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Abstract—Due to the existence of resource variations, it is very challenging for Cloud workflow resource allocation strategies to
guarantee a reliable Quality of Service (QoS). Although dozens of resource allocation heuristics have been developed to improve the
QoS of Cloud workflow, it is hard to predict their performance under variations because of the lack of accurate modeling and evaluation
methods. So far, there is no comprehensive approach that can quantitatively reason the capability of resource allocation strategies or
enable the tuning of parameters to optimize resource allocation solutions under variations. To address the above problems, this paper
proposes a novel framework that can evaluate and optimize resource allocation strategies effectively and quantitatively. By using the
statistical model checker UPPAAL-SMC and supervised learning approaches, our framework can: i) conduct complex QoS queries on
resource allocation instances considering resource variations; ii) make quantitative and qualitative comparisons among resource
allocation strategies; iii) enable the tuning of parameters to improve the overall QoS; and iv) support the quick optimization of overall
workflow QoS under customer requirements and resource variations. The experimental results demonstrate that our automated
framework can support both the Service Level Agreement (SLA) negotiation and workflow resource allocation optimization efficiently.

Index Terms—Cloud Computing, Statistical Model Checking, Optimization, Resource Allocation Strategy, Service Level Agreement.
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1 INTRODUCTION

vy adopting the Software as a Service (SaaS) model, Cloud
workflow systems are becoming the mainstream platform

+ | Customer Requirement ]

SLA w

[ Service Workflow

to facilitate the automated distribution of data and computation- s | softwareservice | | Negotiation |
intensive enterprise applications [1]. Figure 1 shows how customer satisfied Unsatisfied
requests are served in different layers of a Cloud workflow system. Resoum:::r:::ii:folmw"s
Initially, a customer sends a workflow request to an SaaS provider

with specified QoS requirements. Such requirements usually con- pass |
tain the information of expected price, response time, reliability Allocate Resources 7

(bearable failure ratio), etc. Since different underlying Virtual o8 . ' . .
Machines (VM) (e.g., Amazon EC2, Microsoft Windows Azure)
offered by different Platform as a Service (PaaS) and Infrastructurig. 1. Resource allocation for Cloud workflow
as a Service (laaS) providers have different capacity (e.g., CPU, ) o
memory, storage) and on-demand prices, SaaS providers neetPlgtion (i.e., aresource allocation instance) [4]. However, due to
conduct the evaluation of multiple resource allocation solutiofi@€ Underlying resource variations (e.g., cost, execution time), it is
and figure out a suitable one, which should be profitable ah@rd to determine which resource allocation strategy works best
can meet all the customer requirements. If the requiremerg§ @ QiV?" WOfkf|0W coupled with QoS requirements_. Therefore,
cannot be satisfied by the evaluation, before signing Service Le@igntitative evaluation of resource allocation strategies is becom-
Agreement (SLA), the SaaS provider will negotiate the price afad &n important issue to guarantee the QoS in Cloud computing.
QoS details with the customer. In order to satisfy customer requirements as well as achieve an
To achieve increasing profit in the fierce Cloud computin@ccept"{‘ble profit for SaaS provide_rs, resource allocation strategy
market, SaaS providers need to explore efficient resource aﬁ(y_aluatlon_m_ust address the followmg_lssues: i) How to accuraFer
cation solutions [2] that can minimize the cost of infrastructur@0del variation-aware workflow services and customer require-
services without adversely affecting Quality of Services (QoS) [:jments to engble the quantltatlvg resource aIIocayon evaluation?
Since resource allocation for Cloud workflows is an NP-complefg How to quickly conduct negotiation properly with customers

problem, various strategies have been proposed to quickly findf 7€ given requirements are not satisfied? iii) How to quickly
find an optimized resource allocation solution that can further
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of powerful evaluation approaches which can help SaaS providers the modeling and optimization rather than the quantitative
to make choices among different resource allocation strategiesevaluation for resource allocation strategies.

To address this problem, we propose a novel framework using SLA negotiation is an important topic in Cloud, since through
Statistical Model Checking (SMC) [6] and supervised learninilateral bargaining between customers and SaaS providers in
approaches [7] that can systematically evaluate and optimiZéoud marketplace [10] can maximize their return-on-investment.
resource allocation strategies. SMC is a technique that relies onHhmwvever, majority of existing SLAs are formed by service
monitoring of random simulation runs of systems. The simulatigeroviders without providing customers with sufficient negotiation
results are analyzed using statistical methods (i.e., sequentipportunities. With the emergence of SaaS broker models such
hypothesis testing or Monte Carlo simulation) to estimate ths ViTLive [11], some preliminary research has been conducted
satisfaction probability of a specified property. Compared witto investigate SLA negotiation approaches in Cloud. In [12],
formal model checking approaches, SMC requires far less memdaiylkernine and Martin proposed a policy-based broker framework
and time, which allows high scalable validation approximatiofior SLA'S automated negotiation. In [13], Dastjerdi and Buyya
Moreover, some interesting quantitative performance propertig®posed negotiation strategies for the infrastructure layer which
which cannot be expressed in traditional model checking can #éepends heavily on provider resource capabilities. To maximize
analyzed in SMC. To achieve an approximate-optimal Resoungeofits and improve customer satisfaction levels for brokers, Wu
Allocation Instance (RAI) under resource variations, it is requireet al. [14] proposed an automated negotiation framework where an
to make the comparison among a large set of RAls. However, sirfg@aS broker is utilized as the one-stop-shop for customers when
each RAI evaluation using SMC is time-consuming (typicallyegotiating with multiple providers. However, few of the above
needs several minutes), the overall optimization time can Bpproaches considered the QoS with resource variations.
extremely large. Supervised learning [7] is a promising approach Machine learning-based algorithms are widely investigated in
to accurately predict the outputs for the given inputs with traininGloud to facilitate resource allocation and management. In [15],
only a small subset of the labeled inputs. Supervised learniXgpng et al. presented a cost-aware resource management system
approaches are quite suitable in finding an approximate optin&hartLA, which uses machine learning techniques to achieve the
RAI in our approach, since only a small set of RAIls are evaluategptimum profits. In order to maximize computing performance,
using SMC. Therefore, the overall RAI optimization time can bEluang et al. [16] adopted Genetic Algorithms to optimize the re-
reduced. Our approach makes three major contributions as followocation of CPU and RAM resources in Cloud. In [17], Menache

et al. proposed an online learning approach for resource allocation

« We propose a novel framework that can evaluate rgy palance the computation cost and performance. It is based on

source allocation strategies by automatically convertinge |earning from the performance of prior job executions while
their solutions with variation information into a network ofincorporating history of spot prices and workload characteristics.
priced timed automata and conducting quantitative analgithough various heuristics were proposed to improve the overall
sis against specified performance queries. performance, none of existing machine learning-based approaches
+ We present an automated negotiation mechanism that fagibnsiders the resource variations in Cloud workflow.
itates the bargain between SaasS providers and customers. Due to the scalability and efficacy in quantitatively reasoning

. Based on supervised learning techniques, we propose grformance metrics of systems, SMC is widely used in the evalu-
efficient method that can quickly obtain an approximatation of system designs. In [20], Du et al. adopted UPPAAL-SMC
optimal result from a large set of feasible resource allocée conduct quantitative evaluation on project schedules. Their
tion solutions that can maximize the QoS under the samagproach supports various evaluation queries for the schedule
customer requirements. comparison. Based on UPPAAL-SMC, Chen et al. [18] proposed

The remainder of the paper is organized as follows. Sectiorf2Tamework that can conduct evaluation for MPSoC task allo-
presents related works on QoS-oriented resource allocation str&@ion and scheduling strategies under variations. In [19], Gu et
gies in Cloud. After the introduction of the preliminary knowledgd'- €xtended the semantics of UML activity diagrams to enable
of UPPAAL-SMC [5] in Section 3, Section 4 describes our rethe quantitative timing analysis of_s_tochastlc beha_wors by using
source allocation strategy evaluation and optimization framewoH®PAAL-SMC. In [21], by exploiting a stochastic semantics
in detail. To demonstrate the efficiency of our approach, Sectiorf@@€ther with simulation, David et al. presented an SMC-based

presents various experimental results using an industrial Clo@RProach that can achieve best values for model parameters to
based application. Finally, Section 6 concludes the paper. enable design optimizations. So far, SMC-based methods are
seldom used for Cloud resource allocation evaluation. Moreover,

there is no approach that combines both machine learning and
SMC techniques to search for optimal solutions.

