
Tests = {test!}
for j is from 2 to the size; of cluster i
/* Find relevant ones for Pj from conflict clauses
6. CC; = Filter (ConflictClauses;, j)
endfor
for j is from 2 to the size; of cluster i
7. test; = SAT(CNFJ’- U cc)
Tests = Tests U test;
endfor
endfor
return 7Zests
End

clusters based on property similarities. Each cluster can have
different numbers of properties. In the worst case, each cluster
can have only one property which will be verified normally.
However, this scenario is rare in practice since a typical
design uses thousands of properties for directed test generation
and majority of them share significant parts of the design
functionality. For ease of illustration, let us assume that there
is a cluster with three similar properties, {P;, P», P;}. Let
us further assume that the second step selects P; as the base
property using the method described in Section V. The fourth
step computes intersection of CNF clauses of P; with P,, and
P, with P;. This information is used to filter conflict clauses
(generated while solving P;) relevant for P, and P in step 6.
The last step adds the relevant conflict clauses while solving
the respective properties to reduce the test generation time.

VII. EXPERIMENTS

We have applied our test generation methodology for val-
idation of various software and hardware designs. In this
section, we present two case studies: a very long instruction
word (VLIW) implementation of the MIPS architecture, and a
stock exchange system. Both experiments were performed on
a Linux PC using 2.0 GHz Core 2 Duo central processing unit
with 1 GB RAM. In our experiments, we used the NuSMV
[24] as our BMC tool to generate the CNF clauses (in the
DIMACS format) for the design and properties. We developed
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TABLE I
PROPERTY CLUSTERING AND VERIFICATION FOR MIPS PROCESSOR

Methods Structure Textual Influence | Intersection
# of Clusters 16 32 27 17
Clustering (s) 0.24 0.06 0.22 187.90
Base (s) 169.09 436.60 322.44 324.18
Original (s) 3105.98 2830.13 2918.56 2999.16
Improved (s) 788.09 442.53 431.92 239.28
Speedup 3.42 3.72 4.33 5.90 (4.42)

the tool PropertyCluster which accepts the graph model, the
coverage criteria and the clustering strategies as inputs. This
tool generates the required properties (using different coverage
criteria presented in Section IV) and clusters them using the
clustering strategies proposed in Section V. We also modified
zChaff [22] to incorporate our techniques including name
substitution, clause intersection, and constraint sharing. The
modified zChaff can accept a cluster of properties and check
them together. The result of our approach is compared with
the original zChaff that does not use any clustering techniques.

A. A VLIW MIPS Processor

We applied our methodology on a single-issue MIPS [19]
architecture. Fig. 2 shows the simplified version of the VLIW
MIPS architecture. It has five pipeline stages: fetch, decode,
execute, memory (MEM), and writeback. The execute stage
has four parallel execution paths: integer ALU, 7 stage
multiplier (MUL1-MUL7), four stage floating-point adder
(FADDI1-FADD4), and multicycle divider (DIV). The oval
boxes represent units and dashed boxes represent storages. The
solid lines represent instruction-transfer paths and dotted lines
represent data-transfer paths. The PropertyCluster generated
171 properties using the node coverage, 2-interaction cover-
age, and the path coverage criteria.

Table I compares the four clustering techniques. The first
row shows our proposed clustering methods. The second
row indicates the number of clusters using the respective
clustering methods, and the third row shows the corresponding
clustering time (in seconds). The fourth row presents the
test generation time for the base property. The original time
refers to traditional (no clustering) verification time for all
the properties, excluding the base property. The sixth row
presents the verification time for all the properties except the
base property using the respective clustering methods. The
speedup is computed using the formula (base time + original
time)/(clustering time + base time + improved time). For
the first three clustering methods, the clustering is very fast
and the associated cost (time) is negligible. However, for the
intersection-based clustering, the intersection time is longer
compared to other three methods and is not negligible. There-
fore, for intersection-based clustering, we provide speedup
values for both scenarios—without considering clustering time
(the first number) as well as with clustering time (the number
in parenthesis).

It is important to note that intersection-based clustering
is most beneficial for reducing overall test generation time.
However, the clustering overhead is much more than other

TABLE 11
PROPERTY CLUSTERING AND VERIFICATION FOR OSES

Methods Structure Textual Influence | Intersection
# of Clusters 18 9 12 13
Clustering (s) 0.05 0.01 0.05 42.77
Base (s) 562.05 142.81 277.42 313.73
Original (s) 1557.11 2017.11 2034.05 1820.53
Improved (s) 377.15 784.16 668.72 437.98
Speedup 2.26 2.33 2.44 2.84 (2.69)

strategies. When a large number of complex properties are
involved, the intersection overhead may become prohibitively
large. In such cases, influence-based clustering is most bene-
ficial. Interestingly, textual clustering consumes least amount
of clustering time but generates better results than structure-
based clustering. When detailed information about the design
is not available, textual clustering is most beneficial.

B. A Stock Exchange System

This section presents the test generation results of an on-
line stock exchange system (OSES) software that can process
three scenarios: accept, check, and execute the customer’s
orders (market order and limit order). The specification uses
the unified modeling language (UML) activity diagram as
its behavior specification. The extracted graph model has 27
nodes (activities) and 29 edges. To validate various exchange
scenarios, we generate 51 properties based on the path fault
model. We applied the clustering methods discussed in Sec-
tion V on all the properties to generate the tests.

Table II summarizes the test generation results using four
clustering methods where two to three times improvement is
achieved. It is important to note that the results for OSES are
consistent with the results for MIPS in Table I. As Table II
shows, intersection-based clustering is most beneficial for
reducing overall test generation time. However, when cluster-
ing overhead is prohibitively large, influence-based clustering
is beneficial. Similarly, when detailed information about the
design is not available, textual clustering is the best choice.

On both case studies (MIPS and OSES) our approach
demonstrated three to five times improvement in overall test
generation time using efficient integration of property cluster-
ing and learning techniques.

VIII. CONCLUSION

The feasibility of existing model checking based approaches
for directed test generation is limited due to capacity re-
strictions of the automated tools. This paper addressed the
test generation complexity by exploiting the commonalities
between automatically generated properties. Our primary con-
tribution is the development of an automated framework that
can enable coverage-directed property generation, property
clustering based on similarity, and efficient test generation by
sharing knowledge across multiple properties. We developed
four efficient property clustering techniques and compared
them to evaluate their suitability on different test generation
scenarios. We also developed a number of conceptually simple,
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but extremely effective, techniques including name substitution
and selective forwarding of learned conflict clauses to reduce
the overall test generation time. Our experimental results using
both hardware and software designs demonstrated a drastic
reduction (three to five times) in overall test generation time.

This paper is focused on efficient directed test generation
using property clustering and learning techniques. However,
the proposed framework is not restricted for test generation
(property falsification). Since the essence of our methodology
is to avoid repetitive validation efforts, we believe that it will
also be beneficial in other verification scenarios that involve
multiple properties. We plan to extend our clustering and
learning techniques for standard property verification, as well
as assertion-based verification.
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