
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 1

Statistical Model Checking-Based Evaluation and Optimization for
Cloud Workflow Resource Allocation

Mingsong Chen, Member, IEEE , Saijie Huang, Xin Fu, Member, IEEE , Xiao Liu, Member, IEEE , and
Jifeng He

Abstract—Due to the existence of resource variations, it is very challenging for Cloud workflow resource allocation strategies to
guarantee a reliable Quality of Service (QoS). Although dozens of resource allocation heuristics have been developed to improve the
QoS of Cloud workflow, it is hard to predict their performance under variations because of the lack of accurate modeling and evaluation
methods. So far, there is no comprehensive approach that can quantitatively reason the capability of resource allocation strategies or
enable the tuning of parameters to optimize resource allocation solutions under variations. To address the above problems, this paper
proposes a novel framework that can evaluate and optimize resource allocation strategies effectively and quantitatively. By using the
statistical model checker UPPAAL-SMC and supervised learning approaches, our framework can: i) conduct complex QoS queries on
resource allocation instances considering resource variations; ii) make quantitative and qualitative comparisons among resource
allocation strategies; iii) enable the tuning of parameters to improve the overall QoS; and iv) support the quick optimization of overall
workflow QoS under customer requirements and resource variations. The experimental results demonstrate that our automated
framework can support both the Service Level Agreement (SLA) negotiation and workflow resource allocation optimization efficiently.

Index Terms—Cloud Computing, Statistical Model Checking, Optimization, Resource Allocation Strategy, Service Level Agreement.

✦

1 INTRODUCTION

B Y adopting the Software as a Service (SaaS) model, Cloud
workflow systems are becoming the mainstream platform

to facilitate the automated distribution of data and computation-
intensive enterprise applications [1]. Figure 1 shows how customer
requests are served in different layers of a Cloud workflow system.
Initially, a customer sends a workflow request to an SaaS provider
with specified QoS requirements. Such requirements usually con-
tain the information of expected price, response time, reliability
(bearable failure ratio), etc. Since different underlying Virtual
Machines (VM) (e.g., Amazon EC2, Microsoft Windows Azure)
offered by different Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS) providers have different capacity (e.g., CPU,
memory, storage) and on-demand prices, SaaS providers need to
conduct the evaluation of multiple resource allocation solutions
and figure out a suitable one, which should be profitable and
can meet all the customer requirements. If the requirements
cannot be satisfied by the evaluation, before signing Service Level
Agreement (SLA), the SaaS provider will negotiate the price and
QoS details with the customer.

To achieve increasing profit in the fierce Cloud computing
market, SaaS providers need to explore efficient resource allo-
cation solutions [2] that can minimize the cost of infrastructure
services without adversely affecting Quality of Services (QoS) [3].
Since resource allocation for Cloud workflows is an NP-complete
problem, various strategies have been proposed to quickly find a

• Mingsong Chen, Saijie Huang and Jifeng He are with the Shanghai Key
Lab of Trustworthy Computing at East China Normal University, Shanghai,
200062, China (email:{mschen, sjhuang, jifeng}@sei.ecnu.edu.cn). Xin
Fu is with the Electrical and Computer Engineering Department at
University of Houston, Texas, 77004, USA (email: xfu8@central.uh.edu).
Xiao Liu is with the School of Information Technology, Deakin University,
Melbourne, Australia (email: xiao.liu@deakin.edu.au). Xiao Liu is the
corresponding author.

Manuscript received XXXX XX, 20XX; revised YYYY YY, 20YY.

SLA 

Service Workflow 

+ 

Software Service Negotiation 

SaaS 

PaaS 

IaaS 

Mapping 

Satisfied 

Customer Requirement 

Allocate Resources 

Scheduling 

Unsatisfied 

Evaluation 

Resource Allocation Solutions 

Fig. 1. Resource allocation for Cloud workflow

solution (i.e., a resource allocation instance) [4]. However, due to
the underlying resource variations (e.g., cost, execution time), it is
hard to determine which resource allocation strategy works best
for a given workflow coupled with QoS requirements. Therefore,
quantitative evaluation of resource allocation strategies is becom-
ing an important issue to guarantee the QoS in Cloud computing.
In order to satisfy customer requirements as well as achieve an
acceptable profit for SaaS providers, resource allocation strategy
evaluation must address the following issues: i) How to accurately
model variation-aware workflow services and customer require-
ments to enable the quantitative resource allocation evaluation?
ii) How to quickly conduct negotiation properly with customers
if the given requirements are not satisfied? iii) How to quickly
find an optimized resource allocation solution that can further
promote the customer satisfaction without affecting the customer
requirements? Although simplified probability-based approaches
can be used to model execution variation, few of them can
accurately model the parallel service execution. Moreover, existing
constraint solving-based approaches can only answeryesor no for
a given workflow and user requirements. Few of them can be used
to quantitatively reason why the QoS cannot be guaranteed and
answer how to improve the QoS. Clearly, the bottleneck is the lack



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 2

of powerful evaluation approaches which can help SaaS providers
to make choices among different resource allocation strategies.

To address this problem, we propose a novel framework using
Statistical Model Checking (SMC) [6] and supervised learning
approaches [7] that can systematically evaluate and optimize
resource allocation strategies. SMC is a technique that relies on the
monitoring of random simulation runs of systems. The simulation
results are analyzed using statistical methods (i.e., sequential
hypothesis testing or Monte Carlo simulation) to estimate the
satisfaction probability of a specified property. Compared with
formal model checking approaches, SMC requires far less memory
and time, which allows high scalable validation approximation.
Moreover, some interesting quantitative performance properties
which cannot be expressed in traditional model checking can be
analyzed in SMC. To achieve an approximate-optimal Resource
Allocation Instance (RAI) under resource variations, it is required
to make the comparison among a large set of RAIs. However, since
each RAI evaluation using SMC is time-consuming (typically
needs several minutes), the overall optimization time can be
extremely large. Supervised learning [7] is a promising approach
to accurately predict the outputs for the given inputs with training
only a small subset of the labeled inputs. Supervised learning
approaches are quite suitable in finding an approximate optimal
RAI in our approach, since only a small set of RAIs are evaluated
using SMC. Therefore, the overall RAI optimization time can be
reduced. Our approach makes three major contributions as follows.

• We propose a novel framework that can evaluate re-
source allocation strategies by automatically converting
their solutions with variation information into a network of
priced timed automata and conducting quantitative analy-
sis against specified performance queries.

• We present an automated negotiation mechanism that facil-
itates the bargain between SaaS providers and customers.

• Based on supervised learning techniques, we propose an
efficient method that can quickly obtain an approximate
optimal result from a large set of feasible resource alloca-
tion solutions that can maximize the QoS under the same
customer requirements.

The remainder of the paper is organized as follows. Section 2
presents related works on QoS-oriented resource allocation strate-
gies in Cloud. After the introduction of the preliminary knowledge
of UPPAAL-SMC [5] in Section 3, Section 4 describes our re-
source allocation strategy evaluation and optimization framework
in detail. To demonstrate the efficiency of our approach, Section 5
presents various experimental results using an industrial Cloud-
based application. Finally, Section 6 concludes the paper.

2 RELATED WORK

Unlike traditional market-based resource allocation methods
which are non-pricing-based, various SLA- or QoS-based profit
maximization resource allocation approaches have been proposed
in Cloud. Based on a novel pricing model for Clouds, Lee et al.
[8] investigated the profit-driven service request scheduling for
workflows. To manage the dynamic change of customers, Wu et
al. [9] proposed resource allocation algorithms for SaaS providers
who want to minimize infrastructure cost and SLA violations. In
[3], Wu et al. proposed a service-level hierarchical scheduling
strategy, which outperforms existing approaches such as genetic
algorithm and etc. However, so far, existing approaches focus

on the modeling and optimization rather than the quantitative
evaluation for resource allocation strategies.

SLA negotiation is an important topic in Cloud, since through
bilateral bargaining between customers and SaaS providers in
Cloud marketplace [10] can maximize their return-on-investment.
However, majority of existing SLAs are formed by service
providers without providing customers with sufficient negotiation
opportunities. With the emergence of SaaS broker models such
as ViTLive [11], some preliminary research has been conducted
to investigate SLA negotiation approaches in Cloud. In [12],
Zulkernine and Martin proposed a policy-based broker framework
for SLA’s automated negotiation. In [13], Dastjerdi and Buyya
proposed negotiation strategies for the infrastructure layer which
depends heavily on provider resource capabilities. To maximize
profits and improve customer satisfaction levels for brokers, Wu
et al. [14] proposed an automated negotiation framework where an
SaaS broker is utilized as the one-stop-shop for customers when
negotiating with multiple providers. However, few of the above
approaches considered the QoS with resource variations.

Machine learning-based algorithms are widely investigated in
Cloud to facilitate resource allocation and management. In [15],
Xiong et al. presented a cost-aware resource management system
SmartLA, which uses machine learning techniques to achieve the
optimum profits. In order to maximize computing performance,
Huang et al. [16] adopted Genetic Algorithms to optimize the re-
allocation of CPU and RAM resources in Cloud. In [17], Menache
et al. proposed an online learning approach for resource allocation
to balance the computation cost and performance. It is based on
the learning from the performance of prior job executions while
incorporating history of spot prices and workload characteristics.
Although various heuristics were proposed to improve the overall
performance, none of existing machine learning-based approaches
considers the resource variations in Cloud workflow.

Due to the scalability and efficacy in quantitatively reasoning
performance metrics of systems, SMC is widely used in the evalu-
ation of system designs. In [20], Du et al. adopted UPPAAL-SMC
to conduct quantitative evaluation on project schedules. Their
approach supports various evaluation queries for the schedule
comparison. Based on UPPAAL-SMC, Chen et al. [18] proposed
a framework that can conduct evaluation for MPSoC task allo-
cation and scheduling strategies under variations. In [19], Gu et
al. extended the semantics of UML activity diagrams to enable
the quantitative timing analysis of stochastic behaviors by using
UPPAAL-SMC. In [21], by exploiting a stochastic semantics
together with simulation, David et al. presented an SMC-based
approach that can achieve best values for model parameters to
enable design optimizations. So far, SMC-based methods are
seldom used for Cloud resource allocation evaluation. Moreover,
there is no approach that combines both machine learning and
SMC techniques to search for optimal solutions.

