
UML Activity Diagram-Based

Automatic Test Case Generation For

Java Programs

MINGSONG CHEN, XIAOKANG QIU, WEI XU, LINZHANG WANG, JIANHUA ZHAO AND XUANDONG LI*

State Key Laboratory of Novel Software Technology, Department of Computer Science and Technology,

Nanjing University, Nanjing 210093, P.R.China

*Corresponding author: lxd@nju.edu.cn

Test case generation based on design specifications is an important part of testing processes. In this

paper, Unified Modeling Language activity diagrams are used as design specifications. By setting up

several test adequacy criteria with respect to activity diagrams, an automatic approach is presented

to generate test cases for Java programs. Instead of directly deriving test cases from activity dia-

grams, this approach selects test cases from a set of randomly generated ones according to a

given test adequacy criterion. In the approach, we first instrument a Java program under testing

according to its activity diagram model, and randomly generate abundant test cases for the

program. Then, by running the instrumented program we obtain the corresponding program

execution traces. Finally, by matching these traces with the behavior of the activity diagram, a

reduced set of test cases are selected according to the given test adequacy criterion. This approach

can also be used to check the consistency between the program execution traces and the behavior of

activity diagrams.

Keywords: Software testing; test cases generation; UML activity diagrams; Java

Received 24 September 2006; revised 9 June 2007

1. INTRODUCTION

Testing is an important part of quality assurance in the

software life-cycle. As the complexity and the size of software

systems grow, more and more time and manpower are

required for testing. Manual testing is so labor-intensive and

error-prone that it is necessary to employ automatic testing

techniques in some circumstances.

The unified modeling language (UML) is a standard visual

modelling language that is designed to specify, visualize, con-

struct and document the artifacts of software systems [1, 2].

Since UML became a standard of OMG in 1997, UML

models have become a main class of artifacts in software

development processes. UML provides a number of diagrams

to describe different aspects of software artifacts. UML

activity diagrams describe the sequential or concurrent

control flows of activities. They can be used to model the

dynamic aspects of a group of objects, or the control flow of

an operation, which form a kind of design specifications for

programs.

In this paper, we use UML activity diagrams as design

specifications, and consider test case generation for Java

programs. The state of arts of UML model-based test case gen-

eration mainly focuses on generating test cases directly from

various UML models by applying specification-based testing

and/or code-based testing approaches [3–10]. However,

those direct approaches are hardly implemented in a fully

automatic fashion because of the following reasons. First,

only abstract test cases can directly be generated from the

models, which specify the system under constructing. They

cannot be used directly in program testing without manual

concretization. Second, for dynamic models, the test cases

are generated by traversing the paths of models to derive the

test scenarios. The loops and branches in the models make

the path conditions very complicated. It lead to algorithms

with high complexity, even undecidable problems.

In this paper, instead of directly deriving test cases from

UML activity diagrams, we present an indirect approach

which selects test cases from a set of randomly generated

ones according to a given coverage criterion concerning the

activity diagram specification. In the approach, we first instru-

ment the Java program under testing according to its activity

diagram specification, and randomly generate abundant test

THE COMPUTER JOURNAL, 2007

The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxm057

 The Computer Journal Advance Access published August 25, 2007

cases for the program. Then, by running the program with the

generated test cases, we can obtain the corresponding program

execution traces. At last, by matching those program

execution traces with the behavior of the activity diagram,

we can select a reduced set of test cases according to a specific

test adequacy criterion. The approach can also be used to

check the consistency between the program execution traces

and the behavior of activity diagrams.

The paper is organized as follows. In Section 2, we intro-

duce the UML activity diagrams and the related notations.

In Section 3, the approach of automatic test case generation

for Java programs is described in detail. The related works

are discussed in Section 4, and some conclusions are given

in Section 5.

2. UML ACTIVITY DIAGRAMS

2.1. Notations

As opposed to other diagrams in UML, an activity diagram

extracts the core idea from flowcharts, state transition graphs

and Petri nets [1, 2]. An activity diagram contains activity

states, which represent the execution of a statement in a pro-

cedure or the performance of an activity in a workflow.

Instead of waiting for an event, as in a normal wait state, an

activity state waits for the completion of its computation.

When the activity completes, the execution proceeds to the

next activity state within the diagram. A completion transition

in an activity diagram fires when the preceding activities are

complete. An activity diagram may contain branches, as

well as forking of control into concurrent threads. Concurrent

threads represent activities that can be performed concurrently

by different objects or persons in an organization.

In an activity diagram, an activity state is shown as a box

with rounded ends containing a description of the activity;

simple completion transitions are shown as arrows; branches

are shown as guard conditions on transitions or as diamonds

with multiple labeled exit arrows; fork or join of control is

shown by multiple arrows leaving or entering a heavy syn-

chronization bar. For example, Fig. 1 shows a simple activity

diagram, which consists of most elements to describe a work-

flow or an operation.

The recent major revision of UML2.0 has introduced sig-

nificant changes and additions [2]. Compared with UML1.x,

the concrete syntax of activity diagrams remains mostly the

same, but the abstract syntax and semantics have changed

drastically. In UML1.x, the activity diagrams were defined

as a kind of state machine diagrams. Now, there is no connec-

tion between these two notations. The meaning of activity dia-

grams is explained in terms of Petri net notion [11] such as the

token, flow, edge weight, etc. In this paper, in accordance with

UML2.0, we adopt the Petri net-like semantics of the activity

diagrams, and formalize an activity diagram as follows.