Unlike traditional market-based resource allocation methods Currently, there exists many simulation-based approaches that
which are non-pricing-based, various SLA- or QoS-based profitipport the performance evaluation of workflows. For example,
maximization resource allocation approaches have been propoBasged on CloudSim [22], WorkflowSim [23] is developed to enable
in Cloud. Based on a novel pricing model for Clouds, Lee et ahe full-fledged analysis of Cloud-based workflow models with
[8] investigated the profit-driven service request scheduling failures. In [24], Rozinat et al. proposed a simulation system that
workflows. To manage the dynamic change of customers, Wuseipports to incorporate historical information to predict potential
al. [9] proposed resource allocation algorithms for SaaS providersar-future behavior for different scenarios. However, few of them
who want to minimize infrastructure cost and SLA violations. support the performance evaluation for workflows under resource
[3], Wu et al. proposed a service-level hierarchical schedulingriations. Although stochastic QoS parameters in service-based
strategy, which outperforms existing approaches such as genetarkflows have been investigated in [25], its proposed aggregation
algorithm and etc. However, so far, existing approaches focfusictions and optimization model cannot accurately model the

2 RELATED WORK
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concurrent workflow behaviors under resource variations in tlsown in Figure 2. Since UPPAAL-SMC supports almost the
context of Cloud. Moreover, its optimization goal is to reduce theame programming constructs as in C programming language,
total cost for brokers, while our approach tries to automaticallyy proper programming using the built-in functioandom(),

find a best success ratio for the given customer requirement witte self-defined functiowlistri() can produce values following a

a small overhead. In fact, due to the complex queries supportacye set of commonly used distributions (e.g., normal distribution,
by UPPAAL-SMC, our approach can be extended to solve varioBeisson distribution). For example, tBex-Muller methodtan be
types of optimization problems. To the best of our knowledge, oused to generate normally distributed random delays for PTAs. In
work is the first SMC-based approach that can not only evaludtee pattern, since locatioA, sets an upper bound for cloa

and optimize resource allocation strategies for Cloud workflowse., c; <= t;) and its outgoing transition sets a guard condition
under variation, but also can support the decision making @ >=t;, PTA A can stay in locatior\, with a delayt; (randomly

automated SLA negotiation. generated usindistr(ida)).
After each decision of an NPTA, the shortest delay will be
3 PRELIMINARY executed and all continuous variables will be updated accordingly.

As an extension of the model checker UPPAAL, UPPAAL-SsMdeanwhile, the PTA with the shortest delay will attempt to take
[5] enables accurate reasoning of complex system behaviors ur@dfansition. Note that if there is a PTA process icammitor

a stochastic semantics. In our approach, we use a NetworkUggentlocation (i.e., a location marked with the symbol “C" or
Priced Timed Automata (NPTA) [5], [6] to formally specify the U"), the process will have a zero delay in this location, and the
behaviors of a Cloud workflow. An NPTA comprises a set df€xt transition must involve an edge from one of gwmmitor
correlated Priced Timed Automata (PTAs) which can model th#gentlocations (commilocations have higher priority).

stochastic executions of workflow services. Within an NPTA, Assume that PTA%\ andB follow the Gaussian distribution
PTAs are synchronized over broadcast channels. Note that HliB.1%) andN(6,2%), respectively. The following run is a possible
approach employsrgent channeldy default because we assumdransition sequence of the NPTA|B).
that there is no delay before triggering a synchronization. Since

0
UPPAAL-SMC provides a user-friendly interface for NPTA-based ((Po,Bo),[c1=0,c2=0,Ca=0,G, =0]) =
analysis, it can be used to quantitatively evaluate various variations  ((A;,B;),[c1 =0,¢c, = 0,C, = 0,C, = 0]) 9
in the context of Cloud workflow resource allocation. idb]!
((As,B1), [c1 = 0,65 = 0,C, = 0, = 0]) 25 15910
Ca'==0 ~ cl<=t1 8;&_53‘==2 Ca'==0 A B 25 0C 5 0 51
,|CL =£4£.9,60 = =9, = —
© H=distida) & c1=0 & cis=tl ((As.Bz), [c2 €2 =0.Ca=5.G =0))
A0 A1 A2 msglidb]ll A3 ((A3,B3),[c1=76,2=5.1,C,=5,C, =204]) = ...
Cb'==0 o 02<=1288Cb'==4 cp==0 The example demonstrates that the composite locétigBs)
©t2=distr(idb) O—=-0—0 is reachable within 7.6 time units with a total cost 25.4. Assuming
BO B1 B2 B3 that there is no correlation between cload¢sandc,, while more
Fig. 2. An NPTA, (A | B) runs are simulated, we can find that the time of reaching composite

location (As, Bs) will follow the Gaussian distributioMN(9,12 +

To demonstrate the stochastic execution of an NPTA, Figure?2). By using the message-based synchronization among PTAs,
shows an example with two PTAA (id=ida) andB (id=idb), arbitrarily complex stochastic behavior can be modeled.
where each PTA has four locations, three edges and two local Based on the stochastic semantics, UPPAAL-SMC models
clocks (e.g.c1 andC, in A), respectively. Unlike traditional timed enable the generation of random runs which are bounded by time,
automata, clocks in PTAs can evolve with different rates (i.e., urdbst or a number of discrete steps. During the checking using
price) in different locations. By default, the rate of clocks is 1UPPAAL-SMC, all these derived runs have to be monitored with
However, NPTA allows changing the rate of a cldCky speci- some specified properties in the form of cost-constrained temporal
fying a constant value to the corresponding primed clotk=or logic [6]. At the end of checking, the probability range of each
example, the invariar®@,==2 of locationA, denotes that the rate property coupled with a specified confidence will be reported. In
of C4 is 2 in locationA,. For the purpose of synchronization, thisour approach, we only use following three kinds of query formats
example adopts an array of urgent broadcast chamngis where supported by UPPAAL-SMC:
msgidb] indicates a specific channel for the synchronization
betweenA andB. In our approach, we adopt the non-deterministic
selectiondo filter mismatching synchronizations. For example, on
the outgoing edge of locatioB;, the selections e:msg@ and the
guard e==idb are used to filter synchronizations which are not
performed over channehsgidb]. Assume that PTAA broadcasts In above query definitiondoundis a constant value, and proper-
over the channel using “msdb]!”. Only whene==idb holds and ties are evaluated using random runs which are boundeihizy
there exists a complementary receiving action “@&j[in PTA The expressior<> exprasserts that the state predicaser will
B, the synchronization can be triggered. happen eventually. The qualitative check can be used to check

Since we focus on the evaluation of resource allocation imthether the probability of property.>expris at leastp or not.
stances, we need to model the stochastic behaviors of PT&sich check can be used for SLA negotiation by SaaS brokers. The
Currently, UPPAAL-SMC only supports the uniform and expoguantitative check can be used to conduct the interval estimate for
nential distributions explicitly, which cannot cover various comthe success ratio of the given property. It can be used to evaluate
plex scenarios in practical designs. To enable the modeling tbe performance of different resource allocation strategies. The
different kinds of stochastic behaviors, we employ the pattepmoperty comparison can be used to filter inferior strategies.

« Qualitative check: Pr [time <= bound] (<>expr)>= p.

« Quantitative check: Pr [time <= bound] (<>expr).

« Probability comparison: Pr [timel <= boundl] (<>exprl)
>= Pr [time2 <= bound2] (<>expr2).
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4 OUR APPROACH . The customer defined constraif®(C,T,SR), whereC
In this section, we formulate the variation-aware resource allo-  indicates the maximum cost for the resource allocation;
cation problem for Cloud workflow (Section 4.1). We propose a T is the required deadline of the workflow argR is
novel framework (Section 4.2) based on UPPAAL-SMC whichcan ~ the success ratio indicating the required percentage of the

conduct modeling and evaluation of resource allocation strategies ~ successful workflow execution before the deadline.