Currently, there exists many simulation-based approaches that
support the performance evaluation of workflows. For example,
based on CloudSim [22], WorkflowSim [23] is developed to enable
the full-fledged analysis of Cloud-based workflow models with
failures. In [24], Rozinat et al. proposed a simulation system that
supports to incorporate historical information to predict potential
near-future behavior for different scenarios. However, few of them
support the performance evaluation for workflows under resource
variations. Although stochastic QoS parameters in service-based
workflows have been investigated in [25], its proposed aggregation
functions and optimization model cannot accurately model the



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 3

concurrent workflow behaviors under resource variations in the
context of Cloud. Moreover, its optimization goal is to reduce the
total cost for brokers, while our approach tries to automatically
find a best success ratio for the given customer requirement with
a small overhead. In fact, due to the complex queries supported
by UPPAAL-SMC, our approach can be extended to solve various
types of optimization problems. To the best of our knowledge, our
work is the first SMC-based approach that can not only evaluate
and optimize resource allocation strategies for Cloud workflows
under variation, but also can support the decision making in
automated SLA negotiation.

3 PRELIMINARY

As an extension of the model checker UPPAAL, UPPAAL-SMC
[5] enables accurate reasoning of complex system behaviors under
a stochastic semantics. In our approach, we use a Network of
Priced Timed Automata (NPTA) [5], [6] to formally specify the
behaviors of a Cloud workflow. An NPTA comprises a set of
correlated Priced Timed Automata (PTAs) which can model the
stochastic executions of workflow services. Within an NPTA,
PTAs are synchronized over broadcast channels. Note that our
approach employsurgent channelsby default because we assume
that there is no delay before triggering a synchronization. Since
UPPAAL-SMC provides a user-friendly interface for NPTA-based
analysis, it can be used to quantitatively evaluate various variations
in the context of Cloud workflow resource allocation.

Fig. 2. An NPTA, (A | B)

To demonstrate the stochastic execution of an NPTA, Figure 2
shows an example with two PTAsA (id=ida) andB (id=idb),
where each PTA has four locations, three edges and two local
clocks (e.g.,c1 andCa in A), respectively. Unlike traditional timed
automata, clocks in PTAs can evolve with different rates (i.e., unit
price) in different locations. By default, the rate of clocks is 1.
However, NPTA allows changing the rate of a clockC by speci-
fying a constant value to the corresponding primed clockC′. For
example, the invariantC′

a==2 of locationA2 denotes that the rate
of Ca is 2 in locationA2. For the purpose of synchronization, this
example adopts an array of urgent broadcast channelsmsg, where
msg[idb] indicates a specific channel for the synchronization
betweenA andB. In our approach, we adopt the non-deterministic
selectionsto filter mismatching synchronizations. For example, on
the outgoing edge of locationB1, the selections e:msgt and the
guard e==idb are used to filter synchronizations which are not
performed over channelmsg[idb]. Assume that PTAA broadcasts
over the channel using “msg[idb]!”. Only whene==idb holds and
there exists a complementary receiving action “msg[e]?” in PTA
B, the synchronization can be triggered.

Since we focus on the evaluation of resource allocation in-
stances, we need to model the stochastic behaviors of PTAs.
Currently, UPPAAL-SMC only supports the uniform and expo-
nential distributions explicitly, which cannot cover various com-
plex scenarios in practical designs. To enable the modeling of
different kinds of stochastic behaviors, we employ the pattern

shown in Figure 2. Since UPPAAL-SMC supports almost the
same programming constructs as in C programming language,
by proper programming using the built-in functionrandom(),
the self-defined functiondistri() can produce values following a
large set of commonly used distributions (e.g., normal distribution,
Poisson distribution). For example, theBox-Muller methodcan be
used to generate normally distributed random delays for PTAs. In
the pattern, since locationA2 sets an upper bound for clockc1

(i.e., c1 <= t1) and its outgoing transition sets a guard condition
c1 >= t1, PTA A can stay in locationA2 with a delayt1 (randomly
generated usingdistr(ida)).

After each decision of an NPTA, the shortest delay will be
executed and all continuous variables will be updated accordingly.
Meanwhile, the PTA with the shortest delay will attempt to take
a transition. Note that if there is a PTA process in acommitor
urgent location (i.e., a location marked with the symbol “C” or
“U”), the process will have a zero delay in this location, and the
next transition must involve an edge from one of thecommitor
urgentlocations (commitlocations have higher priority).

Assume that PTAsA and B follow the Gaussian distribution
N(3,12) andN(6,22), respectively. The following run is a possible
transition sequence of the NPTA(A|B).

((A0,B0), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
0
−→

((A1,B1), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
0
−→

((A2,B1), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
2.5
−→

msg[idb]!
−−−−−→

((A3,B2), [c1 = 2.5,c2 = 0,Ca = 5,Cb = 0])
5.1
−→

((A3,B3), [c1 = 7.6,c2 = 5.1,Ca = 5,Cb = 20.4])
...
−→ . . .

The example demonstrates that the composite location(A3,B3)
is reachable within 7.6 time units with a total cost 25.4. Assuming
that there is no correlation between clocksc1 andc2, while more
runs are simulated, we can find that the time of reaching composite
location (A3,B3) will follow the Gaussian distributionN(9,12 +
22). By using the message-based synchronization among PTAs,
arbitrarily complex stochastic behavior can be modeled.

Based on the stochastic semantics, UPPAAL-SMC models
enable the generation of random runs which are bounded by time,
cost or a number of discrete steps. During the checking using
UPPAAL-SMC, all these derived runs have to be monitored with
some specified properties in the form of cost-constrained temporal
logic [6]. At the end of checking, the probability range of each
property coupled with a specified confidence will be reported. In
our approach, we only use following three kinds of query formats
supported by UPPAAL-SMC:

• Qualitative check: Pr [time<= bound] (<>expr)>= p.
• Quantitative check: Pr [time<= bound] (<>expr).
• Probability comparison: Pr [time1<= bound1] (<>expr1)

>= Pr [time2<= bound2] (<>expr2).

In above query definitions,boundis a constant value, and proper-
ties are evaluated using random runs which are bounded bytime.
The expression<> expr asserts that the state predicateexpr will
happen eventually. The qualitative check can be used to check
whether the probability of property<>expr is at leastp or not.
Such check can be used for SLA negotiation by SaaS brokers. The
quantitative check can be used to conduct the interval estimate for
the success ratio of the given property. It can be used to evaluate
the performance of different resource allocation strategies. The
property comparison can be used to filter inferior strategies.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 4

4 OUR APPROACH

In this section, we formulate the variation-aware resource allo-
cation problem for Cloud workflow (Section 4.1). We propose a
novel framework (Section 4.2) based on UPPAAL-SMC which can
conduct modeling and evaluation of resource allocation strategies
(Section 4.3) and enable automated SLA negotiations (Section 4.4)
and resource allocation optimization (Section 4.5).

4.1 Problem Definition

To satisfy different types of customers, PaaS or IaaS providers
usually offer multiple VM plans with different performance and
prices. If the budget of a customer is insufficient, providers may
choose VMs with lower configuration during resource allocation.
Since cheaper VMs generally have worse performance and a larger
variation in service response time, it is difficult to guarantee that
the customer’s request can be fulfilled on time. Consequently, SLA
violations are inevitable. Therefore, VM related variations should
be taken into account when making resource allocation decisions.
Such information can be queried from PaaS or IaaS providers, or
can be obtained from the service history of SaaS providers.

During the resource allocation, our approach only considers
three factors: the unit price, time variation and QoS (i.e., the
success ratio of completing service workflow on time). Since unit
price can be considered as a special resource, our approach can
be easily extended to solve the problems in other domains. To
simplify the modeling of resource allocation problem, our ap-
proaches assumes that the profit ratio required by SaaS providers is
a constant (e.g., 20%). In other words, regardless of profit, the cost
information in our model is the maximum budget of Cloud service
providers that can spend on VMs. In practice, proper optimization
for some resource allocation strategy can further save part of this
cost as the margin profit. Since directed acyclic graph (DAG) is
widely used in describing Cloud workflows [27], [30], the problem
studied in this work is formulated as follows. Given

• A DAG G = (V,E) indicating a service workflow, where
each node inV = {v1, . . . ,vn} represents a service.E is
a set of directed arcs which represent dependence rela-
tions between services. Virtual machine setVM = {vm1,

. . . ,vmk} denotes all the available VMs that can serve at
least one element inV.

• A unit runtime cost functionU : V ×VM → R, where
U(vi ,vmj) represents the unit runtime cost of theith service
running on thejth VM. If U(vi ,vmj) = ∞, it means that the
ith service cannot be assigned to thejth VM.

• An execution time functionTr : V ×VM → R, where
Tr(vi ,vmj) indicates real execution time of servicevi

running on VMvmj in a random simulation run.
• An end time function ET : V × VM → R, where

ET(vi ,vmj) indicates the real end time of servicevi run-
ning on VM vmj assuming that the workflow starts from
time 0.

• An execution time variation functionVAR: V ×VM →
DIST, whereVAR(vi ,vmj) indicates the execution time
distribution of servicevi running on VM vmj , such that
Tr(vi ,vmj) follows the distributionVAR(vi ,vmj).

• A resource allocation functionAL : V → VM, where
AL(vi) = vmj indicates that servicesvi is assigned to VM
vmj . A resource allocation instance is a binary relation
S= {(v1,AL(v1)), . . . ,(vn,AL(vn)}, which corresponds to
a specific resource allocation function.

• The customer defined constraintR(C,T,SR), whereC
indicates the maximum cost for the resource allocation;
T is the required deadline of the workflow andSR is
the success ratio indicating the required percentage of the
successful workflow execution before the deadline.

To achieve a feasible resource allocation instanceRAI, it is
required that the success ratio of workflow executions which
meet the requirementΣn

i=1(U(vi ,RAI(vi))×Tr(vi ,RAI(vi))) ≤ C
andMaxn

i=1ET(vi ,RAI(vi)) ≤ T is equal to or larger thanSR. An
optimal RAI is a feasible RAI that has the highest success ratio.