DEFINITION 2.1. An activity diagramD is a tuple,D ¼ (A, T,

F, aI, aF), where

(i) A ¼ fa1, a2, . . . , amg is a finite set of activity states;

(ii) T ¼ ft1, t2, . . . , tng is a finite set of completion

transitions;

(iii) F , (A � T) < (T � A) is the flow relation;

(iv) aI [A is the initial activity state, and aF [A is

the final activity state; there is only one transition t

such that (aI, t) [F, and for any t1 [T, (t1, aI) �
F ^ (aF, t1) � F.

A state m of D is a subset of A. For any transition, t [T, let
†t ¼ fa [Aj(a, t) [Fg and t† ¼ fa [Aj(t, a) [Fg, which

denote the preset and postset of t, respectively. A transition t

is enabled in a state m if †t # m; otherwise, it is disabled.

Let enabled(m) be the set of transitions enabled in m.

In this paper, we consider an activity diagram as a design

specification, which describes the workflow of a Java

program. Each activity state in the activity diagram is inter-

preted as the execution of a method in the Java program.

For any activity state a, we let j(a) denote the corresponding

method, and z(a) denote the class to which j(a) belongs.

DEFINITION 2.2. Let D ¼ (A, T, F, aI, aF) be an activity

diagram. A transition t [T may fire from state m if and only

if t [enabled(m) and (m 2 †t) > t† ¼ ;, and the new state

m0 is given as m0 ¼ (m 2 †t) < t†, which is denoted by m0 ¼

fire(m, t).

The behavior of an activity diagram is described in terms of

runs.

FIGURE 1. A simple activity diagram.

Page 2 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

DEFINITION 2.3. Let D ¼ (A, T, F, aI, aF) be an activity

diagram. A run segment r of D is a sequence of states and

transitions

r ¼ m0�!
t0

m1�!
t1
� � � �!

tn�1
mn;

where m0 ¼ faIg and mi ¼ fire(mi21, ti21) for any i (1 � i � n).

If mn ¼ faFg, then the run segment r is a run.

For example, for the activity diagram depicted in

Fig. 1, faIg!
t1
fa1; a2; a3g !

t2
fa2; a3; a4g !

t4
fa3; a4; a6g

!
t6
fa4; a6; a8; a9g !

t7
fa6; a8; a9; a10g !

t9
fa8; a9; a10; a11g

!
t11
fa10; a11; a12g!

t13
faFg is a run.

2.2. Paths and trails

In this paper, we are focused on generating test cases for Java

programs specified by UML activity diagrams. We thus need

to consider the test adequacy criteria with respect to activity

diagrams. These criteria mainly deal with the test coverage

of elements and behavior of a given activity diagram. In a

Java program with an activity diagram as its specification,

the execution orders of the concurrent methods in different

threads, which correspond to the firing orders of the transitions

during the run of the activity diagram, are independent of the

program inputs. It means that for a given input, the different

program executions may result in the different program

execution traces, which indicates that the run coverage in an

activity diagram is hardly incarnated in the test adequacy cri-

teria. Thus, for defining the test adequacy criteria, instead of

runs we introduce paths in activity diagrams as follows.

Intuitively, the paths describe the behavior of an activity

diagram as if all the transitions separately enabled in a state

fire at the same time during the activity diagram execution.

For an activity diagram, all the transitions separately

enabled in a state form a concurrent transition.

DEFINITION 2.4. Let D ¼ (A, T, F, aI, aF) be an activity

diagram. For a state m in D, a concurrent transition t is the

set of the transitions t1, t2, . . . , tm such that

(i) for any i (1 � i � m), ti [enabled(m);

(ii) for any i, j (1 � i , j � m), †ti > †tj ¼ ;; and

(iii) for any t [(enabled(m) 2 ft1, t2, . . . , tmg), there is ti
(1 � i � m) such that †t > †ti = ;.

The firing of the concurrent transition t consists of the firing

of ti (1 � i � m), and the new state m0 is given as m0 ¼S
i¼1
m ((m 2 †ti) < ti

†), which is denoted by m0 ¼ fire(m, t).

Notice that there may be more than one concurrent tran-

sition for a state in an activity diagram.

DEFINITION 2.5. Let D ¼ (A, T, F, aI, aF) be an activity

diagram. A path s of D is a sequence of states and concurrent

transitions

s ¼ m0�!
t0

m1�!
t1
� � � �!

tn�1
mn;

where m0 ¼ faIg, mn ¼ faFg and mi ¼ fire(mi21, ti21) for any

i (1 � i � n). s is a simple path if there is no execution rep-

etition in s, i.e. for any ti and tj (0 � i , j , n), for any

t [ti and t0 [tj,
†t > †t0 ¼ ;.

For an activity diagram, a run is regarded intuitively as a

linear execution of a path. Notice that a path could have

many linear executions, which means that a path could corre-

spond to many runs. For example, Fig. 2 shows four simple

paths s1, s2, s3, s4 in the activity diagram depicted in Fig. 1.

The run faIg�!
t1
fa1; a2; a3g �!

t2
fa2; a3; a4g �!

t4
fa3; a4; a6g

�!
t6
fa4; a6; a8; a9g �!

t7
fa6; a8; a9; a10g �!

t9
fa8; a9; a10; a11g

�!
t11
fa10; a11; a12g�!

t13
faFg is one of the liner executions of s1.

For an activity diagram which models a program, because

of the existence of loops we hardly generate test cases to

cover its paths fully. It compels us to consider the coverage

of simple paths, which contains no repetition. To consider

the criteria covering the repetitions of executions and/or

specifically selected executions, we need to introduce trails

in activity diagrams, which are a sequence of the transitions

enabled and firing one by one.

