
GPU-Based Fluid Motion Estimation Using

Energy Constraint¤

Siyuan Xu†, Han Zhuang†, Xin Fu‡, Junlong Zhou†

and Mingsong Chen†,§

†Shanghai Key Lab of Trustworthy Computing,

East China Normal University, Shanghai 200062, China

‡Department of Electrical and Computer Engineering,

University of Houston, Houston, TX 77004, USA
§mschen@sei.ecnu.edu.cn

Received 1 March 2016

Accepted 21 July 2016
Published 15 September 2016

Although motion estimation (ME) approaches for °uid °ows have been widely studied in

computer vision domain, most existing ME algorithms cannot accurately deal with regions with

both slight and drastic brightness changes. To address this issue, this paper introduces a novel
data structure called brightness distribution matrix (BDM) which can be used to accurately

model regional brightness. Based on our proposed consistency constraints and energy function,

we can obtain motion vectors from image sequences with high accuracy. Since the BDM-based
ME approach requires a large number of computations when dealing with complex °uid sce-

narios, to reduce the overall ME time, a parallelized version of our approach is developed based

on graphics processing unit (GPU). Experimental results show that our GPU-based approach

not only can be used to improve the ME quality for complex °uid images, but also can reduce
the overall ME processing time (up to 7.06 times improvement).

Keywords: Fluid; motion estimation (ME); graphics processing unit (GPU); compute uni¯ed
device architecture (CUDA).

1. Introduction

Motion estimation (ME) of °uid °ows has been widely studied in many areas. For

example, in the ¯eld of pattern recognition, the motion ¯elds derived by ME tech-

niques can be used to support facial expression recognition.1,2 As a promising means,

ME methods play an important role in the domain of environmental science. They

not only can be employed to track ice °oes,3 but also can be utilized for the purpose of

weather prediction and ocean circulation analysis.4,5 Moreover, ME techniques have

*This paper was recommended by Regional Editor Tongquan Wei.
§Corresponding author.

Journal of Circuits, Systems, and Computers
Vol. 26, No. 2 (2017) 1750022 (20 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126617500220

1750022-1

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218126617500220

been considered as the key components in the domain of °uid mechanics,6 medical

images processing,7 and image recovery.8

When applying ME, the motion ¯elds are captured by cameras, and the images of

the perspective projection onto the image plane are saved for the analysis. However,

in this way, the images generally are not properly represented, since they only pro-

vide the brightness information of °uid °ows. It is common that brightness changes

irregularly in image series, which can easily result in inaccurate ME results. There-

fore, how to compute motion ¯elds and how to recognize the image patterns have

become major challenges in ME. Although in the past decade there are dozens of

approaches proposed to address the above issues, most of them focus on the accuracy

of motion ¯elds rather than time-e±ciency. Consequently, to achieve expected ME

accuracy, existing approaches require a huge number of computation e®orts to

process complex images, which strongly limits the ME application in practice.

As a promising approach, graphics processing unit (GPU) is good at dealing with

problems which can be expressed as data-level parallel computations. Therefore, it is

becoming the mainstream computation platform to manipulate computer graphics

and image processing.20 Figure 1 illustrates the di®erence between CPU and GPU

architectures. Unlike traditional multicore CPUs which are based on the multiple

instruction, multiple data (MIMD) design, the single instruction, multiple data

(SIMD)-based GPU has a highly parallel structure which enables more e±cient

computation than general-purpose CPUs when handling large blocks of data in

parallel. To facilitate the GPU programming, compute uni¯ed device architecture

(CUDA) provides a parallel computing platform and application programming in-

terface (API) model, which can utilize GPU resources e±ciently. CUDA o®ers a

uni¯ed hardware and software solution for parallel computing on CUDA-enabled

GPUs supporting the standard C programming language together with computing

numerical libraries. To accelerate ME processing, our approach adopts the CUDA-

based GPU as the parallel computing platform.

To enable accurate modeling and e±cient calculation of motion ¯elds for image

sequences with the presence of both slight and drastic brightness changes, this paper

Fig. 1. Comparison between CPU and GPU architectures.

S. Xu et al.

1750022-2

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

proposes a novel three-stage ME approach based on GPU. It makes three major

contributions as follows:

(i) We propose a novel data structure named brightness distribution matrix

(BDM), which can be used to accurately model the brightness of regions. During

the initialization of motion ¯elds, BDM can be used to e®ectively calculate

neighboring pixels based on our de¯ned BDM consistency constraint.

(ii) We introduce an e±cient energy functionwhich can be used to correct and optimize

inaccurate motion vectors identi¯ed during the denoise of initial motion ¯elds. By

using this function, we can obtain motion vectors in a more accurate way.

(iii) We parallelize our proposed ME algorithm based on GPU, which can reduce the

overall ME time.

Compared with existing ME approaches, our approach not only can enable the more

accurate estimation of steady °uid °ows with slight motion, but also can be used to

estimate regions with abrupt brightness changes.

The rest of this paper is organized as follows. After introducing the related work in

Sec. 2, Sec. 3 presents the major steps of our sequential ME algorithm including

initialization, denoising, and optimization. To accelerate the processing time, Sec. 4

introduces the GPU version of our proposed ME approach in details. Based on the

experimental results on a well-known benchmark, Sec. 5 shows the e±cacy of our

approach from the perspectives of accuracy and performance. Finally, Sec. 6 con-

cludes the paper.

2. Related Work

Since motion estimation plays an important role in multimedia applications, various

ME algorithms have been intensively investigated. For example, Horn and Schunck9

introduced the ¯rst method for ME of objects among image sequences. Based on the

brightness consistency-based constraints, their approach is widely used in the image

sequences of solid. In Ref. 10, Lucas and Kanade presented an ME approach based on

the pyramid model. The proposed approach not only can reduce the limitation of

location window, but also can improve the accuracy of estimation. Although this

approach is e®ective in dealing with drastic brightness changes, the accuracy of this

method decreases signi¯cantly when there are only slight brightness changes.