4

2 3

1 5

(a) A service workflow example

Config. 1 Config. 2

Node U.C. E.T. (µ) S.D. (σ) U.C. E.T. (µ) S.D. (σ)
1 6.0 5.0 0.6 5.0 6.0 0.8
2 7.0 5.0 1.2 5.0 6.0 1.4
3 4.5 10.0 0.8 6.0 8.0 0.6
4 4.0 10.0 0.7 3.0 12.0 0.9
5 5.0 7.0 1.5 3.0 12.0 1.8

(b) VM configuration table of (a)

Fig. 3. A workflow example and its configurations

Figure 3a) shows a workflow example with five services. In
this figure, due to the service dependence relation, services 2 and
4 cannot be started until service 1 finishes, and service 5 cannot
be executed until both services 3 and 4 finish. Figure 3b) shows
the VM configuration details of the services. In the configuration
table, each service node is assigned with two configurations,
which indicates that each service can be assigned to either of
the two VMs. TheU.C. column indicates the unit cost of VMs
for the specified services. The columnsM.T. andS.D.denote the
expected execution time and corresponding standard deviation for
each service, respectively. Assume that a customer wants to check
whether there exists an RAI that satisfies the requirement as fol-
lows: “the workflow should be executed with a cost less than 185
and a time less than 45, and the execution failure ratio should be
less than 5%”. Without considering VM variations, the resource
allocation instancesRAI1 = {(V1,VM1,1), (V2,VM2,2), (V3,VM3,1),
(V4,VM4,1), (V5,VM5,1)} and RAI2 = {(V1,VM1,2), (V2,VM2,1),
(V3,VM3,1), (V4,VM4,1), (V5,VM5,1)} can both satisfy the above
requirement, whereVMi, j indicates thatVi is assigned with itsjth
VM configuration. Based on the expected execution time, we can
get thatRAI1 needs a cost of 180, andRAI2 needs a cost of 185.
It seems thatRAI1 has more margin profit thanRAI2. However, if
the time variation shown in the table is considered, the situation
becomes more complex, since large accumulated variations may
result in low satisfying level for customers. Although various
approaches [26] are proposed to prevent temporal violations in
Cloud workflow, few of them can guarantee the best performance
in real VM execution environment with resource variations. More-
over, even if multiple resource allocation instances can fulfill the
customers’ requirements, due to the lack of evaluation tools, it is
hard to select the best one from the RAI candidates.

4.2 Our Framework

Our approach adopts a two-phase evaluation process to conduct
the comparison and optimization of resource allocation solutions.
In the first phase, the SaaS providers need to quickly respond to
the customer requirements with proper bargain capabilities. The



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 5

Service Workflow 

S2 S4 

S6 S5 S3 

 

Node 

No. 

Config. 1 Config. 2 

C T V C T V 

1 200 6 [5,7] 240 5 [4,6] 

2 90 7 [6,8] 85 8 [7,9] 

3 Y Y Y Y Y Y 

Customer Requirement 

(Cost, Time, Success Ratio)  VM Candidate Configurations 

S1 S2 

S3 S5 S4 

 Model Generation 

UPPAAL-SMC 

Analysis & Evaluation  

S2.Config1 S4.Config2 

S3.Config1 
S5.Config2 S6.Config1 

Resource Allocation Instances 

Property Generation 

Signing SLA 

Resource Allocation Strategies 

+ S1 S7 

S1.Config1 S7.Config1 

NPTA Models 

Pr[t <= T](<>(c<C && S0 .done)) 

Training Prediction 

Optimization of RAIs 

Regression Models 

SVM NN M5P Negotiation 

yes no 

Satisfied? 

Fig. 4. Our resource allocation evaluation and optimization framework

second phase mainly handles the resource allocation optimization.
Since the optimization needs to explore all the possible solution
space, it takes much longer time than the time of first phase and
usually the optimization is conducted in the background.

Figure 4 presents our UPPAAL-SMC-based framework. In
the first phase, based on the Cloud service workflow and cus-
tomer requirements extracted from some SLA contract, the SaaS
provider needs to search for candidate VMs that can carry out
all the services in the given workflow. Meanwhile, the unit cost,
expected execution time and variation information will be queried
from Paas or IaaS providers. Since no existing approaches can
always generate best resource allocation instances under time and
cost variations, to obtain a relative optimal RAI in a reasonable
time, our evaluation framework supports the comparison between
different resource allocation strategies. It is important to note
that our framework does not provide any suggestions on which
resource allocation strategies should to be selected. They are
selected by the SaaS provider based on different purposes (e.g.,
time optimal, cost optimal). By using our defined mapping rules,
the generated RAIs and customer requirements can be automat-
ically converted into NPTA models and property-based queries,
respectively. Based on UPPAAL-SMC, our framework can auto-
matically analyze and evaluate the generated RAIs. If the customer
requirement can be satisfied, an RAI with the best performance
will be reported, and the SaaS provider will sign an SLA with the
customer. Otherwise, the SaaS provider needs to negotiate with
the customer based on the evaluation results. By increasing the
cost properly and reevaluate the newly generated instances, the
customer and the SaaS provider will finally reach a reasonable
SLA after several iterations or abort the negotiation. Achieving an
RAI under resource variations with optimal QoS usually requires
heavy evaluation efforts, since it requires a large set of feasible
RAIs to be checked by UPPAAL-SMC and each evaluation of
an RAI using UPPAAL-SMC is quite time-consuming. Therefore,
in the optimization phase, we employ the supervised learning to
quickly locate an approximate optimal solution. Note that our
approach performs resource allocation optimization with an offline
mode. Once an optimal solution is obtained, the current adopted
RAI will be replaced by the optimal one. Since both phases can be
fully automated, both the evaluation and optimization processes
can be conducted without human intervention. The following sub-
sections will introduce the major steps of our framework in detail.

4.2.1 NPTA Model Generation
Before performance analysis, an RAI needs to be translated into
an executable NPTA model first. To simplify the NPTA model

construction, our approach decouples the syntax and semantics of
a workflow with allocated resources. We divide the NPTA model
for a Cloud workflow into two parts: front-end model and back-
end configuration. All the workflows share the same front-end
model. The only difference between workflows is the back-end
configuration which describes both the concurrent behavior of
workflows and the resource variation information.

In the DAG of a workflow, the dependence between services
is indicated by edges. It is required that a service can be executed
if all its precedent services have been finished. Therefore, the
front-end model only needs to model the behavior of a workflow
service rather than the whole workflow structure. This is because
that all the services in the workflow share the same behavior
template. In our approach, the back-end configuration is used
to describe the structure and behavior (i.e., DAG structure and
dependence relations between services) of a workflow and the
resource variation details of the corresponding RAI.

Assume that there areN services in a workflow and the
distribution of services follows the normal distribution. To identify
each node in the workflow DAG and specify its execution time,
the back-end configuration assigns each node with an ID together
with an execution time distribution which specifies the expected
execution time and its standard deviation for the corresponding
service. The distribution is described using one two-dimensional
array distribution[N+1][2], where distribution[i][0] represents
the expected execution time and distribution[i][1] indicates the
standard deviation of execution time for theith allocated service.
Moreover, each node is associated with a clockcost to record the
execution cost of the service. The clock rate saved in the array
clock rate[N+1] indicates the unit cost information of services.

In service workflow, edge information is used to describe the
dependence relations between services. According to the workflow
semantics, in the back-end configuration, we need to figure out
all the predecessors and successors for each node. Since our
approach only cares about the service dependence to model the
concurrent behaviors of a workflow, for each service we need
to record how many predecessors have been finished and how
many successors that need to be notified. Therefore, we define
two arraysreceive count[N+1] and send count[N+1] to indicate
how many predecessors have completed their services, and how
many successors need to be notified after the completion of the
current service. A service without any predecessors is called
initial service, and a service without any successors is calledfinal
service. Since a workflow may have multiple final services, to ease
the property generation (see Section 4.2.2), we added a dummy
service with ID 0 to merge all the final workflow services.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 6

To update the receive countrcountand send countscountof a
service, we adopt the broadcast synchronization to mimic the end-
to-end communication between services. In our approach, each
edge in DFGs can be considered as a private channel working
only for two adjacent services. We encode the message that is sent
from the service withidx to the service withidy as follows:

encodemsg(idx, idy) = idx× (N+1)+ idy.

This encoding consists of the ID information of both senders and
receivers. By using this encoding, when a listener service (i.e.,
service waiting for the notifications from predecessor services)
receives a broadcast messagem, it will decode the message using
m%(N+1) to check whether this message is sent to itself or not.
If yes, the service will decrease itsrcountby 1.

When a service finishes, it will send notifications to all its
successors. After sending a message, the service will decrease
its scount by 1. In the back-end configuration, we use a two-
dimensional matrixmsgto keep all the messages of the workflow,
which implicitly represent the workflow edges. Instead of con-
structing a(N+1)×(N+1) size matrix, we use a matrix with size
(N+1)×MAX(deg(v1), . . . ,deg(vn)), wheredeg(vi) indicates the
number of output edges incident to the service node. Similar to
the data structureadjacent table, the value inmsg[i][ j] indicates
that the message is sent from theith service. Ifmsg[i][ j] == −1,
it means the message has no destination. Otherwise the message
will be sent to the(msg[i][ j]%(N+ 1))th service. The following
is an example of the message matrix for the workflow shown in
Figure 3(a):msg[6][2] = {{-1, -1}, {8, 10}, {15,-1}, {23,-1},
{29,-1},{30,-1}}. After the completion, theith service will check
its scountinformation and find the corresponding message entries
msg[i][] to notify its successors via broadcasting.

Fig. 5. Front-end model template of a workflow service

In our front-end model design, we utilize the end-to-end
communication to model the dependence between services. Only
when the service collects all the messages sent by its predecessors,
the current service can start. When the current service completes,
it will notify all its successors one by one. Assume that the ID of
current service isnid. Figure 5 shows the template of our front-end
model. The model has five major states:

1) Free state indicates the beginning of a service. It initial-
izes the dependence information of the service. Since it
requires no time, we set it as a commit state.