DEFINITION 2.6. Let D ¼ (A, T, F, aI, aF) be an activity

diagram. A trail g of D is a sequence of transitions of the

form g ¼ t0! t1! . . .! tn where any ti [T (0 , i � n) is

such that †ti > ti21
†
= ;.

FIGURE 2. Simple paths in the activity diagram in Fig. 1.

UML ACTIVITY DIAGRAM-BASED AUTOMATIC TEST CASE GENERATION Page 3 of 12

THE COMPUTER JOURNAL, 2007

It is clear that for a trail g of the form

g ¼ t0 ! t1 ! � � � ! tn

if ti ¼ tj (0 � i , j � n) then g may corresponds to a repetition

of execution. For example, for the activity diagram depicted in

Fig. 1,

t1 ! t3 ! t8 ! t12 ! t2 ! t7 ! t12

is a trail.

3. APPROACH TO TEST CASE GENERATION

FOR JAVA PROGRAMS

In this section, we give the details of the automatic approach to

test case generation for Java programs with activity diagrams

as design specifications. The approach first instruments a Java

program under testing according to its activity diagram model,

and randomly generates abundant test cases for the program.

Then, by running the instrumented program, we obtain the cor-

responding program execution traces. At last, by matching

these traces with the behavior of the activity diagram, we

obtained a reduced set of test cases according to a specific

test adequacy criterion.

3.1. Test adequacy criteria with respect

to activity diagrams

Objective measurement of the test quality is one of the key

issues in software testing. As an essential part of any testing

method, a test adequacy criterion specifies the requirement

of a particular testing [12]. In this paper, as we use activity dia-

grams as the design specifications for Java programs under

testing, we need to set up the test adequacy criteria with

respect to activity diagrams.

There have been several works [7, 10, 13] on the test ade-

quacy criteria for UML static models, interaction models

and state machine diagrams. Those criteria can be used for

model testing or program testing. They mainly deal with the

coverage of various elements and paths in UML models, and

their basic ideas come from the traditional code coverage cri-

teria. Like those works, the test adequacy criteria we consider

here mainly deal with the coverage of elements and paths in a

given activity diagram during the execution of a program

under testing. The coverage is computed through matching

the behavior of the activity diagram with the program

execution traces. For an activity diagram, we set up the follow-

ing four test adequacy criteria.

(i) Activity coverage requires that all activity states in the

activity diagram be covered.

(ii) Transition coverage requires that all the transitions in

the activity diagram be covered.

(iii) Simple path coverage requires that all the simple paths

in the activity diagram be covered.

(iv) Trail coverage requires that all the given trails in the

activity diagram be covered.

The activity coverage and transition coverage are basic cov-

erage criteria and easily satisfied in testing, just like the state-

ment coverage in the code coverage criteria. The simple path

coverage is essentially based on a partial order of behavior of

an activity diagram. It avoids the indeterminacy caused by

concurrency, but does not cover any repetition of execution.

The trail coverage deals with some special executions (includ-

ing the repetitions of executions) in an activity diagrams

which should be covered in testing, but the trails are usually

picked out manually.

3.2. Program instrumenting

For a Java program under testing, we need to insert some state-

ments into its source code for gathering the program execution

traces. As each activity state in an activity diagram is inter-

preted as the execution of one method in a Java program,

the program execution traces we gather are a sequence of

events corresponding to method completions.

During the execution of a Java program, a class may have

multiple instances. The same method of different instances

may be invoked. This causes a trouble because we cannot

identify which object’s method in a program execution trace

is corresponding to a given activity diagram. Therefore, we

assume that any Java program under testing, specified by an

activity diagram D, is such that for any activity state a in D,

z(a) (i.e. the class with the method corresponds to a) has

just one instance during the program execution.

Because we use the activity diagrams as the global behavior

model of software systems, usually only high-level com-

ponents of the system are concerned in such activity diagrams.

Although most classes in an object-oriented software system

may have many instances, which are created and destroyed

dynamically, the high-level components are generally stable,

and most of them are the only instance of their corresponding

classes. Therefore the above assumption does not narrow the

applicability of our approach much. In case that this assump-

tion is not satisfied, our approach may still be applicable after

rewriting the activity diagram with a coarser granularity or

renaming the related classes in the program.

In a Java program, a method finishes its computation after

the execution of its last statement. Thus, we insert the state-

ments for gathering the information in the end of each

related method definition. Given an activity diagram D ¼
(A, T, F, aI, aF), for any a [A, when its corresponding

method j(a) finishes its computation, the information we

need to log includes the method j(a) itself and the class z(a)

which j(a) is in. The instrumentation algorithm depicted in

Fig. 3 runs as follows. First it scans the program and parses

Page 4 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

the source code into tokens. Then we check each token to

recognize the related method definitions. For each method

j(a) (a [A), we insert the code segment Log_Finishing_

Event depicted in Fig. 3 after the last statement of the

method. This code segment is used to log the execution infor-

mation about the method and its class.

3.3. Matching program execution traces with
activity diagram behavior

By running the program under testing with randomly gener-

ated test cases, we obtain a set of program execution traces.

For selecting the test cases according to a given test adequacy

criterion, we need to match these program execution traces

with the dynamic behaviors of an activity diagram.