To e±ciently conduct ME of °uids with slight brightness changes, various con-

tinuity equation-based algorithms have been proposed.11–18 For example, Tistarelli11

and Uras et al.12 proposed the gradient consistency, which can be used as the con-

straints in optical °ow models. Their approach can enhance the ME robustness when

processing little brightness variations. In Ref. 13, Corpetti et al. applied continuity

equations to an optical °ow model. Their approach can improve the ME accuracy

when estimating °uids with slight brightness changes. In Ref. 14, Zhou et al. used the

a±ne motion model to estimate the velocity of cloud motion. By using their

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-3

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

approach, the accuracy of estimating satellite images with slightest changes is largely

increased. In Ref. 15, Nakajima et al.15 adopted both the Navier–Stokes equation and

a speci¯c continuity equation as velocity constraints. The experimental results

demonstrated the e®ectiveness of their approach when the °ow is stable. However, all

the above methods are based on continuity equation constraints, which cannot ac-

curately handle regions with drastic brightness changes.

To further improve the accuracy of °ow estimation, various approaches have been

studied based on the work of Ref. 9. For example, Sun et al.23 presented a novel ME

method which introduces a nonlocal term that robustly integrates °ow estimates

over large spatial neighborhoods. Their approach can largely improve the accuracy of

ME. In Ref. 24, Nilanjan proposed an e®ective °ow computation framework to es-

timate the °ow velocity vectors. A new data ¯delity term is introduced to enable

more accurate motion estimation. Although these approaches are promising in

obtaining accurate ME results, there still exist unsatisfying ME results for some

complex °uid scenarios. To the best of our knowledge, our approach is the ¯rst

attempt based on GPU that tries to improve the ME accuracy and performance of

°uid °ows involving both drastic and slight brightness changes.

3. Sequential Motion Estimation Based on BDM

This section presents the sequential version of our ME approach in detail. In order to

obtain motion ¯elds for image sequences, we develop an ME approach which consists

of three stages: (i) Based on BDM, the initialization stage calculates neighboring

pixels based on our de¯ned BDM consistency constraint. In this way, we can obtain

primitive motion ¯elds from images. (ii) The second stage (i.e., denoise stage) scans

the previous obtained motion ¯eld to identify potential inaccurate vectors. (iii)

Based on our proposed energy function, the third stage (optimization stage) corrects

and optimizes the inaccurate motion vectors identi¯ed during the denoise stage. The

following subsections will give the details of our three-stage ME method.

3.1. Initialization of motion ¯elds

The motion vector of a pixel is calculated using the coordinate displacement between

the pixel in the current frame and the corresponding pixel in the reference image.

Since adjacent frames are almost the same and coordinate changes are mainly caused

by the movements of objects or cameras, the brightness of one pixel should be similar

to the regional brightness of its surrounding pixels. Particle image velocimetry (PIV)

is widely adopted for °ow visualization and analysis. In PIV, the brightness of a local

region is described as

Rðx; y; tÞ ¼
Iðx� w; y� w; tÞ � � � Iðxþ w; y� w; tÞ

..

. . .
. ..

.

Iðx� w; yþ w; tÞ � � � Iðxþ w; yþ w; tÞ

0
BB@

1
CCA ; ð1Þ

S. Xu et al.

1750022-4

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

where w denotes the size of the sampling window and Iðx; y; tÞ denotes the brightness
of pixel pðx; yÞ at time t.

Generally, ME approaches assume that the regional brightness has a constant

value. Nonetheless, slight brightness changes exist very frequently in real images. If we

use formula (1) to present the regional brightness, the slight brightness may easily lead

to the generation of incorrect motion vectors. In our approach, we calculate one BDM

for each pixel in each frames. Assuming that the current pixel at time t is at location

pðx; yÞ, we de¯ne the BDM of this pixel using a one-dimensional vector in the form of

BDMðx; y; tÞ ¼ ðS 0ðx; y; tÞ; . . . ;S 25ðx; y; tÞÞ ; ð2Þ
where

SLðx; y; tÞ ¼
DL

r0 � � � DL
r3

..

. . .
. ..

.

DL
r12 � � � DL

r15

0
BB@

1
CCA

denotes the data structure that keeps the distance and brightness information of

speci¯c pixels. Here, L denotes the brightness level of pixels ranging from 0 to 25. Our

approach maps the traditional 256 brightness levels (i.e., 0–255) into 26 levels (i.e., 0–

25) by dividing them by 10. In this way, we can signi¯cantly reduce the chance of

BDM consistency violations as de¯ned in Eq. (7). This is because the larger granularity

of brightness sampling will lead to smaller brightness changes between adjacent cap-

tured images.

To calculate the value of DL
ri used in SLðx; y; tÞ, we de¯ne ri (i ¼ 0; . . . ; 15) which

denotes one subblock of the pixel's surrounding area using a 4� 4 matrix in the form of

ri ¼

pðxþ 4m� 8; yþ 4n� 8Þ � � � pðxþ 4m� 5; yþ 4n� 8Þ
..
. . .

. ..
.

pðxþ 4m� 8; yþ 4n� 5Þ � � � pðxþ 4m� 5; yþ 4n� 5Þ

0
BB@

1
CCA i ¼ 0; 1; 4; 5;

pðxþ 4m� 7; yþ 4n� 8Þ � � � pðxþ 4m� 7; yþ 4n� 8Þ
..
. . .

. ..
.

pðxþ 4m� 7; yþ 4n� 5Þ � � � pðxþ 4m� 7; yþ 4n� 5Þ

0
BB@

1
CCA i ¼ 2; 3; 6; 7;

pðxþ 4m� 8; yþ 4n� 7Þ � � � pðxþ 4m� 8; yþ 4n� 7Þ
..
. . .