2) Receiving state is used to listen all the broadcast mes-
sages and tries to obtain all the notification messages
from predecessor services.

3) Running state means that all the predecessor services are
finished, and the current service is executing. In this state,
the cost of the service (i.e.,cost[nid]) will be calculated
using the unit costcost rate[nid]. The execution time
generated bydistr follows the specified distribution.

4) Sending state tries to notify all the successive services
about the completion of the current service. Since the
sending process is conducted instantly, the sending state
is set to be an urgent state.

5) Finish state indicates the completion of a service.

It is important to note that, to record the cost of each service,
only the running state has a cost rate greater than 0. In all the
other states, the cost of the service will always be 0. Based on
the front-end model in Figure 5 and back-end configurations, the
derived NPTA model of an RAI can exactly mimic the workflow
behaviors. Therefore, we can conduct the quantitative performance
query on it using the statistics-based approaches.

4.2.2 Property Generation
When NPTA models are generated from different RAIs, we
need to compare the QoS between them. Based on customer
requirements, we can generate various properties to conduct per-
formance queries using the model checker UPPAAL-SMC. Since
our approach focuses on the QoS evaluation and SLA negotiation,
customers would like to figure out“what is the probability that
the workflow can be completed using a time of x with a cost of
y?”. Since this is a safety property-based query about the QoS,
our approach adopts the property in the form ofA<> p to check
whether the customer requirement described asp can be fulfilled
eventually. In UPPAAL-SMC, we analyze the above requirement
using the following property

Pr[<= x](<> (cost[1]+ . . .+cost[N])<= y && S0.done),

whereS0.done indicates the completion of the whole workflow,
andcost[1]+. . .+cost[N] represents the overall cost of the work-
flow execution. In UPPAAL-SMC, property works as a monitor to
check whether a run of a given time length satisfy the propertyp.
When the check finishes, the probability distribution of successful
simulations will be reported to enable quantitative analysis.

4.3 Resource Allocation Strategy Evaluation

Since cost, response time, and success ratio in customer require-
ments are often conflicting with each other, it is difficult to guaran-
tee the optimality for all these three aspects simultaneously, espe-
cially under the circumstance of service execution time variations.
Given a specific requirement, SaaS providers and customers may
prefer to use different resource allocation strategies, since they
do have different demands. For SaaS providers, if the price and
success ratio are satisfied, lower cost spent on IT infrastructures
(e.g., VMs) will lead to larger margin profit. For customers, if
they care more about real-time services, under the same cost and
success ratio constraints, they will prefer shorter response time.

Due to the lack of existing approaches that can always find
a resource allocation instance with best performance with respect
to the cost and response time, it is practical for SaaS providers to
conduct the comparison among multiple resource allocation strate-
gies. Therefore, for a given set of resource allocation strategies, the



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 7

purposes of resource allocation strategy evaluation is to filter the
inferior ones and select an instance with the best performance.

To support SaaS providers’ decision making, our framework
provides three kinds of resource allocation strategies by default: 1)
time-constrained cost minimization (TCCM), 2) cost-constrained
time minimization (CCTM), and 3)xth-round feasible instance
(xRFI). All these strategies produce RAIs using the expected
execution time without considering variations. Here, TCCM refers
to the strategy that searches for a cost optimal RAI while the
time constraint is satisfied. CCTM is a strategy that searches for a
time optimal RAI while the cost constraint is not violated. Since
TCCM and CCTM search for optimal solutions, they need to
enumerate all the feasible RAIs. Though a give resource allocation
problem may have multiple feasible instances, a typical exhaustive
search will terminate when finding the first feasible solution. To
investigate more feasible schedules, we adopt the xRFI approach
which returns thexth feasible RAI encountered in the exhaustive
search. It is important to note that, due to the independence
between RAI generation and evaluation, other resource allocation
strategies can be easily integrated into our framework.

Based on our proposed framework, we can conduct the au-
tomated analysis using different evaluation strategies as follows.

1) Single Requirement Multiple Strategies (SRMS): For a
specified requirement, it evaluates different RAIs gener-
ated by different strategies respectively. SRMS can be
used to select the best instance for the requirement.

2) Multiple Requirements Single Strategy (MRSS): It tunes
the parameters of customers’ requirements, and evaluates
the RAIs generated from different tuned requirements
using the same strategy. MRSS can be used to figure out
proper requirement parameter values for the RAI.

3) Multiple Requirements Multiple Strategies (MRMS): It
tunes the parameters of the customer’s requirements, and
generates one RAI for each combination of the strategies
and requirements. MRMS can be used to compare the
performance of different resource allocation strategies.

4.4 Service Level Agreement Negotiation

When all the generated RAIs cannot satisfy the customers’ initial
requirements by using our approach, SaaS providers need to
negotiate with the customers to relax the requirement constraints
using proper negotiation protocols. Negotiation protocol refers to
a set of rules, steps or sequences during the negotiation process,
aiming at SLA establishment. Although there are many means
of negotiation such as bilateral, one-to-many, and many-to-many,
our approach only considers the bilateral negotiation between
one customer and one SaaS provider. We do not consider the
competitions among multiple SaaS providers. Since QoS such
as time and success ratio are two major concerns of customers,
this paper only focuses on how to achieve a reasonable cost that
satisfies the customer requirement with the fixed response time
and success ratio constraints.

Let con f1 = (C,µ,σ) be the current VM configuration of a
service, whereC indicates the unit cost;µ represents the expected
value andσ denotes the standard deviation of the service execution
time. Let con f2 = (C′,µ′,σ′) be a better configuration of an
available VM with with higher cost, i.e.,C′ > C. We define the
cost-benefitfactor of a service that can be achieved due to the
upgrade of service configuration as follows:

cost bene f it(con f1,con f2) =
(µ−µ′)×σ
(C′−C)×σ′

To enable automated negotiation, our SaaS negotiation decision
making system adopts the following strategy. If the current RAI
cannot satisfy the customer’s requirement, SaaS providers will
increase the price by a specified percentage (e.g., 5%) or amount.
Under the new price constraint, our framework will try to figure
out a new RAI, which tries to upgrade all the services with the
highest cost-benefit value (see the example in Section 5.3). The
process will be iterated until: i) a desired instance is achieved with
a reasonable price that the customer can afford; or ii) the price
exceeds the customer’s expectation. It is important to note that
our evaluation framework enables SLA negotiation based on the
RAI comparison. Therefore, other SLA negotiation heuristics and
protocols can be easily integrated into our framework to improve
the negotiation process.

4.5 Optimization of Resource Allocation Instances

The objective of SLA negotiation presented in Section 4.4 is
to quickly find an RAI that satisfies the customer requirement.
In fact, the selected RAI may not be the one with the highest
QoS. Therefore, after signing the SLA, there should be proper
optimization processes to improve the QoS. It is important to
note that, resource allocation strategies are only promising in
quickly finding one satisfying RAI, since they will be terminated
when finding the first satisfying RAI. However, under the resource
variations, it is hard to guarantee that the first found RAI is optimal
or approximate optimal. To find an optimal RAI under resource
variations, it is required to check all the feasible RAIs that satisfy
the customer requirement.

Generate RAIs 

Feasible RAIs 

filtering by requirements 

Feature Vectors + RAIs 

characterization 

Training Set 

sampling 

Regression Function 

SMC 

Test Set 

prediction 

SR>T 
no 

yes 

Prediction Results  

input 

Success Ratio training 

rank & filtering 

Ranked RAIs   

SMC 

Optimized RAI 

SR>T 

yes 

fe
tc

h
 n

e
x
t 

Failure 

tried all 

Fig. 6. The workflow of our supervised learning-based RAI optimization

Although our framework can model the system behavior more
accurately than traditional methods, typically the simulation time
of each RAI evaluation is long (e.g., several minutes). Therefore,
evaluating all RAIs for a given Cloud workflow is infeasible
in practice. To reduce the overall evaluation time for all RAIs
and achieve an RAI with approximate optimal QoS, we adopt a
supervise learning-based approach that is illustrated in Figure 6.
Firstly, all feasible RAIs are filtered based on the customer
requirements. Secondly, the VM configuration information of each
RAI will be analyzed and encoded into a feature vector. Next, all
the generated feature vectors coupled with corresponding RAIs
will be divided into two categories: training set and test set. The



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 8

feature vectors in the training set will be checked using UPPAAL-
SMC to achieve its success ratio (i.e., an indicator of QoS). Under
the resource variations, it is hard to predict the optimal QoS of
a resource allocation problem. In our framework, we introduce
the thresholdT, which is an optimal RAI indicator specified by
SaaS providers. Instead of exhaustively finding an optimal RAI,
our approach tries to find an approximate optimal RAI with much
less evaluation efforts. If the success ratio reported by UPPAAL-
SMC is larger thanT when checking an RAI in the training set,
the whole optimization can be terminated and the RAI will be
reported as an approximate optimal solution. After all the target
QoS values of RAIs in the training set are calculated using SMC,
we can derive a regression function based on the feature vectors
and target QoS values of training RAIs. The regression function
can be used to predict the QoS of the RAIs in the test set. To reduce
the number of RAIs for the following reevaluation, we remove all
the RAIs whose QoS is worse than the current unoptimized RAI.
Since the prediction time of the whole RAI test set is much shorter
than the time of other steps, it can be neglected in calculating the
overall optimization time. As soon as the prediction is done, all
the feature vectors coupled with their RAIs will be ranked based
on their predicted values in a descending order. Then, we need
to validate the ranked RAIs using SMC iteratively starting from
top-ranked RAIs. If one RAI is confirmed to have a success ratio
larger thanT using UPPAAL-SMC, the RAI will be reported as
an optimal RAI. Otherwise, a failure will be reported if none of
the ranked RAIs satisfies the given QoS threshold.