For a Java program, its execution traces we gather are a set

of sequences of the method completion log items. These log

items correspond to the activity state completions in a given

activity diagram. Let D ¼ (A, T, F, aI, aF) be an activity

diagram, and

r ¼ m0�!
t0

m1�!
t1
� � � �!

tn�1
mn

be a run ofD. The firing of ti (0 � i � n 2 1) means that all the

activity states in the preset of ti are completed. However, some

activity states of D may be completed without firing any tran-

sition (e.g. a8 or a9 in the activity diagram depicted in Fig. 1).

Therefore, the completions of such activity states may not be

shown explicitly in a run of D. For matching a program

execution trace with a run in an activity diagram, we need to

introduce the concept of extended runs, which show all

activity state completions explicitly. This concept is formally

defined as follows.

Let D ¼ (A, T, F, aI, aF) be an activity diagram. An

extended state of D is of the form (m, y) where m is a state

of D, and y # A is the set of the activity states in m, which

have been completed without firing any transition in

enabled(m). Since during the execution of D an activity state

may be completed without firing any transition, we introduce

a special transition l � T which represents that no transition in

T fires. For any two extended states (m, y) and (m0, y 0) ofD, we

define

ðm; yÞ �!
t;a
ðm0; y0Þ

if either there is an activity state a [m is completed, but no

transition can be fired, or there is an activity state a [m is

completed, and the corresponding transition t fires, i.e. one

of the following two conditions is satisfied.

(i) t ¼ l, a [m, a � y , m0 ¼ m, y 0 ¼ y< fag, and there is

not any t [enabled(m) such that †t # y 0.

(ii) t [enabled(m), a [†t, a � y , †t # y < fag, m0 ¼

fire(m, t) and y 0 ¼ y 2 †t.

We define that an extended run segment @ of D is a

sequence of the form

@ ¼ ðm0; y0Þ �!
t0;a0
ðm1; y1Þ �!

t1;a1
� � � �!

tn�1;an�1
ðmn; ynÞ;

where (mi, y i) (0 � i � n) is an extended state of D and (m0,

y0) ¼ (faIg, ;). The extended run segment @ becomes an

extended run of D if (mn, yn) ¼ (faFg, ;). For a run r of D
of the form

r ¼ m00�!
t0
0

m1�!
t0
1
� � � �!

t0
m�1

m0m;

where @ is a linear execution of r if the transition sequence t0
0,

t1
0, . . ., tm21

0 can be constructed from the sequence t0, t1, . . .,
tn21 by removing any ti (ti ¼ l, 0 � i , n). Notice that r could

have many extended runs as its linear executions.

For a Java program, let v be its execution trace which is a

sequence m0
^ m1

^...^mn of method completions where mi

(0 � i � n) represents a method. Let D ¼ (A, T, F, aI, aF) be

an activity diagram, and

@ ¼ ðm0; y0Þ �!
t0;a0
ðm1; y1Þ �!

t1;a1
� � � �!

tn;an
ðmnþ1; ynþ1Þ

FIGURE 3. Instrumentation algorithm and inserted code segment.

UML ACTIVITY DIAGRAM-BASED AUTOMATIC TEST CASE GENERATION Page 5 of 12

THE COMPUTER JOURNAL, 2007

be an extended run segment of D. We say that @ is consistent

with v if j(ai) ¼ mi for any i (0 � i � n). For a run r of D, we

say that r is consistent with v if there is an extended run which

is a linear execution of r and consistent with v.

Let D ¼ (A, T, F, aI, aF) be an activity diagram, and v ¼

m0
^ m1

^ . . . ^mn be a program execution trace. For develop-

ing an algorithm to find a run of D which is consistent with v,

we need to introduce prefixes for v. An extended run segment

@ of D is a prefix for v if there is i (0 � i , n) such that @ is

consistent with m0
^ m1

^ . . . ^mi.

Given an activity diagram D ¼ (A, T, F, aI, aF) and a

program execution trace v, we developed an algorithm to

match v with the behavior of D, i.e. to find a run of D
which is consistent with v (cf. Fig. 4). The algorithm traverses

the state space of D in a depth first manner starting from the

initial extended state (faIg, ;). The extended run segment in

the state space that we have so far traversed is stored in the

list variable current_runsegment. For each new extended

state that we discover, we first check whether it is (faFg, ;)

and such that current_runsegment is consistent with v. If

yes, then a run of D consistent with v is found out, and we

are done. Otherwise we check if the new extended state that

we discover is such that current_runsegment is a prefix for v.

If yes, then we add the new extended state to current_

runsegment and start the search from it, otherwise we back-

track. The complexity of the algorithm is proportional to the

number of the prefixes for v and to the size of the longest

prefix for v.

3.4. Selecting test cases according to test
adequacy criteria

After matching the program execution traces with the runs of a

given activity diagram, we need to compute the contribution of

the corresponding runs w.r.t. a given test adequacy criterion,

and decide whether the corresponding test case should be

selected.

For the activity/transition coverage, the test case selection is

simple. For each run which is consistent with a program

execution trace, if it contains some activity states/transitions

which are not covered previously, then the corresponding

test case is picked out. The selection process terminates

when the test adequacy criterion is satisfied, i.e. all activity

states/transitions in the activity diagram are covered, or no

more test cases can be picked out. In the later case we need

to compute the coverage value, which is the ratio of the

covered activity states/transitions to all activity states/tran-

sitions in the activity diagram.

The simple path coverage requires that all the simple paths

in a given activity diagram be covered. It follows that we first

need to find out all the simple paths in a given activity

diagram. For an activity diagram D ¼ (A, T, F, aI, aF), we

give an algorithm to generate all of its simple paths (cf.