. ..
.

pðxþ 4m� 8; yþ 4n� 4Þ � � � pðxþ 4m� 5; yþ 4n� 4Þ

0
BB@

1
CCA i ¼ 8; 9; 12; 13;

pðxþ 4m� 7; yþ 4n� 7Þ � � � pðxþ 4m� 7; yþ 4n� 7Þ
..
. . .

. ..
.

pðxþ 4m� 7; yþ 4n� 4Þ � � � pðxþ 4m� 5; yþ 4n� 4Þ

0
BB@

1
CCA i ¼ 10; 11; 14; 15;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-5

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

where m ¼ i%4 and n ¼ i=4. For the pixel pðx; yÞ at time t, we de¯ne a 17� 17

searching matrix (SM) to denote the pixel's surrounding area, which is in the form of

SM(x, y, t) =

r0 r1
... r2 r3

r4 r5
... r6 r7

· · · · · · p(x, y) · · · · · ·
r8 r9

... r10 r11

r12 r13
... r14 r15

. ð4Þ

Note that when processing SMs, we only consider the pixels located in

ri � ð0 � i � 15). All the other pixels in the same row or same column as pðx; yÞ are
neglected. We introduce the function checkðxi; yi;LÞ to check whether the brightness

level of pixel pðxi; yiÞ is L. The format of the function is as follows:

checkðxi; yi;LÞ ¼
1 the brightness level of pðxi; yiÞ is equal to L;

0 otherwise:

�
ð5Þ

Based on Eqs. (4) and (5), we can calculate the value of DL
ri in SLðx; y; tÞ:

DL
ri ¼

X
ðxi;yiÞ2ri

ðDisðP ðxi; yiÞ;P ðx; yÞÞ � checkðxi; yi;LÞÞ ; ð6Þ

where P ðx; yÞ denotes the coordinate of the pixel pðx; yÞ in the plane and the function

DisðP ðxi; yiÞ;P ðx; yÞÞ calculates the Euclidean distance between the pixels pðxi; yiÞ
and pðx; yÞ.

Since °uid motion in a region is continuous and the time interval between two

images is very small, the BDM of the pixel pðx; yÞ at time t and its peer pixel

pðx 0; y 0Þ at time tþ 1 in the reference image can be assumed to be equal. Based

on this observation, our approach adopts the consistency constraint to obtain

motion vectors by ¯nding the corresponding pixel in the reference image with the

same BDM as the point in the original image. The constraint is in the following

form:

BDMðx; y; tÞ ¼ BDMðx 0; y 0; tþ 1Þ ¼ BDMðxþ u; yþ v; tþ 1Þ ; ð7Þ
where BDMðx; y; tÞ denotes the BDM of pixel pðx; yÞ at time t, BDMðxþ u; yþ
v; tþ 1Þ denotes the BDM of pixel p 0ðx 0; y 0Þ at time tþ 1, and u and v denote

the horizontal and vertical displacements of the same pixel in two di®erent

images, respectively. Note that pixel p 0ðx 0; y 0Þ denotes the peer pixel in the refer-

ence image.

Since the consistency constraint can be easily violated in real images, a distance

function can be used to approximate the e®ects of consistency constraint. The

S. Xu et al.

1750022-6

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

distance function is in the following format:

Dðx; y;u; v; tÞ ¼
X25
L¼0

X15
i¼0

ðSL;iðx; y; tÞ � SL;iðxþ u; yþ v; tþ 1ÞÞ ; ð8Þ

where SL;iðx; y; tÞ ¼ Dri , �8 � u � 7 and �8 � v � 7. For all pixels pðx; yÞ at time t,

we use the above equation individually to calculate their distance. By identifying the

pixel p 0ðx 0; y 0Þ at time tþ 1 with minimal distance de¯ned in Eq. (8), we can obtain

the motion vector ðu; vÞ ¼ ðx 0 � x; y 0 � yÞ based on Eq. (7).

3.2. Denoising motion ¯elds

Due to the movement of cameras and light sources, the brightness changes of °uid

°ows are very common, which can inevitably result in inaccurate ME results. In

the denoise stage, our approach tries to ¯lter out inaccurate motion vectors from

the motion ¯eld obtained in the ¯rst stage. Note that pixels should have similar

motion directions within a small region of °uid °ows. Therefore, we assume that

the motion vector of a pixel is inaccurate if it is quite di®erent from the motion

vectors of other pixels in the same region. To improve the overall accuracy of

motion ¯elds, such kind of motion vectors should be identi¯ed for further

improvements.

Algorithm 1 presents the detail of our approach for identifying whether the mo-

tion vector of pðx; yÞ is a noise in a given motion ¯eld. This algorithm has three

inputs: x and y denoting the x-component and y-component of pixel pðx; yÞ to be

processed and mf indicating the motion ¯eld of a speci¯c image. Our approach

assumes that the motion vector of a pixel has the same direction as the motion

vectors of its neighboring pixels. For each target pixel pðx; yÞ, we designate a

denoising window whose height and width are both 60 as indicated by the loop

variables i and j in Algorithm 1, respectively. Note that both the inner and outer

iterations have a step length of 10, and mf(x; y).°ag has an initial value of false

indicating the motion vector of pðx; yÞ is not denoised. In this algorithm, step 1

initializes the variableDi (i ¼ 0; 1; 2; 3Þ, which denotes the number of motion vectors

located in the ith quadrant. We use the integers (i.e., 0, 1, 2, 3) to indicate the four

di®erent quadrants. Steps 2–5 count the numbers of motion vectors located in dif-

ferent quadrants. Step 6 ¯gures out the quadrant that has the most motion vectors.