Algorithm 1: Our RAI optimization approach
Input: i) Feasible resource allocation instancesRAIs;

ii) Regression methodRM;
iii) Optimal success ratio thresholdT;

Output: An optimized RAI with success ratio no worse thanT
RAIOptimization(RAIs,RM, T) begin

1: FVs=Characterization(RAIs);
2: (Tr,Te) =Sampling(FVs,RAIs);
3: tr result= {};
for each (RAI, FV) pair in Trdo

4: SR= SMC(RAI);
if SR≥ T then

5: Return RAI;
6: tr result= tr result

⋃
(RAI,FV,SR);

7: Predictor= Regression(tr result,RM);
8: ranked RAI= Rank(Predictor(Te));
while ranked RAI.empty() ==FALSEdo

if SMC(ranked RAI.deque())≥ T then
9: Return RAI;

10: if ranked RAI.empty() ==TRUE then
Return NULL;

end

Algorithm 1 describes the details of our RAI optimization
approach. Step 1 encodes the RAIs into feature vectorsFVs. Step
2 divides the RAIs into the training setTr and test setTe. Step 3
initializes an empty set to store the evaluation results for RAIs in
Tr. Steps 4-6 iteratively check the RAIs inTr using SMC and save
all the trained results intr result. If there exists one RAI whose
success ratioSR is larger than the give thresholdT, it will be
reported as an optimized RAI as shown in step 5. Step 7 generates
the regression function with the specified regression approach and
trained results. Step 8 calculates the predicted success ratio for
each RAI inTe and ranks RAIs in a priority queueranked RAI
based on the predicted value. Step 9 reevaluates the predicted RAIs

one-by-one using SMC and terminates the iterations when finding
one optimized RAI. Step 10 indicates that the optimization fails. In
our approach, feature selection, sampling and regression function
generation are the three most important steps, since they determine
the accuracy of the prediction, which in turn determines the overall
RAI optimization time. The following subsections will give the
details of each of these steps.

4.5.1 Feature Selection for RAIs
To enable accurate prediction, it is required to figure out important
features that are helpful in constructing learning machines for
the prediction purpose. According to the criteria of significance,
independence and diversity, our approach selects following three
kinds of features of a resource allocation instanceRAI: i) the unit
cost and execution time distribution of each service inRAI (i.e.,
U(vi ,RAI(vi)) andVAR(vi ,RAI(vi))); ii) the overall cost ofRAI
without considering variation; and iii) the expected execution time
of RAI. This is because that they are the most relevant factors
in our variation-aware evaluation. If there arek services in the
workflow, its feature vector will has 3∗ k+ 2 elements. As an
example shown in Figure 3, assume thatRAI1 = {(V1,VM1,1),
(V2,VM2,2), (V3,VM3,1), (V4,VM4,1), (V5,VM5,1)} needs to be
characterized. The following shows the feature vector ofRAI1,
which will be used for the following regression and prediction.

<(6.0,5.0,0.6),(5.0,6.0,1.4),(4.5,10.0,0.8),

(4.0,10.0,0.7),(5.0,7.0,1.5); 180.0; 28.0)>

4.5.2 RAI Sampling
The goal of RAI sampling is to gather a set of feasible RAIs
for regression function generation. To guarantee the unbiased
prediction, such a set should be as representative as possible. If
all the sampled training RAIs are from some conceptually local
solution space, then the prediction may not be accurate. Therefore,
it is required that all the sampled RAIs should be evenly distributed
in the whole solution space. Based on the above observation, our
approach supports two kinds of sampling heuristics to achieve the
RAI training set:instance-level samplingandVM-level sampling.
It is important to note that both of them are by no means the
best sampling methods rather they are promising approaches in
obtaining representative RAI training sets in practice.

Algorithm 2: Instance-level Sampling Approach
Input: i) Sortedn services in sorted listS;

ii) VM configurationVM[n][] for all services;
iii) Sampling frequencyf ;

Output: Sampled RAI SetSRAIs
InstanceSampling(S, VM, n, i, f ) begin

for (k= 0;k<VM[i][].size()−1;k++) do
1. RAI[i] =VM[i][k];
if i==n-1 then

if Feasible(RAI) then
2. RAIs= RAIs

⋃
RAI;

if RAIs.size()%f==0then
3. SRAIs= SRAIs

⋃
RAI;

else
4. InstanceSampling(S,VM,n,i +1, f );

Return SRAIs;
end

Algorithm 2 shows the details of our instance-level sampling
method which can uniformly sample the feasible RAIs that are
sorted based on the generation order of RAIs. In this algorithm,



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 9

RAI, RAIs, andSRAIsare all global data structures which in-
dicate the current VM configuration of services, all collected
feasible RAIs so far, and sampled RAIs, respectively. The function
Feasible(RAI) checks whetherRAI is a feasible RAI. Step 1
allocates theith service with thekth VM candidateVM[i][k]. Step
2 finds a new feasible schedule and stores it in the setRAIs. In
step 3, if current feasible scheduleRAI is the fth feasible RAI
since the last sampling, theRAI will be incorporated inSRAIsas a
new sample RAI. Finally,SRAIswill contain all the sampled RAIs
for the training purpose. It is important to note that, although the
flow shown in Figure 6 separates the steps of RAI generation and
sampling, in fact, they can be combined together to save the overall
optimization time. Unlike instance-level sampling, the steps of
RAI generation and VM-level sampling cannot be combined.

Although Algorithm 2 can evenly sample the RAIs from the
feasible solutions, it cannot alway guarantee that the sampled RAIs
are evenly scattered in the whole problem space. For example,
during the RAI generation in a depth-first-search manner as shown
in Algorithm 2, if some local part of the whole search space
contains a large set of feasible solutions, then such part will have
more sampled RAIs, which may bias the prediction results. To
avoid such case, Algorithm 3 presents the details of our VM-
level sampling approach which can backtrack non-chronologically
by skipping proper number of VM candidates. In Algorithm 3,
step 1 dispatches the VM resourceVM[i][k] to the ith service. If
all the services have been assigned with VMs andRAI satisfies
customer requirement,RAI will be incorporated in the set of
sample RAIs (i.e.,SRAIs). Since our framework searches for the
feasible RAIs in a depth-search-first manner, during the backtrack
in the recursive search, steps 3 and 4 skipm candidate VM
configurations for theith service to avoid local recursive sampling.

Algorithm 3: VM-level Sampling Approach
Input: i) Sortedn services in sorted listS;

ii) VM configurationVM[n][] for all services;
iii) VM-level sampling intervalm;

Output: Sampled RAI SetSRAIs
VMSampling(S, VM, n, i, m) begin

for (k= 0;k<VM[i][].size()−1;k++) do
1. RAI[i] =VM[i][k];
if i==n-1 then

if Feasible(RAI) then
2. SRAIs= SRAIs

⋃
RAI;

Return SRAIs;
else

3. VMSampling(S,VM,n,i +1,m);
4. k= k+m−1;

Return SRAIs;
end

4.5.3 Regression Approaches for RAI QoS Prediction
Our approach adopts supervised learning approaches to conduct
the prediction-based RAI optimization. After sampling as de-
scribed in Section 4.5.2, all the RAIs in the training set need to
be validated using UPPAAL-SMC tool to obtain their real QoS
value considering variation information. The feature vectors of
RAIs together with corresponding QoS values will be fed into
supervised learning approaches to produce an inferred function,
which can be used to predict the QoS of RAIs in the test set.
Our framework supports three following most popular regression
methods for optimal RAI prediction. Assume that there aren RAIs
in the training set, and each feature vector of RAIs hasm features.

Support Vector Regression

As a variant of Support Vector Machine (SVM), Support Vector
Regression (SVR) [31] aims at finding a hyperplane in search
space to predict the unknown data. In our approach, we conduct
the prediction usingε-SVR approach from the SVM library
LIBSVM [37]. To guarantee the prediction accuracy, we setε = 1
by default. The input of theε-SVR method is ann× (m+ 1)
matrix, where each row indicates a feature vector together with its
target value calculated by UPPAAL-SMC. Forε-SVR, we adopt
the Radial Basis Function (RBF) kernel to enable the non-linear
regression for the training set. When using RBF, proper hyper-
parameters such asC (i.e., cost) andγ need to be tuned to achieve
an expected prediction accuracy. To achieve optimal values for
C and γ, a k-fold cross validation is required. Thek-fold cross
validation splits the training data into k folds of equal size and the
ε-SVR is executed k times. Each time a different fold is chosen to
serve as the training set. Therefore, if k is large, the training time
usingε-SVRapproach will be long.

Artificial Neural Network

Inspired by biological neural network, Artificial Neural Networks
(ANNs) [32] are widely used to estimate or approximate functions
for the purpose of regression. In our framework, we employ the
Back Propagation Neural Network (BPNN) to perform the QoS
prediction of RAIs. The input of the BP neural network is an
(m+ 1)× n matrix, where each column consists of the feature
vector together with its target value. The self-learning capability
of BPNN relies on both the forward transfer of information and
the reverse transfer of error between the expected outputs and
actual outputs. A typical BPNN structure consists of three layers:
input layer, hidden layer and output layer. In our approach, we use
the training functionscaled conjugate gradient backpropogation
to update weight and bias values. For the BP neural network, we
use thetan-sigmoidtransfer function in the hidden layer which
generates outputs between -1 and 1. The number of neurons in the
hidden layer plays an important role in determining the prediction
accuracy. However, more neurons will cost more training time.
Therefore, proper tradeoff is required between the training time
and prediction accuracy. Base on the experience in practice, our
approach sets the number of neurons in the hidden layer to be
50 by default. Since the QoS value indicates the success ratio
of the workflow execution, in the output layer, we use thelog-
sigmoidtransfer function which generates outputs between 0 and
1 indicating the QoS of RAIs. During the training, the number
of epoch iterations and the target Mean Squared Error (MSE)
error are two key factors that affect the training time as well
as the regression accuracy. To guarantee the low training time
and regression accuracy, we set the number of iterations to 1000
epochs, and set the traininggoal of MSE to 0.001 by default.

M5 Model Tree

M5 model tree[33], [39] is a machine learning method that com-
bines both decision tree and linear regression algorithm together.
It has been successfully used as a predictor in many engineering
fields [34]. By using the divide-and-conquer method,M5 model
tree approach splits the parameter space into areas (subspaces)
and builds in each of them a linear regression model. Since model
trees are usually of small scale, they are very promising in tackling
tasks with high dimensionality. Similar to theε-SVR approach, the
input of M5 model tree is ann× (m+1) matrix, where each row



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 10

denotes a feature vector together with its target value. Since few
parameters are required to be tuned in the training usingM5 Model
Tree tools (e.g., Weka [39]), the input matrix can be fed into the
M5 Model Treetools to derive the regression function directly.