Fig. 5). The algorithm traverses the state space of D along

with the concurrent transitions in a depth first manner starting

from the initial state faIg. The path segment in the state space

that we have so far traversed is stored in the list variable

current_pathsegment, and the simple paths which are founded

FIGURE 5. Algorithm for generating simple paths.

FIGURE 4. Algorithm for matching program execution traces with

activity diagram behavior.

Page 6 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

out are stored in the set variable simplepath_set. For each new

state that we discover by firing a concurrent transition, we first

check whether it is faFg. If yes, then we find out a simple path

and put it into simplepath_set. Otherwise we check if the new

state that we discover is such that current_runsegment can

be extended further into a simple path. If yes, then we add

the new state to current_pathsegment and start the search

from it, otherwise we backtrack. Notice the above algorithm

traverses the state space of an activity diagram along with

the concurrent transitions so that it avoids the complexity

caused by concurrency.

In order to select test cases according to the simple path

coverage, we need to check if a program execution trace

covers a simple path. Let D be an activity diagram, and

s ¼ m0�!
t0

m1�!
t1
� � � �!

tm�1
mm

be a simple path in D. The simple path s is covered by a

program execution trace v if there is a run r of D of the form

r ¼ m00�!
t0

m01�!
t1
� � � �!

tn�1
m0n

consistent with v which is just a linear execution of s, i.e.

ft0; t1; . . . ; tng ¼ t0 < t1 < � � �< tm�1

and ti = tj for any i, j (0 � i , j � n). For each program

execution trace which is generated by running the program

with the random test cases, we can decide if its corresponding

test case should be picked out for the simple path coverage by

checking if it covers a simple path which is not previously

covered. The selection process terminates when all simple

paths in the activity diagram are covered or no more test

case can be picked out. In the later case, we need to

compute the coverage value, which is the ratio of the

covered simple paths to all simple paths in the activity

diagram.

The trail coverage requires that all the given trails in an

activity diagram be covered. As the trails are introduced for

specifying some special executions in a given activity

diagram which should be covered in testing, they are usually

singled out manually. In order to select test cases according

to the trail coverage, we need to check if a program execution

trace covers a trail. Let D be an activity diagram, and

g ¼ t0 ! t1 ! � � � ! tm

be a trail in D. The trail g is covered by a program execution

trace v if there is a run r of D of the form

r ¼ m00�!
t0
0

m01�!
t0
1
� � � �!

tn�10

m0n

consistent with v in which t0, t1, . . . ,tm fires in the same order

in g, i.e. the following condition is satisfied.

(i) for any ti (0 � i � m), there is tj
0 (0 � j , n) such that

ti ¼ tj
0;

(ii) for any i, j (0 � i , j � m), if ti ¼ tk
0 and tj ¼ tl

0 then

0 � k , l , n; and

(iii) for any i (0 � i , m), if ti ¼ tk
0 and tiþ1 ¼ tl

0 then tp
0
=

tq for any p (k , p , l) and any q (0 � q � m).

For example, for the trail t1! t4! t7 in the activity diagram

depicted in Fig. 1, it is covered by a program execution trace

which is consistent with the run faIg�!
t1
fa1; a2; a3g�!

t2

fa2; a3; a4g �!
t4
fa3; a4; a6g �!

t6
fa4; a6; a8; a9g �!

t7
fa6; a8;

a9;a10g �!
t9
fa8;a9;a10;a11g �!

t11
fa10;a11;a12g �!

t13
faFg.

Given the trails in an activity diagram as a trail coverage cri-

terion, for each program execution trace which is generated by

running the program with the random test cases, we can decide

if its corresponding test case should be picked out for the trail

coverage by checking if it covers a trail which is not pre-

viously covered. The selection process terminates when all

the given trails are covered or no more test case can be

picked out. In the later case, we need to compute the coverage

value, which is the ratio of the covered trails to all the given

trails.

3.5. Consistency checking

The algorithm described in Fig. 4 can also be used to check the

consistency between the program execution traces and the

behavior of activity diagrams. For a program under testing

with an activity diagram as its design model, for a program

execution trace v we gather, if there is no run in the activity

diagram consistent with v, then an inconsistent case occurs.

There are two causes for this inconsistent case: one is the

program bugs resulting from the wrong temporal orders of

method calls, the other is that the activity diagram is imperfect

itself.

Therefore, the approach presented above can also be used to

detect not only the program bugs resulting from the wrong

temporal orders of method calls, but also the imperfect activity

diagram models constructed in reverse engineering for the

legacy systems. Therefore, this approach also leads to a

testing tool, which may proceed in a fully automatic fashion.

3.6. Tool prototype and case study

We have implemented a tool prototype to support the

approach presented in this paper. The tool has a graphical

interface to allow users to construct, edit and analyze activity

diagrams interactively. Its snapshot is shown in Fig. 6. The

tool can instrument a Java program according to a given

activity diagram, use the randomly generated test cases to

run the instrumented program and gather the corresponding

program execution traces. By comparing these traces with

the behavior of the activity diagram, the tool can pick out

UML ACTIVITY DIAGRAM-BASED AUTOMATIC TEST CASE GENERATION Page 7 of 12

THE COMPUTER JOURNAL, 2007

test cases into a test suite according to a given test adequacy

criterion, as well as evaluate to which extent the test suite

satisfies the test adequacy criterion. The tool can also be

used to check the consistency between the program execution

traces and the behavior of activity diagrams.