We use the function Quad(mv) to obtain the quadrant index (i.e., 0, 1, 2, 3) of the

motion vector mv. Assuming that the kth quadrant has the most motion vectors,

step 7 checks whether Quad(mf(x; y)) equals to k, where mf(x; y) indicates the mo-

tion vector of pixel pðx; yÞ. If they are not equal, we will set the °ag of mf(x; y) to

true. The true °ag indicates that the achieved motion vector mfðx; yÞ is not accurate
and it needs to be corrected and optimized in the optimization stage as described in

Sec. 3.3.

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-7

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

3.3. Optimization with energy function

In order to get more accurate ME results while keeping motion consistency and

movement continuity, proper ME optimization methods23 should be adopted. For

example, the active contour model has been adopted in many ME variants. Con-

forming to active contour models, energy functions13,16,17,19 have been widely used in

optical °ows. Most of existing energy functions are in the following form:

Eðu; vÞ ¼ Edataðu; vÞ þ �Eregularizationðu; vÞ ; ð9Þ

where Edataðu; vÞ is derived from a given continuity equation and Eregularization is

generated from a speci¯c smoothness consistency constraint.9 The parameter �

balances the in°uences between two force terms in the function. Although the energy

functions in this form are promising for ME, they cannot estimate regions with

drastic brightness changes accurately in most cases. Since the pixels in the same

region have similar motion vectors, under the guidance of neighboring motion vec-

tors, the inaccurate motion vectors can be further improved. For the pixel pðx; yÞ at

Algorithm 1. Denoise Motion Fields
Input: (i) x, which is the x-component of pixel p(x, y) to be denoised.

(ii) y, which is the y-component of pixel p(x, y) to be denoised.
(iii) mf, which is the motion field of a specific image.

Output: A denoised motion vector for p(x, y)
1. MD0 = MD1 = MD2 = MD3 = 0;
for i from −60 to 60 step 10 do

for j from −60 to 60 step 10 do
if mf(x + i, y + j).u < 0 && mf(x + i, y + j).v > 0 then

2. MD0 + +;
end
if mf(x + i, y + j).u > 0 && mf(x + i, y + j).v > 0 then

3. MD1 + +;
end
if mf(x + i, y + j).u > 0 && mf(x + i, y + j).v < 0 then

4. MD2 + +;
end
if mf(x + i, y + j).u < 0 && mf(x + i, y + j).v < 0 then

5. MD3 + +;
end

end
end
6. find MDk (0 ≤ k ≤ 3) so that MDk ≥ MDi (i = 0, 1, 2, 3);
if Quad(mf(x,y)) ! = k then

7. mf(x, y).flag = true;
end

end

S. Xu et al.

1750022-8

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

time t, we impose a novel term called smoothness constraint:

Esmoothðx; y;u; v; tÞ ¼
Xxþn

i¼x�n

Xyþn

j¼y�n

ðu� uijÞ2 þ ðv� vijÞ2 ; ð10Þ

where uij and vij denote the x-component and y-component of the motion vector for

pixel pðxþ i; yþ jÞ at time t, respectively. In this equation, n denotes the searching

window size.

Since a pixel in the reference image has similar brightness level as the original

pixel, we impose image constraints based on Eq. (8), which is in the form of

Eimageðx; y;u; v; tÞ ¼ Dðx; y;u; v; tÞ : ð11Þ
By combining all the above constraints, we can obtain our energy function in the

form of

Eðx; y;u; v; tÞ ¼ Eimageðx; y;u; v; tÞ þ �Esmoothðx; y;u; v; tÞ : ð12Þ
Note that motion vectors on the boundary of one subblock may have di®erent

directions compared with other within the same subblock. � should be set to a

relatively small value in order to follow the motion trend in the subblock.

4. Parallelized Motion Estimation Using CUDA

Among all the three stages of our sequential approach as described in Sec. 3, there

exist lots of independent calculation tasks which can be fully parallelized. For ex-

ample, the motion vector calculations of pixels are independent which are quite time-

consuming. To accelerate our ME algorithm, we choose CUDA25 as our computing

platform based on GPU. When applying GPU to accelerate our ME approach, we

need to ¯gure out how to e±ciently allocate such subtasks to GPU cores to enable

su±cient data-level parallelism. Since the initialization of motion ¯elds and the

optimization stage cost most of the calculation time, we only parallelized these two

stages to achieve better ME performance. The following two subsections will give the

GPU implementation details of these two stages.

4.1. Initialization of motion ¯elds

In our sequential ME approach, we calculate the results of distance function between

an original pixel and all the candidate pixels within the searching window of the

reference image. The candidate pixel with the minimal result of distance function is

reckoned as the desired pixel. Since each calculation process of each pixel is inde-

pendent and the calculations share the same procedure, we can naturally parallelize

this process using GPU.

Since motion estimation based on BDM involves huge number of independent

distance function computations, we can resort to GPU platform to parallelize

such computations in the initialization stage. We organize pixels of an image using

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-9

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

a two-dimensionalmatrix and assign each pixel in the image with a thread block. After

the BDM calculation of pixels, a thread is allocated in the searching window of the

second reference image for the purpose of distance function calculation. In this way,

each thread conducts the calculations of distance function and the pixel with the

minimal distance is reckoned as the counterpart. During the initialization stage, a

CUDAkernel function is invoked to generatemotion ¯elds for each section. Limited by

the searching method itself, the boundary motion vectors of each section cannot be

decided until the optimization stage. Based on Eq. (8), we can calculate the BDM of

every pixel.

Note that we do not parallelize the BDM calculation using GPU, since there are

lots of branches in the BDM calculation. The BDM construction is used for distance-

based motion vector calculation as de¯ned in Eqs. (7) and (8). Algorithm 2 presents

the details of our parallelized method for distance-based motion vector calculation.