(Section 4.3) and enable automated SLA negotiations (Section 4g) achieve a feasible resource allocation instafod, it is
and resource allocation optimization (Section 4.5). required that the success ratio of workflow executions which
— meet the requiremerX] (U (vi,RAI(v)) x Tr(vi,RAI(v;))) <C
4.1 Problem Definition andMax' ET(vi,RAI(v;)) <T is equal to or larger thaBR. An

To satisfy different types of customers, PaaS or 1aaS providgjstimal RAI is a feasible RAI that has the highest success ratio.
usually offer multiple VM plans with different performance and

prices. If the budget of a customer is insufficient, providers may @—’@\

choose VMs with lower configuration during resource allocation. ~
Since cheaper VMs generally have worse performance and a larger 1 &) @
(a) A service workflow example

variation in service response time, it is difficult to guarantee that
the customer’s request can be fulfilled on time. Consequently, SLA

violations are inevitable. Therefore, VM related variations should \ \ Config. 1 \ Config. 2 |

be taken into account when making resource allocation decisions. Nide Lé% E-g-o(”) 5-3-6(") Lé‘é E-g-o(“) 5-'3-8(")
Such information can be queried from PaaS or laaS providers, or > T 70 50 15 50 60 14
can be obtained from the service history of SaaS providers. 3 [ 45] 100 08 [60] 80 06
H : : 4 4.0 10.0 0.7 3.0 12.0 0.9
During the resource allocation, our approach only considers 5070 e e 5

three factors: the unit price, time variation and QoS (i.e., the (b) VM configuration table of (a)
success ratio of completing service workflow on time). Since unily. 3. A workflow example and its configurations

price can be considered as a special resource, our approach carlu£igure 3a) shows a workflow example with five services. In

be easily extended to solve the problems in other domains. I-FI?S figure, due to the service dependence relation, services 2 and

simplify the modeling of resou_rce _allocat_|on problem, our_ apg cannot be started until service 1 finishes, and service 5 cannot
proaches assumes that the profit ratio required by SaaS IoroV'Ole‘i'f'e'sexecuted until both services 3 and 4 finish. Figure 3b) shows

a constant (e.g., 20%). In other words, regardiess of profit, the ot vm configuration details of the services. In the configuration

information in our model is the maximum budget of Cloud Semcfable each service node is assigned with two configurations

providers that can spend on VMs. In practice, proper Optimizaﬂ%ﬁhich indicates that each service can be assigned to either of
for some resource aIIocgqu stratggy can furthgr save part of t 2 two VMs. TheU.C. column indicates the unit cost of VMs
CQSt as the margin Pr_"f't- Since directed acyclic graph (DAG) {3r the specified services. The columisT. and S.D.denote the
W'de_ly u_sed In descr_|b|ng Cloud workfiows [27]’_[30]’ the prObIenéxpected execution time and corresponding standard deviation for
studied in this work is formulated as follows. Given each service, respectively. Assume that a customer wants to check

« A DAG G = (V,E) indicating a service workflow, where whether there exists an RAI that satisfies the requirement as fol-
each node iV = {vy, ...,v,} represents a servick& is lows: “the workflow should be executed with a cost less than 185
a set of directed arcs which represent dependence redad a time less than 45, and the execution failure ratio should be
tions between services. Virtual machine ¥ = {vmy, less than 5%". Without considering VM variations, the resource
...,vm} denotes all the available VMs that can serve allocation instanceRAL = {(V1,VMy1), (V2,VMz2), (V3,VMzy),
least one element M. (V4,V M4_’1)7 (V5,V M571)} and RAbL = {(Vl,V M1,2)7 (Vz,V Mz‘l),

« A unit runtime cost functiond : V xVM — R, where (V3,VMs1), (Va,VMas1), (V5,VMs1)} can both satisfy the above
U (vi,vm;) represents the unit runtime cost of fheservice requirement, wher¥ M, ; indicates thaV; is assigned with itgn
running on theji, VM. If U (vi,vm;) = oo, it means that the VM configuration. Based on the expected execution time, we can
ith service cannot be assigned to theVM. get thatRAL needs a cost of 180, arRlAL needs a cost of 185.

. An execution time functionT, : V x VM — R, where It seems thaRAk has more margin profit thaRAkL. However, if
T.(vi,vmy;) indicates real execution time of serviog the time variation shown in the table is considered, the situation
running on VMvm; in a random simulation run. becomes more complex, since large accumulated variations may

« An end time function ET : V x VM — R, where result in low satisfying level for customers. Although various
ET(vi,vm;) indicates the real end time of servigerun- approaches [26] are proposed to prevent temporal violations in
ning on VM vm; assuming that the workflow starts fromCloud workflow, few of them can guarantee the best performance
time 0. in real VM execution environment with resource variations. More-

over, even if multiple resource allocation instances can fulfill the
customers’ requirements, due to the lack of evaluation tools, it is
hard to select the best one from the RAI candidates.

« An execution time variation functioWAR:V xVM —
DIST, whereVAR(y,vim;) indicates the execution time
distribution of servicey; running on VMvm;, such that
Tr (vi,vim;) follows the distributiorV AR (v, vimy;).

. A resource allocation functiolAL : V — VM, where 4.2 Our Framework
AL(v;) = vmy; indicates that serviceg is assigned to VM Our approach adopts a two-phase evaluation process to conduct
vm;. A resource allocation instance is a binary relatiothe comparison and optimization of resource allocation solutions.
S= {(v1,AL(v1)), ..., (Vn,AL(vq)}, which corresponds to In the first phase, the SaaS providers need to quickly respond to
a specific resource allocation function. the customer requirements with proper bargain capabilities. The
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Fig. 4. Our resource allocation evaluation and optimization framework

second phase mainly handles the resource allocation optimizatioonstruction, our approach decouples the syntax and semantics of
Since the optimization needs to explore all the possible solutianworkflow with allocated resources. We divide the NPTA model
space, it takes much longer time than the time of first phase dod a Cloud workflow into two parts: front-end model and back-
usually the optimization is conducted in the background. end configuration. All the workflows share the same front-end
Figure 4 presents our UPPAAL-SMC-based framework. Imodel. The only difference between workflows is the back-end
the first phase, based on the Cloud service workflow and cusnfiguration which describes both the concurrent behavior of
tomer requirements extracted from some SLA contract, the Saa8rkflows and the resource variation information.
provider needs to search for candidate VMs that can carry out In the DAG of a workflow, the dependence between services
all the services in the given workflow. Meanwhile, the unit costs indicated by edges. It is required that a service can be executed
expected execution time and variation information will be queriafl all its precedent services have been finished. Therefore, the
from Paas or laaS providers. Since no existing approaches éamt-end model only needs to model the behavior of a workflow
always generate best resource allocation instances under time senice rather than the whole workflow structure. This is because
cost variations, to obtain a relative optimal RAI in a reasonabthat all the services in the workflow share the same behavior
time, our evaluation framework supports the comparison betwemplate. In our approach, the back-end configuration is used
different resource allocation strategies. It is important to note describe the structure and behavior (i.e., DAG structure and
that our framework does not provide any suggestions on whidependence relations between services) of a workflow and the
resource allocation strategies should to be selected. They sgsource variation details of the corresponding RAI.
selected by the SaaS provider based on different purposes (e.g.Assume that there ar®l services in a workflow and the
time optimal, cost optimal). By using our defined mapping rulesljstribution of services follows the normal distribution. To identify
the generated RAIs and customer requirements can be automsach node in the workflow DAG and specify its execution time,
ically converted into NPTA models and property-based querigte back-end configuration assigns each node with an ID together
respectively. Based on UPPAAL-SMC, our framework can autevith an execution time distribution which specifies the expected
matically analyze and evaluate the generated RAIs. If the custonegecution time and its standard deviation for the corresponding
requirement can be satisfied, an RAI with the best performanservice. The distribution is described using one two-dimensional
will be reported, and the SaaS provider will sign an SLA with tharray distribution[N+1][2], where distribution[i][0] represents
customer. Otherwise, the SaaS provider needs to negotiate witb expected execution time and distribution[i][1] indicates the
the customer based on the evaluation results. By increasing #t@ndard deviation of execution time for thg allocated service.
cost properly and reevaluate the newly generated instances, Mw@eover, each node is associated with a clogktto record the
customer and the SaaS provider will finally reach a reasonalebeecution cost of the service. The clock rate saved in the array
SLA after several iterations or abort the negotiation. Achieving astock rate[N+1] indicates the unit cost information of services.
RAI under resource variations with optimal QoS usually requires In service workflow, edge information is used to describe the
heavy evaluation efforts, since it requires a large set of feasildlependence relations between services. According to the workflow
RAIs to be checked by UPPAAL-SMC and each evaluation afemantics, in the back-end configuration, we need to figure out
an RAIl using UPPAAL-SMC is quite time-consuming. Thereforeall the predecessors and successors for each node. Since our
in the optimization phase, we employ the supervised learning dpproach only cares about the service dependence to model the
quickly locate an approximate optimal solution. Note that owoncurrent behaviors of a workflow, for each service we need
approach performs resource allocation optimization with an offline record how many predecessors have been finished and how
mode. Once an optimal solution is obtained, the current adopt@@ny successors that need to be notified. Therefore, we define
RAI will be replaced by the optimal one. Since both phases can tvgo arraysreceive count[N+1] and send count[N+1] to indicate
fully automated, both the evaluation and optimization processesw many predecessors have completed their services, and how
can be conducted without human intervention. The following subiany successors need to be notified after the completion of the
sections will introduce the major steps of our framework in detaidurrent service. A service without any predecessors is called
initial service, and a service without any successors is céithed
4.2.1 NPTA Model Generation service. Since a workflow may have multiple final services, to ease
Before performance analysis, an RAI needs to be translated itite property generation (see Section 4.2.2), we added a dummy
an executable NPTA model first. To simplify the NPTA modes$ervice with ID 0 to merge all the final workflow services.
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To update the receive courdountand send courgcountof a 2) Receiving state is used to listen all the broadcast mes-
service, we adopt the broadcast synchronization to mimic the end- sages and tries to obtain all the notification messages

to-end communication between services. In our approach, each from predecessor services.