By the tool, we have conducted several case studies for

showing the potential and usability of the approach presented

in this paper. One case study is an on-line stock exchange

system (OSES), which is reconstructed from an example in

[13]. It is implemented in Java and contains 40 classes, 305

methods. The main purpose of OSES, which is modeled by

an activity diagram depicted in Fig. 7, is to accept, check

and execute the customer’s orders. These features are

implemented by Stock Broker and Securities

Exchange. First, Stock Broker accepts a customer’s

order, and checks it. If the customer’s account or the

ordered stock does not exist, this order will be stopped.

Otherwise, it will be submitted to Securities Exchange

for further processing. Then, Securities Exchange exe-

cutes the order in different ways according to its type and

operation. Executing an order is a matching process, i.e.

Securities Exchange searches appropriate orders in

the database to make trade. For a market-order, Securities

Exchange just finds the buy-order or sell-order and makes

trade by the current stock price. For a limit-order, as it must

be traded by the restricted or better price, Securities

Exchange first checks the price set given by the customer.

If the price is valid, Securities Exchange will find the

buy-order or sell-order to make trade by the limited or better

price. Otherwise, the order will not be traded and its result

will be set ‘NO MATCH’. For any order, its executing result

falls into four classes: ‘FAILURE’, ‘SUCCESS’, ‘PARTLY

EXECUTION’ and ‘NO MATCH’. If the order is invalid, its

result will be ‘FAILURE’. If the ordered stock is traded

FIGURE 6. Interface of the tool prototype.

Page 8 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

completely, partly or none, the result will be ‘SUCCESS’,

‘PARTLY EXECUTION’ or ‘NO MATCH’, respectively. After

executing the order, Securities Exchange starts mul-

tiple threads to process the result concurrently, and exits at

last.

In the activity diagram depicted in Fig. 7, there are totally

25 activity states, 30 transitions and 18 simple paths. Each

activity state in this diagram is labeled with a method in the

program. The input of OSES is an order object, which consists

of several member variables, such as the number of ordered

stock, the ordered amount, the type of order (market-order

or limit-order) and the operation of the order (buy-order or

sell-order). Ordered price is required for limit-order. We can

generate an order by randomly setting these variables. For

FIGURE 7. Activity diagram for the OSES

UML ACTIVITY DIAGRAM-BASED AUTOMATIC TEST CASE GENERATION Page 9 of 12

THE COMPUTER JOURNAL, 2007

the trail coverage criterion, we choose the following four trails

as the special executions in the activity diagram which should

be covered in testing.

g1 ¼ t6 ! t12 ! t12 ! t12 ! t16 ! t19;

g2 ¼ t5 ! t11 ! t11 ! t11 ! t15 ! t19;

g3 ¼ t7 ! t8 ! t13 ! t13 ! t13 ! t17 ! t19;

g4 ¼ t7 ! t9 ! t14 ! t14 ! t14 ! t18 ! t19:

With the tool, we instrument the program, run it by generating

20, 50, 100, 300, 500 and 800 random orders, respectively, for

OSES as inputs, gather the corresponding execution traces,

and select the test cases into the test suite according to the

four test adequacy criteria introduced in Section 3.1. The

experimental results are shown in Table 1.

With the tool, we also conduct the experiments on checking

the consistency between the program execution traces and the

behavior of the activity diagram, and the tool comfortably

finds out all the inconsistent cases which results from

several related bugs embedded manually in the program or

activity diagram.

The other case studies we have conducted have approxi-

mately the same size as the OSES. Although we do not

conduct any more case studies with larger size, we think

there is no particular obstacle to implement the approach

presented in this paper in a fully automatic fashion since the

algorithms in the approach are simple and efficient.

As in the approach we select the test cases from a set of

randomly generated test cases, there is an important ques-

tion in random testing, which is how many random test

cases are sufficient? However this problem is not so con-

cerned with us. That is because the goal of our approach

is to automate the test case generation process so as to

reduce the testing cost. Owing to the inexpensive charge,

the tool can run as long as possible. We think the

random test cases sufficient when the tool has been

running long enough in our tolerable duration, or when

an apparent and believable result can be concluded, i.e.

the given test adequacy criteria are satisfied, or an incon-

sistent case is detected.

4. RELATED WORK

UML model-based testing has being attracted more and more

research attention [3–10, 14–17]. A large part of them are

focused on UML interaction models and state machine

diagrams-based testing techniques [3–10, 14]. Only a few

works relate to making the use of UML activity diagrams in

software testing [15–17]. Most of those approaches generate

abstract test cases directly from the UML models only, and

none of them makes the use of the programs during the test

TABLE 1. Experimental results on the OSES.

r

Activity coverage criteria Transition coverage criteria

k Number of covered activities Coverage (%) k Number of covered transitions Coverage (%)

20 5 20 80 5 28 93.3

50 7 20 80 7 28 93.3

100 7 20 80 7 28 93.3

200 7 20 80 7 28 93.3

300 7 25 100 7 30 100

500 8 25 100 8 30 100

800 7 25 100 7 30 100

Simple path coverage criteria Trail coverage criteria

k Number of covered simple paths Coverage (%) k Covered trails Coverage (%)

20 9 9 50 1 g2 25

50 10 10 55.6 1 g2 25

100 11 11 61.1 2 g1, g2 50

200 14 14 78.8 4 g1, g2, g3, g4 100

300 15 15 83.3 4 g1, g2, g3, g4 100

500 16 16 88.9 4 g1, g2, g3, g4 100

800 18 18 100 4 g1, g2, g3, g4 100

r is the number of the random test cases.

k is the number of the selected test cases.