In this algorithm, there are three inputs: x and y denoting the x-component and

y-component of pixel pðx; yÞ to be processed and mf denoting the motion ¯eld of a

speci¯c image. Assume that the counterpart pixel of pðx; yÞ in the reference image is

located within the searching window. We can obtain the distance value for each pixel

in the searching window and select the pixel with minimal value as the counterpart

pixel. In this algorithm, step 1 launches the kernel function and loads the required

Algorithm 2. Distance-Based Motion Vector Calculation Using GPU
Input: (i) x, which is the x-component of pixel p(x, y) to be initialized.

(ii) y, which is the y-component of pixel p(x, y) to be initialized.
(iii) mf, which is the motion field of a specific image.

Output: An initialized motion vector for p(x, y).
Initial(x, y,mf)begin

1. Launch a kernel for the first image;
2. assign a thread block for pixel p(x, y);
for i from −8 to 7 do

for j from −8 to 7 do
/* Calculating distance using Eq. (8) */
Di,j = 0;
for L from 0 to 25 do

for k from 0 to 15 do
3. thread(i + 8, j + 8) compute
Di,j = Di,j + SL,k(x, y, t) − SL,k(x + i, y + j, t + 1);

end
end

end
end
4. Dm,n = MIN({Di,j | − 8 ≤ i, j ≤ 7});
5. mf(x, y).u = m;
6. mf(x, y).v = n;
return mf(x, y);

end

S. Xu et al.

1750022-10

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

BDMs for both the pixels pðx; yÞ and p 0ðx 0; y 0Þ into the GPU global memory. Step 2

assigns a thread block of 256 threads for computing BDMðx; yÞ. Note that the

searching window of ME in the initialization is di®erent from the SM introduced in

Eq. (3). The size of searching window is a two-dimensional 16� 16 neighborhood.

Step 3 computes the distances between the pixel pðx; yÞ and the pixels in the

searching window of the reference image. Step 4 identi¯es the pixel in the reference

image with minimal distance. Since the process of minimal value ¯nding involves lots

of control °ow branches which can easily cause branch divergence, our approach uses

CPU rather than GPU to ¯nd the pixel with minimal distance in the reference image.

Steps 5 and 6 set the motion vector for pðx; yÞ. Finally, the algorithm returns an

initialized motion vector for pixel pðx; yÞ.

Algorithm 3. Optimization for Denoised Motion Vector
Input: (i) x, which is the x-component of pixel p(x, y) to be optimized.

(ii) y, which is the y-component of pixel p(x, y) to be optimized.
(iii) mf, which is the motion field of a specific image.

Output: An optimized motion vector for p(x, y).
Optimize(x, y,mf)begin

if mf is denoised then
for i from −6 to 6 do

for j from −6 to 6 do
1. compute the image energy;
for a from −10 to 10 step 5 do

for b from −10 to 10 step 5 do
if mf(x + b, y + a) is not denoised then

/* Calculate smooth energy using Eq. (10) */
2. smooth energy =
smooth energy+smooth energy(x, y, i, j);

end
end

end
/* Calculate the total energy using Eq. (12) */
3. total energy = deviation + smooth energy;
if total energy < min energy then

4. mf(x, y).u = i;
5. mf(x, y).v = j;
6. min energy= total energy;

end
end

end
end
return mf(x, y);

end

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-11

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

4.2. Parallelized optimization based on energy constraint

In the optimization stage, we introduce an e±cient energy function which can be

used to correct and optimize inaccurate motion vectors identi¯ed during the

denoise stage. By using this function, we can obtain motion vectors in a more

accurate way. In an image, di®erent sections may have di®erent motion directions.

Note that it is di±cult to ¯nd the motion vectors on the boundary of sections since

the BDMs of some pixels in di®erent regions can a®ect the motion vector calcu-

lation on the boundary of current section. Unlike the section division in the ini-

tialization stage, in the optimization stage we divide the images in a di®erent way,

which can e®ectively improve the motion vector calculations on the boundary of

divided regions.

Algorithm 3 presents the details of our parallelized optimization method. Here, we

only optimize the pixels that have been denoised previously due to their potential

vulnerability. Step 1 calculates the image energy between the pixel pðx; yÞ and those

in the range of searching window using Eq. (11). Note that our approach adopts a

searching window with a size of 13� 13 here. Step 2 uses the smoothness constraint

de¯ned in Eq. (10) to calculate the smooth energy. Step 3 calculates the sum of

Algorithm 4. Our GPU-Based Motion Estimation Algorithm
Input: (i) img1, which is the original image.

(ii) img2, which is the reference image.
(iii) mf, which is the motion field of img1.

Output: The final motion field of img1.
ME(img1, img2, mf)begin

/* CPU-based BDM initialization */
for each p(x, y) ∈ img1 and each p (x , y) ∈ img2 do

1. Calculate BDM(x, y) and BDM(x , y);
end
/* GPU-based motion fields initialization */
for each p(x, y) ∈ img1 do

2. mf(x, y) = Initial(x, y, mf);
end
/* The CPU-based denoise stage */
for each p(x, y) ∈ img1 do

3. Denoise(x, y, mf)
end
/* The GPU-based optimization stage */
for each p(x, y) ∈ img1 do

if mf(x, y).flag == true then
4. mf(x, y) = Optimize(x, y, mf);

end
end
return mf;

end

S. Xu et al.

1750022-12

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

image energy obtained in step 1 and smooth energy in step 2, which equals to

total energy as de¯ned in Eq. (12). If total energy is less than the currently obtained

min energy, we will set the motion vector of pðx; yÞ using the current values of i and

j, and reset the min energy. Finally, the algorithm reports an optimized motion

vector for pixel pðx; yÞ.