edge in DFGs can be considered as a private channel working3) Running state means that all the predecessor services are
only for two adjacent services. We encode the message thatis sent  finished, and the current service is executing. In this state,
from the service withidy to the service withdy as follows: the cost of the service (i.ecps{nid]) will be calculated
using the unit costost ratejnid]. The execution time
generated bylistr follows the specified distribution.
Sending state tries to notify all the successive services
about the completion of the current service. Since the
sending process is conducted instantly, the sending state
is set to be an urgent state.

5) Finish state indicates the completion of a service.

encodemsg(iy,idy) = idy x (N + 1) +idy.
This encoding consists of the ID information of both senders and 4)
receivers. By using this encoding, when a listener service (i.e.,
service waiting for the notifications from predecessor services)
receives a broadcast messawgeit will decode the message using
m%(N+ 1) to check whether this message is sent to itself or not.
If yes, the service will decrease itsountby 1.

When a service finishes, it will send notifications to all it$t is important to note that, to record the cost of each service,
successors. After sending a message, the service will decreasly the running state has a cost rate greater than 0. In all the
its scountby 1. In the back-end configuration, we use a twoether states, the cost of the service will always be 0. Based on
dimensional matrixmsgto keep all the messages of the workflowthe front-end model in Figure 5 and back-end configurations, the
which implicitly represent the workflow edges. Instead of corderived NPTA model of an RAI can exactly mimic the workflow
structing a(N+1) x (N+ 1) size matrix, we use a matrix with sizebehaviors. Therefore, we can conduct the quantitative performance
(N+1)x MAX(deg(v),...,deg(w)), wheredeg(y) indicates the query on it using the statistics-based approaches.
number of output edges incident to the service node. Similar to
the data structuradjacent table, the value imsgi][j] indicates 4.2.2 Property Generation

that the message is sent from tigeservice. Ifmsg{l[j] == —1, When NPTA models are generated from different RAls, we

it means the message has no destination. Otherwise the messa@@l to compare the QoS between them. Based on customer
will be sent to the(msg(][j]%(N+ 1)) service. The following requirements, we can generate various properties to conduct per-
is an example of the message matrix for the workflow shown f8rmance queries using the model checker UPPAAL-SMC. Since
Figure 3(a):msgb|[2] = {{-1, -1}, {8, 10}, {15,-1}, {23,-1}, our approach focuses on the QoS evaluation and SLA negotiation,
{29,-1},{30,-1} }. After the completion, thig, service will check customers would like to figure ottvhat is the probability that

its scountinformation and find the corresponding message entrigge workflow can be completed using a time of x with a cost of

msgf][] to notify its successors via broadcasting. y?". Since this is a safety property-based query about the QoS,
free our approach adopts the property in the formAcf > p to check
© whether the customer requirement describeg aan be fulfilled
;ch)“u”n‘;f:::gec—ocu"nj[”n‘i[g]‘dl’ eventually. In UPPAAL-SMC, we analyze the above requirement
- using the following property
rcount==0
@ ) —— Prl<=x(<> (cos{1] +...+cos{N]) <=y && S.done)
time=distr(nid), ’
rcount=0 %(N+1)==nid ch;?n,id]:o where &.doneindicates the completion of the whole workflow,

newmsg(e]?
rcount--

andcosf1] +...+ costN] represents the overall cost of the work-
flow execution. In UPPAAL-SMC, property works as a monitor to

O

receiving roount-0 check whether a run of a given time length satisfy the property
costnid]==0 Z':;[:n‘]dm]ifimﬁte[m " When the check finishes, the probability distribution of successful
costfnid]'==0 running simulations will be reported to enable quantitative analysis.

S newmsg[send]!
4.3 Resource Allocation Strategy Evaluation

scount>0 clk>=time

send=msg[nid]lscount-1], costnid]==0 Since cost, response time, and success ratio in customer require-
scount- ) scount==0 f'gh ments are often conflicting with each other, it is difficult to guaran-
S\Q'n/dmg tee the optimality for all these three aspects simultaneously, espe-
cost{nid]'==0 cially under the circumstance of service execution time variations.
Fig. 5. Front-end model template of a workflow service Given a specific requirement, SaaS providers and customers may

refer to use different resource allocation strategies, since they
? have different demands. For SaaS providers, if the price and
cess ratio are satisfied, lower cost spent on IT infrastructures
8ra VMs) will lead to larger margin profit. For customers, if
y care more about real-time services, under the same cost and
uccess ratio constraints, they will prefer shorter response time.
Due to the lack of existing approaches that can always find
a resource allocation instance with best performance with respect
1) Free state indicates the beginning of a service. It initial-to the cost and response time, it is practical for SaaS providers to
izes the dependence information of the service. Sincecbnduct the comparison among multiple resource allocation strate-
requires no time, we set it as a commit state. gies. Therefore, for a given set of resource allocation strategies, the

In our front-end model design, we utilize the end-to-en
communication to model the dependence between services. O
when the service collects all the messages sent by its predeces
the current service can start. When the current service comple
it will notify all its successors one by one. Assume that the ID g
current service isid. Figure 5 shows the template of our front-en
model. The model has five major states:
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purposes of resource allocation strategy evaluation is to filter tlie enable automated negotiation, our SaaS negotiation decision
inferior ones and select an instance with the best performance.making system adopts the following strategy. If the current RAI
To support SaaS providers’ decision making, our framewodannot satisfy the customer’s requirement, SaaS providers will
provides three kinds of resource allocation strategies by defaultidgrease the price by a specified percentage (e.g., 5%) or amount.
time-constrained cost minimization (TCCM), 2) cost-constrainddnder the new price constraint, our framework will try to figure
time minimization (CCTM), and 3xpn-round feasible instance out a new RAI, which tries to upgrade all the services with the
(XRFI). All these strategies produce RAIs using the expectéighest cost-benefit value (see the example in Section 5.3). The
execution time without considering variations. Here, TCCM refegrgrocess will be iterated until: i) a desired instance is achieved with
to the strategy that searches for a cost optimal RAI while tfeereasonable price that the customer can afford; or ii) the price
time constraint is satisfied. CCTM is a strategy that searches foexceeds the customer’'s expectation. It is important to note that
time optimal RAI while the cost constraint is not violated. Sinceur evaluation framework enables SLA negotiation based on the
TCCM and CCTM search for optimal solutions, they need tRAI comparison. Therefore, other SLA negotiation heuristics and
enumerate all the feasible RAIs. Though a give resource allocatiorotocols can be easily integrated into our framework to improve
problem may have multiple feasible instances, a typical exhaustie negotiation process.
search will terminate when finding the first feasible solution. To
investigate more feasible schedules, we adopt the xRFI approdch Optimization of Resource Allocation Instances

which returns theg, feasible RAI encountered in the exhaustivel-he objective of SLA negotiation presented in Section 4.4 is

search. It is important to note that, due to the IndelOenden[%equickly find an RAI that satisfies the customer requirement.

between RAI generation and evaluation, other resource allocatiﬁ)]nfact the selected RAI may not be the one with the highest

strategies can be easily integrated into our framework. Q0S. Therefore, after signing the SLA, there should be proper
Based on our proposed framework, we can conduct the %

. . ) . s timization processes to improve the QoS. It is important to
tomated analysis using different evaluation strategies as foIIovyl te that, resource allocation strategies are only promising in

1) Single Requirement Multiple Strategies (SRMS): For gyjickly finding one satisfying RAI, since they will be terminated
specified requirement, it evaluates different RAIS genejhen finding the first satisfying RAI. However, under the resource
ated by different strategies respectively. SRMS can Rgyiations, it is hard to guarantee that the first found RAI is optimal
used to select the best instance for the requirement. o approximate optimal. To find an optimal RAI under resource

2) Multiple Requirements Single Strategy (MRSS): It tunegariations, it is required to check all the feasible RAIs that satisfy
the parameters of customers’ requirements, and evaluaggs customer requirement.

the RAIls generated from different tuned requirements

using the same strategy. MRSS can be used to figure out [ Generate RAIs |
proper requirement parameter values for the RAI. l filtering by requirements
3) Multiple Requirements Multiple Strategies (MRMS): It l Feasible RAls l

characterization

tunes the parameters of the customer’s requirements, and
generates one RAI for each combination of the strategies
and requirements. MRMS can be used to compare the
performance of different resource allocation strategies.