Page 10 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

generation. Our approach employs both models and programs

for test case generation. The randomly generated test cases are

first executed with the program, and then they are selected

according to the test adequacy criteria with respect to

models. The selected test cases are concrete and executable

since they have already been executed with the program

before the selection.

Chen et al. [15] propose an approach to apply category-

partition method to UML activity diagrams to identify cat-

egories and choices, which is the first step of test data

generation. They aim to develop an identification method-

ology for informal specifications so that their approach is

totally manual, and can hardly applied to large industrial pro-

jects. Vieira et al. [16] redefine the role of activity diagrams in

software development process, in which the activity diagrams

are used to describe how the functionality depicted in the use

case diagrams can be exercised in terms of workflow, and are

used to create test drivers to verify the modeled functionality.

They derive the test case flow from the workflow described in

an activity diagram, and generate the test scripts with more

precise TSL language, but their activity diagrams need to be

annotated for test purpose, which requires users’ strong back-

ground of testing, modeling and domain knowledge. We have

given an approach to generate test case from UML activity

diagrams based on the Gray-Box method [17]. It demonstrates

a systematic method to generate test cases directly from UML

activity diagrams, and many parts of this method could be

automated, but our coverage criteria are limited and the con-

crete test data generation is still hardly automated.

Agitator [18], a commercial tool, adopts a similar approach

to the work in this paper. It (almost randomly) creates very

simple test cases, and then refines them to satisfy the test ade-

quacy criteria. But a key difference between Agitator and our

approach is that Agitator tests are designed for Java methods

(unit testing) and the criteria are based on an implementation

rather than a model. Godefroid [19] presented a dynamic test

case generation method SMART, which adopts dynamic

program analysis, symbolic execution and constraint solver

techniques to solve the test case generation problem. With

the same idea as our approach, SMART employs the

random method to generate concrete test inputs, and selects

test cases based on program executions. But currently,

SMART can only process C programs, and cannot support

object-oriented programs yet.

The approach presented in this paper can also be used

to check the consistency between the program execution

traces and the behavior of UML activity diagrams. Therefore,

our approach is also a kind of runtime verification tech-

niques. The runtime verification techniques have been used

to detect the concurrency errors such as deadlocks and data

races for Java programs and the other programs [20–25]. In

those literatures, most of the specification languages are

based on temporal logic. Compared to those temporal logic-

based specification languages, UML activity diagrams are

more acceptable in industry, and may come directly from

the artifacts generated in software development processes.

In traditional regression testing, the test cases, which are

generated during previous testing, are selected and reduced

based on the efficiency of the test suite. In other words, the

reduced test suite has the same fault detecting power with

the original test suite [26, 27]. In our approach, the test

cases are first generated randomly, and then selected according

to the test adequacy criteria with respect to activity diagram

models without considering fault detection. The objective of

our approach is to automate the test case generation process

for reducing the testing cost other than the efficiency of fault

detection.

5. CONCLUSION

This paper propose an approach to automatic test case gener-

ation for Java programs with UML activity diagrams as design

models. Guided by a given activity diagram, the program

under testing is first instrumented so as to collect the related

program execution traces. Then abundant test cases are ran-

domly generated for driving the program. By running the

instrumented program with these randomly generated test

cases, we obtain the corresponding program execution

traces. By matching those program execution traces with the

behavior of the activity diagram, we select a reduced test

suite according to the test adequacy criterions concerning

the activity diagram. The approach can also be used to

check the consistency between the program execution traces

and the behavior of activity diagrams.

The approach presented in this paper focuses on the test

case generation for Java programs, but its underlying idea is

more general and may also be applied to the test case gener-

ation for other object-oriented programs. The next work is to

extend the approach to support the compositions of UML

dynamic models as design specifications for test case

generation.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable comments and suggestions. This work is supported

by the National Natural Science Foundation of China (No.

60425204, No. 60233020 and No. 60673125), the National

Grand Fundamental Research 973 Program of China

(No. 2002CB312001) and by Jiangsu Province Research

Foundation (No. BK2007714). A preliminary version [28]

of this paper appears in the proceedings of International

Workshop on Automated Software Testing (AST06).

UML ACTIVITY DIAGRAM-BASED AUTOMATIC TEST CASE GENERATION Page 11 of 12

THE COMPUTER JOURNAL, 2007

REFERENCES

[1] Rumbaugh, J., Jacobson, I. and Booch, G. (2001) The Unified

Modeling Language User Guide. Addison-Wesley, Boston.

[2] UML 2.0 (2005) UML 2.0 Superstructure Specification. OMG,

available at http://www.omg.org/uml.

[3] Gnesi, S., Latella, D. and Massink, M. (2004) Formal test case

generation for UML statecharts. Proc. Ninth IEEE Int. Conf.

Engineering Complex Computer Systems (ICECCS’04),

Florence, Italy, April 14–16, pp. 75–84. IEEE Computer

Society Press, NJ.

[4] Latella, D. and Massink, M. (2002) On testing and com-

formance relations for UML statechart diagram behaviors.

Proc. ACM SIGSOFT Int. Symp. Software Testing and Analysis

(ISSTA2002), Roma, Italy, July 22–24. ACM Softw. Eng.

Notes, 27, 144–153.

[5] Latella, D. and Massink, M. (2001) A formal testing framework

for UML statechart diagram behaviors: from theory to

automatic verification. Proc. Sixth IEEE Int. High-Assurance

Systems Engineering Symp. Florida, October 22–24, pp. 11–

22. IEEE Computer Society Press, NJ.

[6] Seifert, D., Helke, S. and Santen, T. (2003) Test case generation

for UML statecharts. Proc. Perspectives of System Informatics,

Akademgorodok, Novosibirsk, Russia, July 9–12. Lecture

Notes in Computer Science, Vol. 2890, pp. 462–468,

Springer, Berlin Heidelberg.