4.3. GPU-based motion estimation algorithm

Algorithm 4 shows the procedure for our GPU-based ME algorithm. Note that the

BDMs for both original and reference images are de¯ned as global data structures.

Their elements can be accessed during the following ME stages. In this algorithm,

step 1 calculates the BDMs of each pixel for both the original image (i.e., img1) and

reference image (i.e., img2). Step 2 initializes the motion ¯eld using the distance-

based approach as described in Algorithm 2. Step 3 identi¯es inaccurate motion

vectors from the whole motion ¯eld. Step 4 optimizes the motion vectors that are

identi¯ed during the denoise stage. Finally, the ME algorithm reports an optimized

motion ¯eld for the given images.

5. Experimental Results

To evaluate the e±cacy of our proposed approach, we conduct experiments on

multiple series of real images. All the benchmarks are collected from a well-known

dynamic texture library named DynTex,22 which is a large database of high-quality

videos. We developed a CUDA-based ME tool which implements all the three pro-

posed stages based on Cþþ programming language. Our experiment was carried out

on a Windows machine with 3.30GHz Intel i5 CPU and NVIDIA GTX 645 GPU

(with 576 CUDA cores). To show that our approach outperforms existing methods in

terms of ME quality, Sec. 5.1 makes comparisons with two state-of-the-art meth-

ods.23,24 Section 5.2 discusses the performance issues in order to demonstrate the

performance of our GPU-based ME approach.

5.1. Accuracy analysis

To show the e±cacy of our ME approach, we conducted our ME algorithm on four

typical scenarios, namely motions of ocean wave (i.e., video \649dd10"), river stream

(i.e., video \649i720"), waving °ags (i.e., video \646a210"), and pumping fountain

(i.e., \6484d10"). The video \649dd10" presents a scenario of ocean wave movement.

This case involves a large number of drastic brightness changes due to the quick

movement of sea water. The video \649i720" shows the movement of river stream

which consists of slight brightness change. The video \646a210" presents the

movement of waving °ag which is irregular due to strong winds. The video

\6484d10" shows a scenario of pumping fountain. This case consists of lots of ir-

regular °uid movements. The reason why we chose these four cases is because the

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-13

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

sequences involve various irregular °uid movements and brightness changes, which

can re°ect the e±cacy of our approach within most °uid motion cases. In Fig. 2, the

images on the left side are original images and the images on the right side are

the ones obtained using our GPU-based approach. Since the di®erence between the

original image and reference image is small, we do not present the reference image in

Fig. 2. In the right images, red arrows denote the motion vectors obtained from the

initialization stage, whereas green arrows indicate the motion vectors generated in

the optimization stage. From Fig. 2, we can ¯nd that our GPU-based method can

achieve ME results with higher accuracy than the other two approaches23,24 under

di®erent kinds of °uid scenarios. For example, the result of \649dd10" demonstrates

that our GPU-based method is capable of estimating motion of regions with drastic

brightness changes. The result of \649i720" shows the e±cacy of our method when

estimating regions with slight brightness changes.

To further show the advantages of our approach, we compared our approach with

two other state-of-the-art ME approaches.23,24 Figure 3 shows the comparison

results. We can observe that the ME approaches23,24 cannot accurately detect the

varying brightness changes. From examples shown in Figs. 3(a)–3(c), the ME results

generated by Refs. 23 and 24 indicate that large parts of the images are motionless,

which do not re°ect the real °uid motions. However, our approach can accurately

capture such complex scenarios. It is less likely to be a®ected by large displacements

and drastic brightness variations. In Fig. 3(d), there is a rock at the left-bottom

corner of the image which causes irregular °uid motions in that area. Unlike the

reference methods (Refs. 23 and 24), our approach can accurately express such ir-

regular °uid motions.

5.2. Performance analysis

Although our approach is more accurate than existing approaches in dealing with

images involving both drastic and slight brightness changes, it is based on BDM

which requires much more computations. To improve the ME performance, we

propose GPU-based implementation of our ME method. To fully utilize the potential

of GPU to enable the data-level parallelism, our approach divides images into small

sections. Therefore, the performance of our tool mainly depends on the image divi-

sion strategy and the subtask parallelization strategy. This subsection investigates

the performance of our approach under di®erent strategies.

5.2.1. ME results using di®erent division strategies

When images are not divided, the calculation workload of BDMs could be enormous.

To enable parallel ME processing, our approach divides images into multiple sections

before transferring them into device memory during the initialization stage. One key

issue in our approach is the granularity of the divided sections. Since the size of the

search window in our approach is 16� 16, images should be divided into no more

S. Xu et al.

1750022-14

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

(a)

(b)

(c)

(d)

Fig. 2. Experimental results using ME approach. (a) The 33rd frame in video \649dd10", (b) The 0th
frame in video \649i720", (c) The 0th frame in video \646a210" and (d) The 0th frame in video \6484d10".

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-15

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

than 16 sections. This is because the size of each section is smaller than the search

window if we divide images into more than 16 sections, which can lead to a large

deviation of boundary motion vectors. During the optimization stage, images should

be divided into more than four sections, which can facilitate the computations of

energy function. Moreover, the number of sections should be in the form of a square

(a)

(b)

(c)

(d)

Fig. 3. ME results using di®erent approaches. The images of each sub¯gure from left to right denote the

original image, the ME results using Refs. 23 and 24, and our approach, respectively. (a) The 0th frame in

video \54ab110", (b) The 0th frame in video \649ib10", (c) The 0th frame in video \646a210" and (d) The
218th frame in video \6482910".

S. Xu et al.

1750022-16

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

number. In other words, we only have two division choices for our approach, i.e.,

9 and 16.