5 CASE STUDY

This section presents the evaluation and optimization details of
a Cloud-based securities exchange workflow for the Chinese
Shanghai A-Share Stock Market [35] using our framework. Based
on the interface (i.e., command line) provided by UPPAAL-SMC,
our framework can conduct the evaluation of NPTA models with
specified properties. In the experiment, we set the probability un-
certainty of UPPAAL-SMC (i.e.,ε) to 0.02, and set the probability
of false negatives (i.e.,α) to 0.01. To enable the RAI training, our
framework incorporates three well-established regression tools:
i) ε-SVR from the LIBSVM [37], ii) built-in BPNN from the
MATLAB [38], and iii) M5 model treefrom WEKA [39]. We
implemented the remaining parts (i.e., RAI generation based on
different strategies, NPTA model generation, property generation,
and supervised learning-based RAI optimization)) of our frame-
work shown in Figure 4 using the C programming language.
All the experiments were conducted on a Windows 7 desktop
computer with 2.8GHz Intel i7 CPU with 4 GB RAM.

3. Fit And Make Deal

2.Entrust1.Entrust

12. Transfer Capital

4. Stock Exchange

11. Transfer Details

7. Transfer Data

6. Share Variation5. Share Variation

13. Produce Clearing File

14. Receive Data And Details

8. Generate Transfer Details 9. Generate 

Transfer Details

10. Check Balance 

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Fig. 7. DAG of the Securities exchange workflow [29]

5.1 Workflow Description

Figure 7 illustrates the DAG of the securities exchange work-
flow for the Chinese Shanghai A-Share Stock Market [29], [35].
The workflow consists of 14 nodes which represent the major
workflow activities. Since a securities exchange workflow is a
typical instance and computation intensive process, it is quite
suitable to be deployed on a Cloud computing platform where the
computing resources are provisioned by Cloud service providers
according to customer’s request and budget. As an example, in
the stage 5 of the securities exchange workflow, services 8-12 are
provided with multiple VM configurations as shown in Table 2.
For example, the service 8 has three optional VM configurations.
For the first VM, its unit cost is 180, and its expected execution
time (i.e., mean time) and standard deviation are 10 and 1.05,
respectively. In the following subsections, we will conduct the
VM allocation evaluation and optimization based on the above
securities exchange workflow and corresponding configurations.

It is important to note that, to simplify the illustration of the
effectiveness of our approach, in the experiment of strategy eval-
uation (Section 5.2) and SLA negotiation (Section 5.3), we only
focus on the resource allocation of the first two VM configurations
(i.e., configuration 1andconfiguration 2) for the services in the
stage 5 of the securities exchange workflow. We assume that the
other 9 nodes in the workflow have fixed execution time without
considering variations. Unlike RAI evaluation and negotiation, we
take all the VM configurations into account in the experiment of
RAI optimization (Section 5.4).

5.2 Strategy Evaluation

In this experiment, we assumed that the customer wantsthe whole
workflow to be completed within 115 time units and 13500 cost
units, and the success ratio to be no lower than80%. We evaluated
the securities exchange workflow using the self-contained default
strategies (i.e., TCCM, CCTM, and xRFI) implemented in our
framework. For the purpose of evaluation, we only generated one
RAI for each strategy. It is important to note that the time of NPTA
model generation from an RAI is quite small (< 0.01 second) and
can be negligible, since it only needs to figure out the back-end
configuration. Generally, the RAI evaluation time is significantly
larger than the RAI generation time. In this experiment, due to the
similar complexity of properties and generated NPTA models from
RAIs, the evaluation time for each RAI is similar (4 to 5 minutes
on average), which dominates the overall strategy evaluation time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100 102 104 106 108 110 112 114

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
TCCM
CCTM

1RFI
2RFI
3RFI

Fig. 8. CPD for R(13500,115, 80%)

As soon as receiving a customer request, our framework firstly
applies the SRMS approach on the generated RAIs to check
whether such requirement can be satisfied or not with our default
strategies. In this example, since we setx=3 for xRFI, we obtained
5 resource allocation instances using the strategies TCCM, CCTM,
1RFI, 2RFI, and 3RFI. Since xRFI does not need to explore all
feasible RAIs, strategy xRFI (< 0.01 second) costs much less time
than both the strategy TCCM (0.27 second) and CCTM (0.29
second). Figure 8 presents the Cumulative Probability Distribu-
tion (CPD) of the response time of successful simulation runs.
Interestingly, we can find that TCCM and CCTM did not achieve
the best performance in this case, though their targets are to find
cost-optimal and time-optimal solutions, respectively. Since the
workflow needs to be completed with a success ratio no lower
than 80%, the RAIs generated by TCCM, CCTM, 1RFI and 3RFI
need to be discarded. According to the evaluation report of our
framework, the 2RFI instance has a confidence of 0.99 to obtain
a success ratio within [0.816, 0.856], which is higher than all the
other RAIs. Therefore, the instance 2RFI was selected finally.

To investigate the effect of different requirement parameters,
we applied theMRMSapproach. Based on the example shown in
Figure 8, we tuned the cost (increased by 300 cost units) and time
(increased by 5 time units) respectively as shown in Figure 9 and



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 11

TABLE 1
VM Configurations for the Securities Exchange Workflow

Config. 1 Config. 2 Config. 3 Config. 4

Node U.C. E.T. (µ) S.D. (σ) U.C. E.T. (µ) S.D. (σ) U.C. E.T. (µ) S.D. (σ) U.C. E.T. (µ) S.D. (σ)
1 100 15 1.05 80 16 1.10 50 18 1.12 40 20 1.50
2 60 8 1.10 45 10 1.20
3 40 10 1.05 30 12 1.10
4 100 7 1.05 80 8 1.10 70 9 1.12 60 10 1.50
5 60 12 1.05 40 15 1.10
6 100 8 1.05 70 9 1.10 60 12 1.20
7 100 8 1.05 70 9 1.10 60 12 1.20
8 180 10 1.05 150 12 1.10 120 14 1.20
9 100 8 1.05 80 9 1.10 70 10 1.20
10 60 8 1.05 40 10 1.20 50 9 1.10
11 120 12 1.05 90 15 1.20 100 14 1.10
12 100 14 1.10 120 12 1.05 90 15 1.20
13 100 8 1.05 80 10 1.10
14 120 10 1.10 100 11 1.20

Figure 10. From Figure 9, we can find that, due to the increase
of the overall cost, the workflow can get better VMs in their
RAIs. Therefore, the instances CCTM, 1RFI and 2RFI can have
better success ratio except the TCCM and 3RFI instances. For
the TCCM strategy, increasing the cost did not make any change
to the TCCM instance shown in Figure 8. This is because that
the TCCM instances shown in Figure 8 and Figure 9 are the
same, since TCCM tries to find the cheapest configurations for
the workflow. However, when the user relaxes the time limit to
120 as shown in Figure 10, we can observe the increase of success
ratio for all the RAIs except the CCTM instance. Especially for
the TCCM instance, we can find a significant improvement. This
is because that the TCCM instance suffers from the tight response
time constraints. It is important to note that, if we set the time
limit to 115 in Figure 10, we can find that the success ratio of all
RAIs is almost the same as the success ratio of RAIs in Figure 8.
In Figure 10, if the customer cares more about the response time,
the 2RFI instance will be selected at last.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100 102 104 106 108 110 112 114

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
TCCM
CCTM

1RFI
2RFI
3RFI

Fig. 9. CPD for R(13800,115, 80%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100  102  104  106  108  110  112  114  116  118  120

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
TCCM
CCTM

1RFI
2RFI
3RFI

Fig. 10. CPD for R(13500,120, 80%)

MRSS approach can be used to investigate the performance
of a single strategy under different requirements. Figure 11 and
Figure 12 show the application of MRSS for both the TCCM and
CCTM strategies, respectively. In Figure 11, the legend itemC
13500(12650), T 118(117)means that the requirement provided by
the customer isR(13500, 118, -). But by using the TCCM strategy,

we can get an RAI which needs 12650 cost units and 117 time
units based on the expected response time of each service in the
workflow. Since TCCM strategy focuses on the effects of response
time on the cost, in Figure 11, we created different requirements
with the same cost but different response time. For the CCTM
strategy, Figure 12 adopts different requirements with the same
response time but different cost.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 106  108  110  112  114  116  118  120  122  124  126

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
C 13500(12800), T 115(115)
C 13500(12650), T 118(117)
C 13500(12430), T 121(118)
C 13500(11960), T 124(122)
C 13500(11710), T 127(124)

Fig. 11. CPD for TCCM Strategy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100  102  104  106  108  110  112  114  116  118  120

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
C 12500(12450), T 120(118)
C 12800(12450), T 120(118)
C 13100(12980), T 120(114)
C 13400(13320), T 120(113)
C 13700(13320), T 120(113)

Fig. 12. CPD for CCTM Strategy

From Figure 11, we can find that by using TCCM, when
relaxing the time constraint, the expected cost can be reduced
accordingly. Generally, the more the time constraint is relaxed,
the higher the probability of success will be achieved. However,
compared to the constraintR(13500, 121, -), relaxing the time
constraint to 124 (i.e.,R(13500, 124, -)) does not get a better
probability of success. This is because that the RAI generated
under the constraintR(13500, 124, -)may have higher overall
variations, which can affect the overall RAI success ratio. Fig-
ure 11 shows that under the constraintR(13500, 127, -), with
the lowest cost, we can achieve the best probability of success.
From Figure 12, we can observe that the increase of cost can lead
to the reduction of workflow response time. For example, under
the constraintR(13700, 120, -), it only needs 105.5 time units
to achieve a success ratio of 55%. However, when the constraint
is R(12500, 120, -), achieving a success ratio of 55% needs at
least 120 time units. This is because that more high-end VMs are



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 12

used in the newly derived instances when increasing the budget.
In can be found that under the constraintR(13700, 120, -), we can
achieve the best RAI success ratio. Interestingly, from this figure
we can observe that when using CCTM strategy, the instances
(i.e., in yellow and black color) with higher cost may have worse
success ratio than the cheaper RAI (i.e., in green color). This
is because that in our experiment the generation of RAIs using
CCTM strategy does not take the variation into consideration.