[ Feature Vectors + RAls ]

Test Set

input

4.4 Service Level Agreement Negotiation training

When all the generated RAIs cannot satisfy the customers’ initial
requirements by using our approach, SaaS providers need to
negotiate with the customers to relax the requirement constraints
using proper negotiation protocols. Negotiation protocol refers to
a set of rules, steps or sequences during the negotiation process,
aiming at SLA establishment. Although there are many means <%>
of negotiation such as bilateral, one-to-many, and many-to-many,
our approach only considers the bilateral negotiation between ves
one customer and one SaaS provider. We do not consider the —————{ Optimized RAI | [ Failure |
com_petmons among mu_ItlpIe Saas pr_owders. Since QoS S%h. 6. The workflow of our supervised learning-based RAI optimization
as time and success ratio are two major concerns of customer%,
this paper only focuses on how to achieve a reasonable cost thatAlthough our framework can model the system behavior more
satisfies the customer requirement with the fixed response tigxurately than traditional methods, typically the simulation time
and success ratio constraints. of each RAI evaluation is long (e.g., several minutes). Therefore,
Let conf, = (C,p,0) be the current VM configuration of a evaluating all RAIs for a given Cloud workflow is infeasible
service, wher€ indicates the unit cosfi represents the expectedin practice. To reduce the overall evaluation time for all RAls
value ands denotes the standard deviation of the service executignd achieve an RAI with approximate optimal QoS, we adopt a
time. Let conf = (C',i,0’) be a better configuration of ansupervise learning-based approach that is illustrated in Figure 6.
available VM with with higher cost, i.eC’ > C. We define the Firstly, all feasible RAIs are filtered based on the customer
cost-benefifactor of a service that can be achieved due to thequirements. Secondly, the VM configuration information of each
upgrade of service configuration as follows: RAI will be analyzed and encoded into a feature vector. Next, all
(U—Y) xo the generated feature vectors coupled with corresponding RAIls
m will be divided into two categories: training set and test set. The

cost benefi{conf,cont) =
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feature vectors in the training set will be checked using UPPAAIone-by-one using SMC and terminates the iterations when finding
SMC to achieve its success ratio (i.e., an indicator of QoS). Undmme optimized RAI. Step 10 indicates that the optimization fails. In
the resource variations, it is hard to predict the optimal QoS ofir approach, feature selection, sampling and regression function
a resource allocation problem. In our framework, we introduageneration are the three most important steps, since they determine
the thresholdT, which is an optimal RAI indicator specified bythe accuracy of the prediction, which in turn determines the overall
SaasS providers. Instead of exhaustively finding an optimal RARAI optimization time. The following subsections will give the
our approach tries to find an approximate optimal RAI with muctietails of each of these steps.

less evaluation efforts. If the success ratio reported by UPPAAL-

SMC s larger tharT when checking an RAI in the training set,4.5.1 Feature Selection for RAIs

the whole optimization can be terminated and the RAI will b&o enable accurate prediction, it is required to figure out important
reported as an approximate optimal solution. After all the targiatures that are helpful in constructing learning machines for
QoS values of RAls in the training set are calculated using SM@e prediction purpose. According to the criteria of significance,
we can derive a regression function based on the feature vectodependence and diversity, our approach selects following three
and target QoS values of training RAIs. The regression functitnds of features of a resource allocation instaRé¢: i) the unit

can be used to predict the QoS of the RAIls in the test set. To redwost and execution time distribution of each servicdRil (i.e.,

the number of RAIs for the following reevaluation, we remove all (vi, RAI(v;)) andVAR(v,RAIl(v;))); ii) the overall cost ofRAI

the RAIs whose QoS is worse than the current unoptimized RAdithout considering variation; and iii) the expected execution time
Since the prediction time of the whole RAI test set is much shortef RAI This is because that they are the most relevant factors
than the time of other steps, it can be neglected in calculating tineour variation-aware evaluation. If there geservices in the
overall optimization time. As soon as the prediction is done, alforkflow, its feature vector will has 8k + 2 elements. As an

the feature vectors coupled with their RAIs will be ranked baseskample shown in Figure 3, assume tfRAh = {(V1,VM11),

on their predicted values in a descending order. Then, we ng®d,VMy2), (V3,VMs1), (Va,VMa1), (V5,VMs1)} needs to be

to validate the ranked RAIs using SMC iteratively starting froncharacterized. The following shows the feature vectoiRéd;,
top-ranked RAlIs. If one RAI is confirmed to have a success ratiehich will be used for the following regression and prediction.
Iargert.tharrTRZTingﬂl]JPPAAL-SL\/I?, the Iﬁ\)l will bet rgpgrted as]c <(6.0,5.0,0.6),(5.0,6.0,1.4),(45,100,0.8),

an optima . erwise, a failure will be reported if none o ) )

the ranked RAIs satisfies the given QoS threshold. (4.0,100,0.7),(50,7.0,15); 1800; 280)>

4.5.2 RAI Sampling

The goal of RAI sampling is to gather a set of feasible RAls
for regression function generation. To guarantee the unbiased

Algorithm 1: Our RAI optimization approach

Input: i) Feasible resource allocation instan€®Als;
ii) Regression metho&M;

iii) Optimal success ratio threshold prediction, such a set should be as representative as possible. If
Output: An optimized RAI with success ratio no worse thin  all the sampled training RAls are from some conceptually local
RAIOptimization(RAIs,RM, T) begin solution space, then the prediction may not be accurate. Therefore,
1: FVs=CharacterizationRAls) itis required that all the sampled RAIs should be evenly distributed
2 (Tr,Te)|=Sam plingEVs RAIs] in the whole solution space. Based on the above observation, our
f(')rt;-;gﬁu(ézlf}lz’v) pair in Tido approagh suppqrts two kinds of sampling heuristics to ach.ieve the
4 R= SMORAI); RAI training set:instance-level samplingndVVM-level sampling.
if SR> T then It is important to note that both of them are by no means the
L 5 Return RAI; best sampling methods rather they are promising approaches in
| 6: tr_result=tr_result(RAI FV,SR) obtaining representative RAI training sets in practice.
7: Predictor= Regressiortf_result RM); s s
8: ranked RAI = RankPredictor(Te)) Algorithm 2: Instance-level Sampling Approach
while ranked RAl.enpty() ==FALSEdo Input: i) Sortedn services in sorted lis$;
if SMC(ranked RAl.deque())> T then ii) VM configurationV M[n][] for all services;
[ 9: Return RAI; iii) Sampling frequencyf;
P Output: Sampled RAI SeSRAIs
ke L) ==TRUE then InstanceSampling(S, VM, n, i, f) begin
' for (k=0;k <VM][i][].size()—1;k++) do
end 1. RAI[i] = VMIi[K];
if i==n-1 then
Algorithm 1 describes the details of our RAI optimization if FeasibleRAl) then
approach. Step 1 encodes the RAIs into feature vedidtrs. Step 2. RAls= RAISURAL,
2 divides the RAls into the training s&tr and test seTe. Step 3 L it RAIs.size()%f==Cthen
initializes an empty set to store the evaluation results for RAIs in L 3 SRAIs=SRAIGJRAL
Tr. Steps 4-6 iteratively check the RAIsTT using SMC and save else
all the trained results itr_result If there exists one RAI whose | 4. InstanceSamplinVM,n,i+1,f);
success raticSRis larger than the give thresholf, it will be Return SRAIs;