[7] Offutt, J. and Abdurazik, A. (1999) Generating tests from UML

specifications. Proc. Second Int. Conf. Unified Modeling

Language (UML1999), Fort Collins, CO, October 24–30.

Lecture Notes in Computer Science, Vol. 1723, pp. 416–429,

Springer, Berlin Heidelberg.

[8] Chevalley, P. and Thevenod-Fosse, P. (2001) Automated

generation of statistical test cases from UML state diagrams.

Proc. Int. Computer Software and Applications Conf.,

Chicago, IL, USA, October 8–12, pp. 205–214. IEEE

Computer Society Press, NJ.

[9] Kim, Y., Hong, H., Cho, S., Bae, D. and Cha, S. (1999) Test

case generation from UML state diagrams. IEEE Proc.

Software 146, 187–192.

[10] Offutt, J. and Abdurazik, A. (2000) Using UML collaboration

diagrams for static checking and test generation. Proc. Third

Int. Conf. Unified Modeling Language (UML2000), York, UK,

October 2–6. Lecture Notes in Computer Science, Vol. 1939

pp. 383–395, Springer, Berlin Heidelberg.

[11] Peterson, J. (1981) Petri Nets Theory and the Modeling of

Systems. Prentice-Hall, NJ.

[12] Zhu, H., Hall, P. and May, J. (1997) Software unit test

coverageacy. ACM Comput. Surv., 29, 366–427.

[13] Blaha, M. and Rumbaugh, J. (2005) Object-Oriented Modeling

and Design with UML (2nd edn). Pearson Education, Inc.

[14] Andrews, A., France, R., Ghosh, S. and Craig, G. (2003) Test

adequacy criteria for UML design models. Softw. Test. Verif.

Reliab., 13, 95–127.

[15] Chen, T., Poon, P., Tang, S. and Tse, T. (2005) Identification

of categories and choices in activity diagrams. Proc. Fifth

Int. Conf. Quality Software, Melbourne, Australia, September

19–21, pp. 55–63. IEEE Computer Society Press, NJ.

[16] Vieira, M., Leduc, J., Hasling, B., Subramanyan, R.

and Kazmeie, J. (2006) Automation of GUI testing using a

model-driven approach. Proc. of Int. Workshop on Automation

of Software Test (AST06), Shanghai, China, May 20–26, pp.

9–14. IEEE Computer Society Press, NJ.

[17] Wang, L., Yuan, J., Yu, X., Hu, J., Li, X. and Zheng, G. (2004)

Generating test cases from UML activity diagram-based on

Gray-Box method. Proc. 11th Asia-Pacific Software

Engineering Conf. (APSEC2004), Busan, Korea, 30

November– 4 December, pp. 284–291. IEEE Computer

Society, NJ.

[18] Agitar. (2007) Agitator and Agitar Management Dashboard 3.0.

Available at http://www.agitar.com.

[19] Godefroid, P. (2007) Compositional dynamic test generation.

Proc. 34th Annual ACM SIGPLAN-SIGACT Symp. on

Principles of Programming Languages, Nice, France, January

17–19. ACM SIGPLAN Not., 42, 47–54.

[20] Bartetzko, D., Fischer, C., Moller, M. and Wehrheim, H. (2001)

Jass—Java with Assertions. Electron. Notes Theor. Comput.

Sci., 55, 103–117.

[21] Havelund, K. and Rou, G. (2001) Monitoring Java programs

with Java PathExplorer. Electron. Notes Theor. Comput. Sci.,

55, 200–217.

[22] Kim, M., Kannan, S., Lee, I., Sokolsky, O. and Viswanathan, M.

(2001) Java-MaC: a run-time assurance tool for Java programs.

Electron. Notes Theor. Comput. Sci., 55, 218–235.

[23] Brorkens, M. and Moller, M. (2002) Dynamic event generation

for runtime checking using the JDI. Electron. Notes Theor.

Comput. Sci., 70, 1–15.

[24] d’Amorim, M. and Havelund, K. (2005) Event-based runtime

verification of Java programs. Proc. Int. Workshop on

Dynamic Analysis (WODA2005), St. Louis, MI, USA, 17

May, pp. 1–7. ACM Press, NY.

[25] Artho, C., Drusinsky, D., Goldberg, A., Havelund, K., Lowry, M.,

Pasareanu, C., Rosu, G. and Visser, W. (2003) Experiments with

test case generation and runtime analysis. Lecture Notes in

Computer Science, Vol. 2598, pp. 87–107, Springer, Berlin,

Heidelberg.

[26] Jones, J. and Harrold, M. (2003) Test-suite reduction and

prioitization for modified condition/decision coverage. IEEE

Trans. Softw. Eng., 29, 195–209.

[27] Offutt, J., Pan, J. and Voas, J. (1995), Procedures for reducing

the size of coverage-based test sets. Proc. 12th Int. Conf.

Testing Computer Software, Washington, DC , June, pp.

111–123

[28] Chen, M., Qiu, X. and Li, X. (2006) Automatic test case

generation for UML activity diagrams. Proc. Int. Workshop

on Automated Software Testing (AST06), Shanghai, China,

23 May, pp. 2–8. ACM Press, NJ.

Page 12 of 12 M. CHEN et al.

THE COMPUTER JOURNAL, 2007