5.3 SLA Negotiation

Workflow response time and success ratio are two most important
QoS issues in real-time Cloud applications. However, due to the
budget limit, when a customer initially bargains with an SaaS
provider, he/she may bid the lowest price first. Then the SaaS
provider will try to evaluate the RAIs generated under the specified
constraints and strategies. If there exist RAIs that meet the QoS
requirement, the RAI with the best performance will be selected
as the solution. However, if all of the generated RAIs cannot
guarantee the QoS requirement, the SaaS provider will utilize our
framework to conduct the negotiation with the customer. In this
experiment, we assumed that the SaaS provider increases the price
by 5% each time without modifying response time constraint.

TABLE 2
Resource Allocation Instances in Different Round

Round Requirement Allocation (Service→ Config.)
No. Constraints 8 9 10 11 12

1 (12500, 120, 85%) 2 2 2 2 1
2 (13125, 120, 85%) 1 2 2 2 1
3 (13780, 120, 85%) 1 2 1 1 2
4 (14450, 120, 85%) 1 1 1 1 2

Assume that a customer requires that securities exchange
workflow should be finished in 120 time units and the success
ratio cannot be smaller than 85%. Initially, the customer only
offers a price of 12500 cost units. Due to the space limit, to
demonstrate how SaaS providers utilize our approach to bargain
with the customer, we only use the CCTM strategy to generate
RAIs. It is important to note that our framework supports the
negotiation using multiple strategies simultaneously, which may
achieve a better price with fewer bargain rounds. In this example,
we conducted 4 rounds of bargains in total. Table 2 shows the
change of customer requirements as well as the corresponding
resource allocation upgrade information in each bargain round.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100  102  104  106  108  110  112  114  116  118  120

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
C 12500, T 120
C 13125, T 120
C 13780, T 120
C 14450, T 120

Fig. 13. A negotiation example using our framework

Figure 13 shows the evaluation results for the 4 bargains.
From this figure, we can find that in the first round of the
bargain the requirementR(12500, 120, 85%)fails to be satisfied
since the success ratio reported by our evaluation framework is
smaller than 60%, which is not acceptable by the customer. Then
in the second round, the SaaS provider raises the cost by 5%.
However, the newly generated RAI fails again. In the fourth round

of bargain, the customer and SaaS provider close the deal with
a price of 14450 cost units. Since the evaluation of each RAI
using UPPAAL-SMC needs around 4 minutes, the overall bargain
process last for around 16 minutes in total. In fact, all the four
rounds can be evaluated simultaneously. In this way, the overall
bargain time can be reduced.

5.4 Resource Allocation Optimization

In the optimization experiment, we consider all the combination
of VM configurations listed in Table 2. We assume that the
customer requirement is(13500,115,75%), and the optimization
target is (13500,115,95%). It is important to note that in our
framework, the RAI generation step tries to explore all the feasible
schedules without considering the resource variation information.
The RAI generation costs 7.37 seconds. Compared with the
following optimization steps, this time is negligible. Filtered by
the customer requirement, 79850 feasible RAIs were generated
as the candidates of optimal RAIs. Based on our experimental
results, the evaluation of an RAI in this set using UPPAAL-SMC
will cost around 5 minutes on average. If we evaluate all the RAIs
sequentially, the optimization will cost around 277 days, which is
not acceptable by both customers and service providers. Therefore,
our framework resorts to the supervised learning approaches to
reduce the optimization efforts.

Since there are 14 nodes in the workflow, for each RAI, we
generated a feature vector containing 14× 3+ 2 = 44 features
indicating both the workflow execution and resource variation
information for each RAI. We conducted the experiment using
the two proposed sampling methods individually. We use the
RAIS and VMS to indicate the RAI-level sampling and VM-
level sampling separately. When using RAIS, we set the sampling
frequency to 300. When using VMS, we set the sampling interval
to 2. To ease the comparison between the two sampling methods,
the two training sets have the same number of RAIs (i.e., 256). In
other words, during the RAI sampling, if the size of the training
set equals to 256, the following sampling process will be skipped.
After the generation of RAI training sets, we calculated the target
value of each sampled RAI using the tool UPPAAL-SMC. The
target value calculation costs around 13 hours for each RAI train-
ing sets generated by the two sampling methods. Unfortunately,
during the training process, we did not find any RAIs that have
a success ratio larger than 95%. We applied the three regression
approaches (i.e.,ε-SVR, BPNN andM5 model tree) on the training
sets separately. We utilized the parameter settings described in
Section 4.5.3. Based on the generated regression models, we
ranked all the remaining 79850− 256= 79594 feasible RAIs in
the test set. Since the prediction and the ranking just need around
1 second, their time can be negligible compared to the evaluation
time for a single RAI using SMC.

Table 3 shows the comparison of the RAI optimization with
different sampling and regression methods. The unit of time in this
table is the second. In this table, the first column presents the name
of sampling approaches. The second column gives the SMC-based
target value calculation time for the training sets generated by
the two sampling approaches. The third column lists the adopted
regression approaches. The fourth column denotes the time of
regression model generation. Sinceε-SVR employs the multiple-
fold cross validation, it needs much more time than the other
regression approaches. For example, when using RAIS sampling,
ε-SVR costs 4680 seconds, which is far more than the other two
regression methods. The fifth column has two sub-columns which



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 13

present the details of iterative RAI checking information after
the RAI ranking. The first sub-columnN indicates the number
of iterations, and the second sub-columnT denotes the total
time of all the iterations before finding an optimal RAI. For
instance,N = 8,T = 2371 means that the 8th top ranked RAI
is an optimal solution whose success ratio is better than 95%, and
the total evaluation time all the top ranked 8 RAIs is 2371 seconds.
Although the predicted success ratios of all the previous 7 RAIs
are no worse than the 8th RAI, their evaluation results reported
by UPPAAL-SMC are all below 95%. For each combination of
sampling and regression methods, the sixth and seventh columns
present the regression-based predicted value and UPPAAL-SMC-
based evaluated value of the found optimal RAI.

TABLE 3
Comparison of Different Optimization Methods

SMC Time Regression Tr.
Iteration

P.V. R.V.
N T

RAIS 63070
ε-SVR 4680 8 2371 0.953 0.951
BPNN 4.33 9 2792 0.951 0.950
M5P 17.56 3 923 0.958 0.954

VMS 63955
ε-SVR 4970 10 3190 0.947 0.962
BPNN 4.56 7 2041 0.954 0.959
M5P 16.43 2 577 0.961 0.951

From Table 3, we can find thatM5P model treehas the best
prediction accuracy, since it needs less validation iterations than
other regression methods after the RAI ranking. In other words, it
can quickly find an optimal RAI. Althoughε-SVR spends more
time than other approaches in the regression model generation,
its prediction accuracy is not the best among three regression
methods. Moreover, in Table 3, the optimization that adopts VMS
andε-SVR methods has the highest time cost (72115 seconds, or
20 hours). To compare with our approach, we also tried to find
an optimal RAI without using the supervised learning-based ap-
proach. We evaluated the RAIs one by one in the order of feasible
RAI generation. However, after the first 10000 feasible RAIs were
evaluated, we still did not find an RAI with a success ratio larger
than 95%. The whole process costs around 1200 machine hours,
which is far more than the time using our approach.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100 102 104 106 108 110 112 114

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
RAIS-M5P
VMS-M5P

RAIS-BPNN
VMS-BPNN
RAIS-SVR
VMS-SVR

Fig. 14. Comparison of optimal RAIs generated in Table 3

Figure 14 shows the results of the 8 optimized RAIs generated
in Table 3. Although all these 8 RAIs can achieve a success ratio
of 95% under the customer requirement, the response time using
different sampling and regression methods is different. From this
figure, we can find that both the RAIS-SVR and VMS-SVR RAIs
generated byε-SVR method have the best response time, and the
optimal RAIs generated by the RAIS sampling method can achieve
better response time than their VMS counterparts.

Figure 15 compares the non-optimized RAIs generated using
the default resource allocation strategies of our framework with
the optimized RAIs using the supervised learning-based approach.
In Figure 15, we only show the optimized RAIs using the VMS
sampling method. We can find that the performance (i.e., success

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 92  94  96  98  100 102 104 106 108 110 112 114

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s

Response Time

Cumulative Probability Distribution
VMS-M5P

VMS-BPNN
VMS-SVR

TCCM
CCTM

1RFI

Fig. 15. Comparison of the optimized and non-optimized RAIs

ratio and response time) of the RAIs derived by the default RAI
generation strategies can be significantly improved by our opti-
mization approach. Someone may argue that the RAI optimization
process is too time-costly. However, due to the benefit of the
improved response time and success ratio, it is still worthy to make
such optimization from the perspectives of service providers.

6 CONCLUSIONS

For SaaS providers, an effective cloud workflow resource alloca-
tion strategy can not only reduce overall operating costs, but also
reduce SLA violations. However, due to the inherent complexity
of accumulative variations caused by individual services in a
workflow, so far there is no approach that can quantitatively reason
the capability of resource allocation strategies. To address this
problem, this paper proposes a UPPAL-SMC-based framework
that enables the accurate modeling and evaluation of resource
allocation strategies under different kinds of variations. Besides
the comparison among resource allocation strategies, our frame-
work enables the SLA negotiation as well as QoS optimization
automatically and efficiently. Comprehensive experimental results
demonstrate the effectiveness of our framework.

REFERENCES

[1] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen and Y. Yang.
“The Design of Cloud Workflow Systems,”Springer, 2012.

[2] A. Rai, R. Bhagwan and S. Guha. “Generalized Resource Allocation for
the Cloud,”ACM Symposium on Cloud Computing (SOCC), 2012, 15.