reported as an optimized RAI as shown in step 5. Step 7 generatesend

the regression function with the specified regression approach and

trained results. Step 8 calculates the predicted success ratio forAlgorithm 2 shows the details of our instance-level sampling
each RAl inTe and ranks RAIs in a priority queusanked RAI  method which can uniformly sample the feasible RAIs that are
based on the predicted value. Step 9 reevaluates the predicted R#dided based on the generation order of RAIs. In this algorithm,
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RAI, RAIs, andSRAIsare all global data structures which in-Support Vector Regression

dicate the current VM configuration of services, all collectelg 5 yariant of Support Vector Machine (SVM), Support Vector
feasible RAIs so far, and sampled RAIs, respectively. The fumti@ﬂagression (SVR) [31] aims at finding a hyperplane in search
Feasible(RA] checks whetheiRAl is a feasible RAI. Step 1 gpace to predict the unknown data. In our approach, we conduct
allocates the service with thek, VM candidateV MIi][K. Step he prediction usinge-SVR approach from the SVM library
2 finds a new feasible schedule and stores it in theRgds. In | |IBgyM [37]. To guarantee the prediction accuracy, wesset1
step 3, if current feasible scheduRAl is the fi, feasible RAI by default. The input of the-SVR method is am x (m+ 1)
since the last sampling, tfiRAl will be incorporated IrBRAISAS & matrix, where each row indicates a feature vector together with its
new sample RAI. FinallySRAIswill contain all the sampled RAIs target value calculated by UPPAAL-SMC. FaiSVR, we adopt
for the training purpose. It is important to note that, although the Radial Basis Function (RBF) kernel to enable the non-linear
flow showr_l in Figure 6 separates the steps of RAI generation fﬁgression for the training set. When using RBF, proper hyper-
sampling, in fact, they can be combined together to save the ovefglameters such &(i.e., cost) and/ need to be tuned to achieve
optimization time. Unlike instance-level sampling, the steps gy expected prediction accuracy. To achieve optimal values for
RAI generation and VM-level sampling cannot be combined. ¢ gng y, a k-fold cross validation is required. Thefold cross
Although Algorithm 2 can evenly sample the RAIs from th gjigation splits the training data into k folds of equal size and the
feasible solutions, it cannot alway guarantee that the sampled RAI§\/R is executed k times. Each time a different fold is chosen to

are evenly scattered in the whole problem space. For examplgyye as the training set. Therefore, if k is large, the training time
during the RAI generation in a depth-first-search manner as Showngs-SVRapproach will be long.

in Algorithm 2, if some local part of the whole search space
contains a large set of feasible solutions, then such part will ha)(?tificial Neural Network

more sampled RAIs, which may bias the prediction results. To ) ] o
avoid such case, Algorithm 3 presents the details of our vNispired by biological neural network, Artificial Neural Networks

level sampling approach which can backtrack non-chronologicalNNs) [32] are widely used to estimate or approximate functions
by skipping proper number of VM candidates. In Algorithm 3g>r the purpose of regression. In our framework, we employ the
step 1 dispatches the VM resourgd[i][K] to theiy, service. If Back Propagation Neural Network (BPNN) to perform the QoS

all the services have been assigned with VMs &l satisfies Prediction of RAIs. The input of the BP neural network is an
customer requiremenRAI will be incorporated in the set of (M+1)x n matrix, where each column consists of the feature
sample RAIs (i.e.SRAIs). Since our framework searches for thyector together with its target value. The self-learning capability

feasible RAls in a depth-search-first manner, during the backtradikBPNN relies on both the forward transfer of information and
in the recursive search, steps 3 and 4 skipcandidate VM the reverse transfer of error between the expected outputs and

configurations for thé, service to avoid local recursive sampling2Ctual outputs. A typical BPNN structure consists of three layers:

input layer, hidden layer and output layer. In our approach, we use

Algorithm 3: VM-level Sampling Approach the training functionscaled conjugate gradient backpropogation
Input: i) Sortedn services in sorted lis$; to update weight and bias values. For the BP neural network, we
i) VM configurationV Mn]{] for all services; use thetan-sigmoidtransfer function in the hidden layer which
iif) VM-level sampling intervalm; generates outputs between -1 and 1. The number of neurons in the
Output: Sampled RAI SeSRAIs hidden layer plays an important role in determining the prediction

VM Sampling(S, VM, n, i, m) begin

for (k= 0;k < VMIil[l.size()- 1:k+ +) do accuracy. However, more neurons will cost more trair_lir_lg time.
1. RAI[i| =V M]i|[K]; Thereforg, proper tradeoff is required betwgen thg tralnln_g time
if i==n-1 then and prediction accuracy. Base on the experience in practice, our
if FeasibleRAl) then approach sets the number of neurons in the hidden layer to be
2. SRAIs= SRAI$JRAL; 50 by default. Since the QoS value indicates the success ratio
Return SRAIs; of the workflow execution, in the output layer, we use tbg-
else . . _ sigmoidtransfer function which generates outputs between 0 and
i'\l(/'\:/li’imrr‘])ﬂnlg@VM’n"+l’m)’ 1 indicating the QoS of RAls. During the training, the number
L ' ' of epoch iterations and the target Mean Squared Error (MSE)
Return SRAIs; error are two key factors that affect the training time as well

end as the regression accuracy. To guarantee the low training time

and regression accuracy, we set the number of iterations to 1000
4.5.3 Regression Approaches for RAI QoS Prediction epochs, and set the trainiggal of MSE to 0.001 by default.

Our approach adopts supervised learning approaches to conduct

the prediction-based RAI optimization. After sampling as dé45 Model Tree

scribed in Section 4.5.2, all the RAIs in the training set need M5 model tred33], [39] is a machine learning method that com-
be validated using UPPAAL-SMC tool to obtain their real Qo®ines both decision tree and linear regression algorithm together.
value considering variation information. The feature vectors @f has been successfully used as a predictor in many engineering
RAIs together with corresponding QoS values will be fed intéelds [34]. By using the divide-and-conquer methddb model
supervised learning approaches to produce an inferred functitree approach splits the parameter space into areas (subspaces)
which can be used to predict the QoS of RAIs in the test seind builds in each of them a linear regression model. Since model
Our framework supports three following most popular regressidrees are usually of small scale, they are very promising in tackling
methods for optimal RAI prediction. Assume that thereraRAls  tasks with high dimensionality. Similar to tleseSVR approach, the

in the training set, and each feature vector of RAIsindeatures. input of M5 model tree is an x (m+ 1) matrix, where each row
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denotes a feature vector together with its target value. Since féwis important to note that, to simplify the illustration of the
parameters are required to be tuned in the training ugibigylodel effectiveness of our approach, in the experiment of strategy eval-
Treetools (e.g., Weka [39]), the input matrix can be fed into thaation (Section 5.2) and SLA negotiation (Section 5.3), we only
M5 Model Treetools to derive the regression function directly. focus on the resource allocation of the first two VM configurations
(i.e., configuration land configuration 2) for the services in the
5 CASE STUDY stage 5 of the securities exchange workflow. We assume that the
] ] ] o _other 9 nodes in the workflow have fixed execution time without
This section presents the evaluation and optimization details Qfnsidering variations. Unlike RAI evaluation and negotiation, we

a Cloud-based securities exchange workflow for the Chinegge al the VM configurations into account in the experiment of
Shanghai A-Share Stock Market [35] using our framework. Basegh| optimization (Section 5.4).

on the interface (i.e., command line) provided by UPPAAL-SMC,
our framework can conduct the evaluation of NPTA models with.2 Strategy Evaluation

specified properties. In the gxperiment, we set the probabili.t'y U this experiment, we assumed that the customer whets/hole
certainty of UPPAAL-SMC (i.e.£) to 0.02, and set the probability \yorkflow to be completed within 115 time units and 13500 cost
of false negatives (i.eq) to 0.01. To enable the RAI training, our ynits, and the success ratio to be no lower ti8@%. We evaluated
framework incorporates three well-established regression toqigs securities exchange workflow using the self-contained default
i) &-SVR from the LIBSVM ([37], ii) built-in BPNN from the gyategies (i.e., TCCM, CCTM, and xRFI) implemented in our
MATLAB [38], and iii) M5 model treefrom WEKA [39]. We  framework. For the purpose of evaluation, we only generated one
implemented the remaining parts (i.e., RAI generation based Q| for each strategy. It is important to note that the time of NPTA
different strategies, NPTA model generation, property generatigiogel generation from an RAI is quite smak 0.01 second) and
and supervised learning-based RAI optimization)) of our framggn pe negligible, since it only needs to figure out the back-end
work shown in Figure 4 using the C programming languaggonfiguration. Generally, the RAI evaluation time is significantly
All the experiments were conducted on a Windows 7 deskiQgqer than the RAI generation time. In this experiment, due to the
computer with 2.8GHz Intel i7 CPU with 4 GB RAM. similar complexity of properties and generated NPTA models from
RAls, the evaluation time for each RAIl is similar (4 to 5 minutes
on average), which dominates the overall strategy evaluation time.