Table 1 presents the performance comparison results under di®erent division

strategies. Strategy D1 denotes the case of dividing images into nine sections, while

the strategy D2 denotes the case of dividing images into 16 sections. The ¯rst four

rows of the table show the execution time details using the strategy D1, and the last

four rows present the execution time details using the strategy D2. For each strategy,

we investigate both the execution time for each stage and the overall ME time. From

this table, we can ¯nd that strategy D2 outperforms strategy D1, since ME using

strategy D2 consumes less time. For example, strategy D2 only needs 47.33 s to get

the ME results of video \649dd10" while strategy D1 takes 51.09 s. This is because

both strategies do not calculate the boundary motion vectors during the initializa-

tion stage. Since strategy D2 divides images into more sections, the initialization

calculation workload can be largely reduced. Furthermore, the boundary motion

vectors that are not initialized can be obtained rapidly in the optimization stage.

Therefore, the strategy D2 is a better choice for our approach. Note that all the

experimental results are obtained based on strategy D2.

5.2.2. ME results using di®erent parallel strategies

Parallel strategies for GPU threads play an important role in GPU-based ME per-

formance optimization. Since the initialization stage involves a large number of

independent computations, proper parallel strategies should be applied to improve

ME performance. The following are two parallel strategy alternatives which assign

subtasks of di®erent granularities to GPU threads.

Strategy P1: For each pixel, we assign a thread. In other words, each thread

computes all the distances (using distance function) between the speci¯ed pixel and

all the pixels in the corresponding searching window.

Strategy P2: For each pixel, we assign a thread block with 256 threads. In order to

calculate the distance function, each thread is responsible for the computation of

distance function for one of the pixels within the searching window.

Table 1. Performance comparison results of two division strategies.

Video Video Video Video Video Video

649dd10 649i720 54ab110 649ib10 6482910 646a210

D1.init (s) 43.24 41.52 41.00 40.95 41.21 41.29

D1.den (s) 0.01 0.01 0.00 0.00 0.00 0.00
D1.opt (s) 7.84 7.78 7.82 7.63 7.59 7.43

D1.total (s) 51.09 49.31 48.82 48.58 49.80 48.72

D2.init (s) 38.89 37.31 37.52 37.74 39.1 38.95

D2.den (s) 0.00 0.01 0.01 0.01 0.00 0.00
D2.opt (s) 8.44 8.39 8.34 8.45 8.49 8.42

D2.total (s) 47.33 45.71 45.87 46.20 47.59 47.37

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-17

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Table 2 presents the experimental results using the two proposed di®erent parallel

strategies. From this table, we can ¯nd that the execution times of strategy P2 are

much smaller than those of strategy P1. This is mainly because solution P1 uses GPU

to accomplish the comparison tasks which consist of many branch instructions. In

this case, the GPU performance will be degraded due to branch divergence caused by

branch instruction.

5.2.3. Comparison of overall performances

To provide the objective performance of our GPU-based approach, Table 3 shows

the total execution times comparison among four ME algorithms. The ¯rst two rows

of the table show the execution times using two state-of-the-art methods proposed in

Refs. 23 and 24, respectively. The third row shows the execution times using the

sequential version of our ME approach which is based on CPU. Compared to the

works in Refs. 23 and 24, the total execution time of our sequential ME method is

quite long, though it can achieve ME results with better accuracy. To reduce the

overall ME time of our approach, the fourth row gives the ME execution time results

using the parallel version of our ME approach based on GPU. From this table, we

can ¯nd that our GPU-based approach can reduce the overall ME time. Compared to

its sequential counterpart, the GPU-based approach can achieve an improvement of

up to 7.06 times.

6. Conclusion

As a hot topic in computer vision, motion estimation for °uid °ows has been widely

investigated. However, so far there is a lack of approaches that can accurately

Table 3. Performance comparison results of four ME approaches.

Video Video Video Video Video Video

649dd10 649i720 54ab110 649ib10 6482910 646a210

Heuristic-based23 (s) 28.2 30.6 30.6 30.0 30.0 30.2
ABD-based24 (s) 33.91 33.93 34.11 34.68 34.85 34.93

CPU-based (s) 322.73 322.55 323.95 321.92 308.14 328.47

GPU-based (s) 47.31 45.70 45.86 46.19 47.59 47.37
Speedup 6.82 7.06 7.06 6.97 6.96 6.93

Table 2. Performance comparison results of two parallel strategies.

Video Video Video Video Video Video

649dd10 649i720 54ab110 649ib10 6482910 646a210

P1 (s) 66.36 65.74 67.83 66.71 68.74 67.39

P2 (s) 47.33 45.71 45.87 46.19 47.59 47.37

S. Xu et al.

1750022-18

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

estimate °uid image regions with both slight and drastic brightness changes. Fur-

thermore, due to the enormous computation workload in accurate motion estima-

tion, how to reduce the ME time while guaranteeing expected ME accuracy is

becoming a major bottleneck in ME research. To address the above issues, this paper

presented a three-stage GPU-based method for e±cient motion estimation of °uid

images. In our approach, the regional brightness of images is modeled using our

proposed brightness distribution matrix. By denoising initial motion ¯elds, our ap-

proach enables the early identi¯cation of inaccurate motion vectors. Based on our

proposed energy function, these inaccurate motion vectors can be tuned and opti-

mized to re°ect the real °uid motions. Since our approach requires more computation

e®orts than the existing ME methods, we developed a parallelized version of our

approach based on GPU to accelerate the above ME steps. Experimental results

show that our GPU-based approach not only can obtain better motion estimation

results for complex °uid scenarios than the existing ME methods, but also can be

executed e±ciently in terms of runtime.

Acknowledgments

This work was partially supported by Grants from the Natural Science Foundation

of China (Grant No. 91418203 and 61672230), Innovation Program of Shanghai

Municipal Education Commission (14ZZ047), NSF Grants (CCF-1351054 (CA-

REER)), Shanghai Municipal NSF (16ZR1409000), and East China Normal Uni-

versity Outstanding Doctoral Dissertation Cultivation Plan of Action under the

Grant PY2015047. A preliminary version21 of this paper appeared in the Proceedings

of Asia Simulation Conference 2012.