[3] Z. Wu, X. Liu, Z. Ni, D. Yuan and Y. Yang. “A Market-Oriented Hierar-
chical Scheduling Strategy in Cloud Workflow Systems,”The Journal of
Supercomputing, vol. 63, no. 1, pp. 256–293, 2013.

[4] T. D. Braun, H. Siegel, A. A. Maciejewski and Y. Hong. “Static resource
allocation for heterogeneous computing environments with tasks having
dependencies, priorities, deadlines, and multiple versions,”Journal of
Parallel and Distributed Computing, vol. 68, no. 11, pp. 1504-1516, 2008.

[5] P. Bulychev, A. David, K. Larsen, M. Mikucionis, D. Poulsen, A. Legay
and Z. Wang. “UPPAAL-SMC: Statistical Model Checking for Priced
Timed Automata,” International Workshop on Quantitative Aspects of
Programming Languages and Systems (QAPL), 2012, pp. 1–16.

[6] A. David, K. G. Larsen, A. Legay, M. Mikucionis and Z. Wang. “Time
for Statistical Model Checking of Real-Time Systems,”International
Conference on Computer Aided Verification (CAV), 2011, pp. 349–355.

[7] T. Hastie, R. Tibshirani and J. Friedman. “The Elements of Statistical
Learning: Data Mining, Inference, and Prediction,”Springer, 2009.

[8] Y. Lee, C. Wang, A. Y. Zomaya and B. Zhou. “Service Level Agreement
Based Distributed Resource Allocation for Streaming Hosting System,”
Int. Conf. on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp.
15-24.

[9] L. Wu, S. Kumar Garg and R. Buyya. “SLA-Based Resource Allocation
for Software as a Service Provider (SaaS) in Cloud Computing Environ-
ments,”International Conference on Cluster, Cloud and Grid Computing
(CCGrid), 2011, 195–204.

[10] S. K. Garg, C. Vecchiola and R. Buyya. “Mandi: A Market Exchange
for Trading Utility and Cloud Computing Services,”The Journal of
Supercomputing, vol. 64, no. 3, pp. 1153-1174, 2013.

[11] ViTLive. http://vitlive.com/.
[12] F. H. Zulkernine and P. Martin. “An Adaptive and Intelligent SLA

Negotiation System for Web Services,”IEEE Transactions on Services
Computing, vol. 4, no. 1, pp. 31-43, 2011.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2586067, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, ZZZZ 14

[13] A. Va. Dastjerdi and R. Buyya. “An Autonomous Reliability-Aware
Negotiation Strategy for Cloud Computing Environments,”Int. Conference
on Cluster, Cloud and Grid Computing (CCGrid), 2012, 184–291.

[14] L. Wu, S. Kumar Garg, R. Buyya, C. Chen and S. Versteeg. “Automated
SLA Negotiation Framework for Cloud Computing,”Int. Conference on
Cluster, Cloud and Grid Computing (CCGrid), 2013, 235–244.

[15] P. Xiong, Y. Chi, S. Zhu and H. J. Moon. “Intelligent Management of
Virtualized Resources for Databased Systems in Cloud Environment,”Int.
Conference on Data Engineering (ICDE), 2011, pp. 87–98.

[16] C. Huang, Y. Wang, C. Guan, H. Chen and J. Jian. “Application of
Machine Learning to Resource Management in Cloud Computing,”Int.
Journal Modeling and Optimization, vol. 3, no. 2, pp. 148–152, 2013.

[17] I. Menache, O. Shamir and N. Jain. “On-Demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud,”
Int. Conf. on Autonomic Computing (ICAC), 2014, pp. 177–187.

[18] M. Chen, D. Yue, X. Qin, X. Fu and P. Mishra. “Variation-Aware Evalua-
tion of MPSoC Task Allocation and Scheduling Strategies using Statistical
Model Checking,”Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015, pp. 199–204.

[19] F. Gu, X. Zhang, M. Chen, D. Grosse and R. Drechsler. “ Timing
Analysis of UML Activity Diagrams Using Statistical Model Checking,”
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2016, accepted.

[20] D. Du, M. Chen, X. Liu and Y. Yang. “A Novel Quantitative Evalu-
ation Approach for Software Project Schedules using Statistical Model
Checking,” International Conference on Software Engineering (ICSE)
Companion, 2014, pp. 476–479.

[21] A. David, D. Du, K. G. Larsen, A. Legay and M. Mikucionis. “Opti-
mizing Control Strategy Using Statistical Model Checking,”International
Symposium on NASA Formal Methods, 2013, pp. 352-367.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. Rose and R. Buyya.
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Comput-
ing Environments and Evaluation of Resource Provisioning Algorithms,”
Software - Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[23] W. Chen and E. Deelman. “WorkflowSim: A Toolkit for Simulating Sci-
entific Workflows in Distributed Environments,”International Conference
on E-Science, 2012, pp. 1-8.

[24] A. Rozinat, M. Wynn, W. Aalst, A. Hofstede and C. Fidge. “Workflow
Simulation for Operational Decision Support,”Data & Knowledge Engi-
neering, vol. 68, no. 9, pp. 834–850, 2009.

[25] D. Schuller, U. Lampe, J. Eckert, R. Steinmetz and S. Schulte. “Cost-
driven Optimization of Complex Service-based Workflows for Stochastic
QoS Parameters,”International Conference on Web Services (ICWS),
2012, pp. 66–73.

[26] X. Liu, Y. Yang, Y. Jiang and J. Chen. “Preventing Temporal Violations
in Scientific Workflows: Where and How,”IEEE Transactions on Software
Engineering (TSE), vol. 37, no. 6, pp. 805-825, 2011.

[27] M. Rahman, M. R. Hassan, R. Ranjan and R. Buyya. “Adaptive Work-
flow Scheduling for Dynamic Grid and Cloud Computing Environment,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 13,
pp. 1816-1842, 2013.

[28] S. Huang, M. Chen, X. Liu, D. Du and X. Chen. “Variation-Aware
Resource Allocation Evaluation for Cloud Workflows using Statistical
Model Checking,”IEEE International Conference on Big Data and Cloud
Computing (BDCloud), 2014, pp. 201–208.

[29] X. Liu, Z. Ni, J. Chen, and Y. Yang. “A Probabilistic Strategy for Tempo-
ral Constraint Management in Scientific Workflow Systems,”Concurrency
and Computation: Practice and Experience, vol. 23, no. 16, pp. 1893-
1919, 2011.

[30] M. A. Rodriguez and R. Buyya. “Deadline based Resource Provisioning
and Scheduling Algorithm for Scientific Workflows on Clouds,”IEEE
Transactions on Cloud Computing, vol. 2, no. 2, pp. 222-235, 2014.

[31] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola and V. Vapnik.
“Support Vector Regression Machines,”Advances in Neural Information
Processing Systems (NIPS), 1996, pp. 155–161.

[32] D. F. Specht. “A General Regression Neural Network,”IEEE Transac-
tions on Neural Networks, vol. 2, no. 6, pp. 568-576, 1991.

[33] J. R. Quinlan. “Learning with Continues Classes,” 5th Australian Joint
Conference on Artificial Intelligence, 1992, pp. 343–348.

[34] M. Bhattacharya and D. P. Solomatine. “Neural Networks and M5 Model
Trees in Modelling Water Level-Discharge Relationship,”Neurocomput-
ing, vol. 63, pp. 381-396 , 2005.

[35] Chinese Shanghai A-Share Stock Market.http://www.sse.com.cn/ sse-
portal/en/.

[36] Clearing Corporation of China.http://www.chinaclear.cn/.
[37] LIBSVM. http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
[38] MATLAB. http://www.mathworks.com.

[39] Weikato Environment for Knowledge Analysis (WEKA).
http://www.cs.waikato.ac.nz/∼ml/weka.

Mingsong Chen (S’08–M’11) received the B.S.
and M.E. degrees from Department of Com-
puter Science and Technology, Nanjing Univer-
sity, Nanjing, China, in 2003 and 2006 respec-
tively, and the Ph.D. degree in Computer Engi-
neering from the University of Florida, in 2010.
He is currently a Professor with the Software
Engineering Institute of East China Normal Uni-
versity. His research interests include design au-
tomation of complex systems, formal verification
and software engineering.

Saijie Huang received the B.S. degree from De-
partment of Computer Science and Technology,
Tongji University, Shanghai, China, in 2012. He
is currently a master student with the Software
Engineering Institute of East China Normal Uni-
versity. His research interests are in the area of
cloud computing, formal verification techniques
and software testing.

Xin Fu (S’05-M’10) received the Ph.D. degree
in Computer Engineering from the University of
Florida in 2009. From 2010 to 2014, she was an
Assistant Professor at the Department of Electri-
cal Engineering and Computer Science, the Uni-
versity of Kansas, Lawrence. Currently, she is an
Assistant Professor at the Electrical and Com-
puter Engineering Department, the University of
Houston, Texas. Her research interests include
computer architecture, high-performance com-
puting, hardware reliability and variability, and

energy-efficient computing. Dr. Fu is a recipient of 2014 NSF Faculty
Early CAREER Award and 2012 Kansas NSF EPSCoR First Award.

Xiao Liu (M’11) received his master degree
in management science and engineering from
Hefei University of Technology, Hefei, China,
2007, and received his PhD degree in the Fac-
ulty of Information and Communication Tech-
nologies at Swinburne University of Technology,
Melbourne, Australia, 2011. He worked as an
associate professor in Software Engineering In-
stitute at East China Normal University from
2013 to 2015. He is currently a senior lecturer at
School of Information Technology, Deakin Uni-

versity, Melbourne, Australia. His research interests include software
engineering, workflow management systems and cloud computing.

Jifeng He received the B.S. degree from Depart-
ment of Mathematics, Fudan University, Shang-
hai, China, in 1965. From 1984 to 1998, He
Jifeng was a senior research fellow at the pro-
gramming research group in the Oxford Univer-
sity computing laboratory (now the Department
of Computer Science at Oxford University). He is
currently a distinguished professor and the dean
of the Software Engineering Institute at East
China Normal University. He is an academician
of Chinese Academy of Sciences. His research

interests include Internet of things, cyber-physical systems, formal as-
pects of computing science and software engineering.