Stage 1 | 1.Entrust | | 2.Entrust |

\ /
Stage 2 [ 3.FitAnd Make Deal | Cumulative Probability Distribution
I TCCM —
0.9fccT™
Stage 3 4. Stock Exchange - 1RFI e
% 0.8[ 2RFI
— — S 0.7 |L3RFL-~
5. Share Variation 6. Share Variation 3
1] 0.6 *
S - ol
~] S s P
Stage 4 | 7. Transfer Data | = 04 F i
k) , s
203 P
£ o2 a3
| 8. Generate Transfer Details | 9. Generate A o o
Transfer Details 0.1

Stage 5

0
10, Check Balance 92 94 96 98 100 102 104 106 108 110 112 114
- i 11. Transfer Details Response Time
Fig. 8. CPD for R(13500,115, 80%)

12. Transfer Capital

As soon as receiving a customer request, our framework firstly
applies the SRMS approach on the generated RAIs to check
whether such requirement can be satisfied or not with our default
strategies. In this example, since wexeB for xRFI, we obtained

~ £
[ 13. Produce Clearing File |

Stage 6

| 14. Receive Data And Details |

Fig. 7. DAG of the Securities exchange workflow [29] 5 resource allocation instances using the strategies TCCM, CCTM,
o 1RFI, 2RFI, and 3RFI. Since xRFI does not need to explore all
5.1 Workflow Description feasible RAIs, strategy xRFK(0.01 second) costs much less time

Figure 7 illustrates the DAG of the securities exchange workhan both the strategy TCCM @7 second) and CCTM (R9

flow for the Chinese Shanghai A-Share Stock Market [29], [35$econd). Figure 8 presents the Cumulative Probability Distribu-
The workflow consists of 14 nodes which represent the majton (CPD) of the response time of successful simulation runs.
workflow activities. Since a securities exchange workflow is Baterestingly, we can find that TCCM and CCTM did not achieve
typical instance and computation intensive process, it is quitee best performance in this case, though their targets are to find
suitable to be deployed on a Cloud computing platform where thest-optimal and time-optimal solutions, respectively. Since the
computing resources are provisioned by Cloud service provideverkflow needs to be completed with a success ratio no lower
according to customer’s request and budget. As an examplethan 80%, the RAIls generated by TCCM, CCTM, 1RFI and 3RFI
the stage 5 of the securities exchange workflow, services 8-12 aed to be discarded. According to the evaluation report of our
provided with multiple VM configurations as shown in Table 2framework, the 2RFI instance has a confidence of 0.99 to obtain
For example, the service 8 has three optional VM configuratiores success ratio within [0.816, 0.856], which is higher than all the
For the first VM, its unit cost is 180, and its expected executiasther RAIs. Therefore, the instance 2RFI was selected finally.
time (i.e., mean time) and standard deviation are 10 and 1.05, To investigate the effect of different requirement parameters,
respectively. In the following subsections, we will conduct theve applied theMRMSapproach. Based on the example shown in
VM allocation evaluation and optimization based on the abowggure 8, we tuned the cost (increased by 300 cost units) and time
securities exchange workflow and corresponding configuratiori;icreased by 5 time units) respectively as shown in Figure 9 and
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TABLE 1
VM Configurations for the Securities Exchange Workflow
\ [ Config. 1 [ Config. 2 [ Config. 3 [ Config. 4 |
Node[UC. [ET.() | SD.(0) [UC. [ET.() | SD.(0) | UC.[ET. () | SD.(0) | UC.TET. (@ | S.D.(0)

1 100 15 1.05 80 16 1.10 50 18 1.12 40 20 1.50

2 60 8 1.10 45 10 1.20

3 40 10 1.05 30 12 1.10

4 100 7 1.05 80 8 1.10 70 9 1.12 60 10 1.50

5 60 12 1.05 40 15 1.10

6 100 8 1.05 70 9 1.10 60 12 1.20

7 100 8 1.05 70 9 1.10 60 12 1.20

8 180 10 1.05 150 12 1.10 120 14 1.20

9 100 8 1.05 80 9 1.10 70 10 1.20

10 60 8 1.05 40 10 1.20 50 9 1.10

11 120 12 1.05 90 15 1.20 100 14 1.10

12 100 14 1.10 120 12 1.05 90 15 1.20

13 100 8 1.05 80 10 1.10

14 120 10 1.10 100 11 1.20

Figure 10. From Figure 9, we can find that, due to the increag® can get an RAI which needs 12650 cost units and 117 time
of the overall cost, the workflow can get better VMs in theiunits based on the expected response time of each service in the
RAIls. Therefore, the instances CCTM, 1RFI and 2RFI can haworkflow. Since TCCM strategy focuses on the effects of response
better success ratio except the TCCM and 3RFI instances. Fare on the cost, in Figure 11, we created different requirements
the TCCM strategy, increasing the cost did not make any changiéh the same cost but different response time. For the CCTM
to the TCCM instance shown in Figure 8. This is because thsttategy, Figure 12 adopts different requirements with the same
the TCCM instances shown in Figure 8 and Figure 9 are thesponse time but different cost.

same, since TCCM tries to find the cheapest configurations for ' o

the workflow. However, when the user relaxes the time limit to v Probabily Distributon
120 as shown in Figure 10, we can observe the increase of success gz S Loz T 1
ratio for all the RAIs except the CCTM instance. Especially for | & 13001701 T 15178
the TCCM instance, we can find a significant improvement. This

is because that the TCCM instance suffers from the tight response
time constraints. It is important to note that, if we set the time
limit to 115 in Figure 10, we can find that the success ratio of all
RAlIs is almost the same as the success ratio of RAIs in Figure 8. . A

In Figure 10, if the customer cares more about the response time, 106 108 10 12 14 16 18 10 122 124 126

the 2RFI inst illb lected at last Response Time
In nce wi i
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From Figure 11, we can find that by using TCCM, when
09| CTRH e e relaxing the time constraint, the expected cost can be reduced

Response Time
Fig. 9. CPD for R(13800,115, 80%)

Cumulative Probability Distribution

0.8[ 2RFI

0.7 |L3REI = £ accordingly. Generally, the more the time constraint is relaxed,
056 the higher the probability of success will be achieved. However,
o compared to the constraif®(13500, 121, -), relaxing the time
03 constraint to 124 (i.e.R(13500, 124, -)) does not get a better
02 probability of success. This is because that the RAI generated
e under the constrainR(13500, 124, -may have higher overall
52 94 96 98 300 ;;251;:);2‘;1;;{: 12 114116 118 120 variations, which can affect the overall RAI success ratio. Fig-
ure 11 shows that under the constra®l3500, 127, -), with
the lowest cost, we can achieve the best probability of success.
MRSS approach can be used to investigate the performanEem Figure 12, we can observe that the increase of cost can lead
of a single strategy under different requirements. Figure 11 atalthe reduction of workflow response time. For example, under
Figure 12 show the application of MRSS for both the TCCM anthe constraintR(13700, 120, -), it only needs 105.5 time units
CCTM strategies, respectively. In Figure 11, the legend i@m to achieve a success ratio of 55%. However, when the constraint
13500(12650), T 118(11Means that the requirement provided bys R(12500, 120, -), achieving a success ratio of 55% needs at
the customer iR(13500, 118, -). But by using the TCCM strategyleast 120 time units. This is because that more high-end VMs are