References

1. R. Lorentz and D. B. Benson, Deterministic and nondeterministic °owchart interpreta-
tions, Int. J. Comput. Syst. Sci. 27 (1983) 400–433.

2. Y. Yacoob and L. Davis, Recognizing human facial expressions from long image sequences
using optical °ow, IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996) 636–642.

3. S. D. Peddada and R. McDevitt, Least average residual algorithm (LARA) for tracking
the motion of Arctic sea ice, IEEE Trans. Geosci. Remote Sens. 34 (1996) 915–926.

4. A. Ottenbacher, M. Tomasini, K. Holmund and J. Schmetz, Low-Level cloud
motion winds from Meteosat high-resolution visible imagery, Weather Forecast. 12
(1997) 175–184.

5. I. Cohen and I. Herlin, Nonuniform multiresolution method for optical °ow and phase
portrait models: Environmental applications, Int. J. Comput. Vis. 33 (1999) 29–49.

6. Z. Lu, Q. Liao and J. Pei, A PIV approach based on nonlinear ¯ltering, J. Electron. Inf.
Technol. 32 (2010) 400–404.

7. X. Shu, K. Shen and Y. Long, Method of medical image registration based on optical °ow
¯eld, Comput. Eng. Appl. 44 (2006) 191–193.

GPU-Based Fluid Motion Estimation Using Energy Constraint

1750022-19

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

8. H. Nogawa, Y. Nakajima and Y. Sato, Acquisition of symbolic description from °ow
¯elds: A new approach based on a °uid model, IEEE Trans. Pattern Anal. Mach. Intell.
19 (1997) 58–63.

9. B. Horn and B. Schunck, Determining optical °ow, Artif. Intell. 17 (1981) 185–203.
10. B. D. Lucas and T. Kanade, An iterative image registration technique with an application

to stereo vision, Int. Joint Conf. Arti¯cial Intelligence (IJCAI) (1981), pp. 674–679.
11. M. Tistarelli, Multiple constraints for optical °ow, European Conf. Computer Vision

(ECCV) (1994), pp. 61–70.
12. S. Uras, F. Girosi, A. Verri and V. Torre, A computational approach to motion percep-

tion, Biol. Cybern. 60 (1988) 79–87.
13. T. Corpetti, É. M�emin and P. P�erez, Dense estimation of °uid °ows, IEEE Trans. Pattern

Anal. Mach. Intell. 24 (2002) 365–380.
14. L. Zhou, C. Kambhamettu and D. B. Goldof, Fluid structure and motion analysis from

multi-spectrum 2D cloud image sequence, Conf. Computer Vision and Pattern Recog-
nition (CVPR) (2000), pp. 2744–2751.

15. Y. Nakajima, H. Inomata, H. Nogawa, Y. Sato, S. Tamura, K. Okazaki and S. Torii,
Physics-based °ow estimation of °uids, Pattern Recognit. 36 (2003) 1203–1212.

16. E. Arnaud, É. M�emin, R. Sosa and G. Artana, A °uid motion estimator for Schlieren
image velocimetry, European Conf. Computer Vision (ECCV) (2006), pp. 198–210.

17. J. Yuan, C. Schn€orr and É. M�emin, Discrete orthogonal decomposition and variational
°uid °ow estimation, J. Math. Imaging Vis. 28 (2007) 67–80.

18. T. Kohlberger, É. M�emin and C. Schn€orr, Variational dense motion estimation using the
Helmholtz decomposition, Int. Conf. Scale Space Methods and Variational Methods in
Computer Vision (SSVM) (2003), pp. 432–448.

19. H. Sakaino, Fluid motion estimation method based on physical properties of waves, Int.
Conf. Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–8.

20. W. Chen and H. Han, 264/AVC motion estimation implementation on compute
uni¯ed device architecture (CUDA), Int. Conf. Multimedia and Expo (ICME) (2008),
pp. 697–700.

21. H. Zhuang and H. Quan, Fluid motion estimation based on energy constraint, Asia
Simulation Conf. (AsiaSim) (2012), pp. 308–318.

22. University of La Rochelle, DynTex dynamic texture library (2010), http://projects.cwi.
nl/dyntex/index.html.

23. D. Sun, R. Stefan and J. B. Michael, Secrets of optical °ow estimation and their
principles, Int. Conf. Computer Vision and Pattern Recognition (CVPR) (2010),
pp. 2432–2439.

24. R. Nilanjan, Computation of °uid and particle motion from a time-sequenced image
pair: A global outlier identi¯cation approach, IEEE Trans. Image Process. 20 (2011)
2925–2936.

25. NVIDIA, CUDA C programming guide (2015), https://docs.nvidia.com/cuda/cuda-c-
programming-guide.

S. Xu et al.

1750022-20

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L

 U
N

IV
E

R
SI

T
Y

 o
n

09
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

	GPU-Based Fluid Motion Estimation Using Energy Constraint∗
	1. Introduction
	2. Related Work
	3. Sequential Motion Estimation Based on BDM
	3.1. Initialization of motion fields
	3.2. Denoising motion fields
	3.3. Optimization with energy function

	4. Parallelized Motion Estimation Using CUDA
	4.1. Initialization of motion fields
	4.2. Parallelized optimization based on energy constraint
	4.3. GPU-based motion estimation algorithm

	5. Experimental Results
	5.1. Accuracy analysis
	5.2. Performance analysis
	5.2.1. ME results using different division strategies
	5.2.2. ME results using different parallel strategies
	5.2.3. Comparison of overall performances

	6. Conclusion
	Acknowledgments
	References