Probability of Success

Fig. 10. CPD for R(13500,120, 80%)
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used in the newly derived instances when increasing the budgdtbargain, the customer and SaaS provider close the deal with
In can be found that under the constraR{L3700, 120, -), we can a price of 14450 cost units. Since the evaluation of each RAI
achieve the best RAI success ratio. Interestingly, from this figuosing UPPAAL-SMC needs around 4 minutes, the overall bargain
we can observe that when using CCTM strategy, the instang@scess last for around 16 minutes in total. In fact, all the four
(i.e., in yellow and black color) with higher cost may have worseunds can be evaluated simultaneously. In this way, the overall
success ratio than the cheaper RAI (i.e., in green color). Thiargain time can be reduced.
is because that in our experiment the generation of RAIs using
CCTM strategy does not take the variation into consideration. 5-4 Resource Allocation Optimization

o In the optimization experiment, we consider all the combination
5.3 SLA Negotiation of VM configurations listed in Table 2. We assume that the
Workflow response time and success ratio are two most importanstomer requirement i83500,115,75%), and the optimization
QoS issues in real-time Cloud applications. However, due to ttaFget is (13500115,95%). It is important to note that in our
budget limit, when a customer initially bargains with an Saafamework, the RAI generation step tries to explore all the feasible
provider, he/she may bid the lowest price first. Then the Saaghedules without considering the resource variation information.
provider will try to evaluate the RAIs generated under the specifiddie RAI generation costs 7.37 seconds. Compared with the
constraints and strategies. If there exist RAIs that meet the Qtalowing optimization steps, this time is negligible. Filtered by
requirement, the RAI with the best performance will be selectéble customer requirement, 79850 feasible RAIs were generated
as the solution. However, if all of the generated RAIs cannas the candidates of optimal RAIs. Based on our experimental
guarantee the QoS requirement, the SaaS provider will utilize oesults, the evaluation of an RAI in this set using UPPAAL-SMC
framework to conduct the negotiation with the customer. In thisill cost around 5 minutes on average. If we evaluate all the RAIs
experiment, we assumed that the SaaS provider increases the gwispientially, the optimization will cost around 277 days, which is
by 5% each time without modifying response time constraint. not acceptable by both customers and service providers. Therefore,
our framework resorts to the supervised learning approaches to

Resource AIIocationTﬁEt;Ecis in Different Round redur_:e the optimization eﬁorts-_
Round Requirement Allocation (Service— Config) Since there are 14 nodes in the workflow, for each RAI, we
No. Constraints 8 [ 9 | 10 1T [12 generated a feature vector containingx18+ 2 = 44 features
1 (12500, 120, 85%)| 2 2 2 2 1 indicating both the workflow execution and resource variation
2 (13125, 120, 85%)] 1 2 2 2 [1 information for each RAI. We conducted the experiment using
3 | (13780, 120, 85%) 1 2 1 1 12 the two proposed sampling methods individually. We use the
4 (14450, 120, 85%)| 1 1 1 1 |2

RAIS and VMS to indicate the RAIl-level sampling and VM-
Assume that a customer requires that securities exchangeel sampling separately. When using RAIS, we set the sampling
workflow should be finished in 120 time units and the succe§&quency to 300. When using VMS, we set the sampling interval
ratio cannot be smaller than 85%. Initially, the customer onkp 2. To ease the comparison between the two sampling methods,
offers a price of 12500 cost units. Due to the space limit, f#e two training sets have the same number of RAIs (i.e., 256). In
demonstrate how SaaS providers utilize our approach to barg@ther words, during the RAI sampling, if the size of the training
with the customer, we only use the CCTM strategy to genera@et equals to 256, the following sampling process will be skipped.
RAIls. It is important to note that our framework supports théfter the generation of RAI training sets, we calculated the target
negotiation using multiple strategies simultaneously, which maglue of each sampled RAI using the tool UPPAAL-SMC. The
achieve a better price with fewer bargain rounds. In this examptarget value calculation costs around 13 hours for each RAI train-
we conducted 4 rounds of bargains in total. Table 2 shows tif® sets generated by the two sampling methods. Unfortunately,
change of customer requirements as well as the corresponditjing the training process, we did not find any RAls that have
resource allocation upgrade information in each bargain round.a success ratio larger than 95%. We applied the three regression
' o approaches (i.es;SVR, BPNN and5 model tree) on the training
_umuarve Frobabiliy Distriburion sets separately. We utilized the parameter settings described in
G 13780, T 130 -e- Section 4.5.3. Based on the generated regression models, we
e ranked all the remaining 79850256 = 79594 feasible RAIs in
the test set. Since the prediction and the ranking just need around
1 second, their time can be negligible compared to the evaluation
time for a single RAI using SMC.
Table 3 shows the comparison of the RAI optimization with
different sampling and regression methods. The unit of time in this
o2 94 96 98 100 g;:;giil;fr;{: 112 114 116 118 120 table is the second. In this table, the first column presents the name
of sampling approaches. The second column gives the SMC-based
target value calculation time for the training sets generated by
Figure 13 shows the evaluation results for the 4 bargainthe two sampling approaches. The third column lists the adopted
From this figure, we can find that in the first round of theegression approaches. The fourth column denotes the time of
bargain the requiremeiiR(12500, 120, 85%fgils to be satisfied regression model generation. Sirc&VR employs the multiple-
since the success ratio reported by our evaluation frameworkfadd cross validation, it needs much more time than the other
smaller than 60%, which is not acceptable by the customer. Thegression approaches. For example, when using RAIS sampling,
in the second round, the SaaS provider raises the cost by 3&VR costs 4680 seconds, which is far more than the other two
However, the newly generated RAI fails again. In the fourth rounggression methods. The fifth column has two sub-columns which
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Fig. 13. A negotiation example using our framework
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Cumulative Probability Distribution

present the details of iterative RAI checking information after 0] WS sPN - el

the RAI ranking. The first sub-columN indicates the number g osp M o

of iterations, and the second sub-colunindenotes the total ég; 1RFI e /

time of all the iterations before finding an optimal RAI. For S os Y

instance,N = 8,T = 2371 means that thetl8 top ranked RAI ;5 0.4 __:'

is an optimal solution whose success ratio is better than 95%, and :é 2;‘ 4

the total evaluation time all the top ranked 8 RAls is 2371 seconds. 01 >

Although the predicted success ratios of all the previous 7 RAIs %32 54 96 98 100107 104 106 108 110 112 114

are no worse than the;8RAI, their evaluation results reported Response Time

by UPPAAL-SMC are all below 95%. For each combination ofig- 15. Comparison of the optimized and non-optimized RAIs

sampling and regression methods, the sixth and seventh columns ) )

present the regression-based predicted value and UPPAAL-SM@lio and response time) of the RAIs derived by the default RAI

based evaluated value of the found optimal RAI. generation strategies can be significantly improved by our opti-
mization approach. Someone may argue that the RAI optimization

TABLE 3 ) ! )
Comparison of Different Optimization Methods process is too tlme_-costly. However, d_ue_tp th_e benefit of the
: : fteration improved response time and success ratio, it is still worthy to make
SMC Time || Regression|| Tr. P.V. R.V. P : - : :
‘ H H H ‘ N T ‘ ‘ such optimization from the perspectives of service providers.
&SVR 4680 || 8 | 2371 0.953 | 0.951
RAIS 63070 BPNN 433 || 9 | 2792 || 0.951 | 0.950 6 CONCLUSIONS
M5P 1756 | 3 | 923 || 0.958 | 0.954 _ )
- SVR 2970 | 10 | 3190 [ 0.947 | 0.962 For SaaS providers, an effective cloud workflow resource alloca-
VMS 63955 BPNN 456 [[ 7 | 2041 [ 0.954 [ 0.959 | tjon strategy can not only reduce overall operating costs, but also
M5P 1643 || 2 | 577 || 0.961 | 0.951

reduce SLA violations. However, due to the inherent complexity
From Table 3, we can find tha#5P model treehas the best of accumulative variations caused by individual services in a
prediction accuracy, since it needs less validation iterations theiarkflow, so far there is no approach that can quantitatively reason
other regression methods after the RAI ranking. In other wordslte capability of resource allocation strategies. To address this
can quickly find an optimal RAI. Althougls-SVR spends more problem, this paper proposes a UPPAL-SMC-based framework
time than other approaches in the regression model generativat enables the accurate modeling and evaluation of resource
its prediction accuracy is not the best among three regressiipcation strategies under different kinds of variations. Besides
methods. Moreover, in Table 3, the optimization that adopts VM$e comparison among resource allocation strategies, our frame-
ande-SVR methods has the highest time cost (72115 seconds\rk enables the SLA negotiation as well as QoS optimization
20 hours). To compare with our approach, we also tried to firutomatically and efficiently. Comprehensive experimental results
an optimal RAI without using the supervised learning-based agemonstrate the effectiveness of our framework.
proach. We evaluated the RAIs one by one in the order of feasi
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