
Mitigating the Impact of Hardware Variability
for GPGPUs Register File

Jingweijia Tan, Student Member, IEEE, Mingsong Chen, Yang Yi, and Xin Fu,Member, IEEE

Abstract—As technology keeps scaling down, hardware variability, such as process variations (PV) and negative bias temperature

instability (NBTI), emerges as a growing challenge in the modern GPGPUs (general-purpose computing on graphics processing units).

PV induces significant delay variations statically, while NBTI dynamically slows down the GPGPUs. Each computing core (i.e.,

streaming multiprocessor) in GPGPUs supports thousands of simultaneously active threads, and requires a large register file. Such a

sizable register file is very sensitive to the hardware variability, and becomes one of the major units in determining the core frequency. In

this study, we propose a set of techniques that mitigate both the PV and NBTI impacts on GPGPUs register file. In order to mitigate the

susceptibility to PV, we first develop a novel mechanism that classifies registers into fast and slow categories in the highly-banked

register architecture to maximize the frequency improvement. We then leverage the unique features in GPGPU applications to

effectively tolerate the extra access delay to the slow registers. Moreover, we propose to dynamically balance the utilization across

registers to further tolerate the NBTI degradation. Our experimental results show that our proposed techniques optimize GPGPUs

performance by 22 percent on average under both PV and NBTI effects.

Index Terms—Hardware variability, process variations (PV), negative bias temperature instability (NBTI), aging, GPGPUs, register file

Ç

1 INTRODUCTION

NOWADAYS, GPUs possess strong computing power by
executing thousands of threads in parallel, and have

been widely adopted for the general-purpose computing,
known as GPGPUs. As the process technology scales down
in recent years, hardware variability, including both process
variations (PV) and negative bias temperature instability
(NBTI), becomes severer and is a growing threat to modern
GPGPUs.

Process variation is the divergence of device parameters
from their nominal values, which is caused by the challeng-
ing manufacture process at very small feature technologies.
PV induces delay variations among critical paths and causes
timing errors. To ensure that processors run as expected, the
maximum clock frequency (FMAX) has to be limited by the
worst critical path delay, leading to substantial performance
loss. For example, the chip frequency degrades as much as
22 percent in 45 nm process technology due to PV [3]. And
the frequency degradation becomes more significant with
the continuous shrinking in feature size. The PV impact is
exacerbated in modern GPGPUs which contain tremendous
amount of parallel critical paths to deliver high computing
throughput. Thus, the possibility that one path fails to meet

the timing speculations increases substantially, which forces
a severe decrease on FMAX in GPGPUs compared to that in
CPUs [11], [12].

While PV causes delay variations statically, negative bias
temperature instability gradually slows down the processor
at run time. NBTI increases the threshold voltage in PMOS
transistor when logic “0” is applied to the gate, this is also
known as that the PMOS transistor is at the stress stage. The
longer the PMOS is under the stress, the higher the threshold
voltage becomes. As a result, the switching speed of the cir-
cuit decreases, leading to potential timing violations. The
processor has to run at a lower frequency, known as the
guardband, to absorb theNBTI impact. Previouswork shows
NBTI induces 25 percent performance degradation in 3 years
under 45 nm process technology [37]. In GPGPUs, the high
performance execution significantly stresses the critical paths
which could suffer even more serious NBTI degradations
[37], [38], [39].

The static variations due to the PV impact and the
dynamic variations due to the NBTI impact can be aggre-
gated, which substantially decrease the FMAX in GPGPUs.
This motivates us to explore techniques to efficiently miti-
gate the hardware variability in GPGPUs, therefore, ensur-
ing their high computational throughputs and performance.

GPGPUs support a great number of parallel threads and
implement a zero overhead context switch among threads
to hide the long latency operations. This requires an
extremely large register file (RF) to keep the states and con-
tents of all active threads. For instance, the register file size
is 2 MB in NVIDIA Fermi [16] and 6 MB in AMD Cayman
[17]. In recent GPUs product generations, the register file
size is continuously increasing to afford a greater number of
threads executing simultaneously in the streaming multi-
processor (SM) [16], [18]. Such a large register file includes
numerous parallel critical paths, and is quite sensitive to

� J. Tan and X. Fu are with the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX 77004.
E-mail: jtan12@uh.edu, xfu8@central.uh.edu.

� M. Chen is with the Software Engineering Institute at the East China Nor-
mal University, Shanghai, China. E-mail: mschen@sei.ecnu.edu.cn.

� Y. Yi is with the Department of Electrical Engineering and Computer Sci-
ence at the University of Kansas, Lawrence, KS 66045.
E-mail: yyi@ku.edu.

Manuscript received 22 Sept. 2015; revised 8 Feb. 2016; accepted 14 Feb. 2016.
Date of publication 18 Feb. 2016; date of current version 12 Oct. 2016.
Recommended for acceptance by Z. Lan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2531668

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016 3283

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:

process variations. Therefore, RF becomes one of the major
units that affect the frequency and performance [33]. Mean-
while, the extensive use of RF to hold the state of each
thread makes it greatly stressed and suffering heavy NBTI
degradations [39], which further degrades the performance.
As the first step to boost the GPUs performance under the
impact of hardware variability, we mainly focus on tolerat-
ing the PV and NBTI impacts on the variability hotspot, i.e.,
register file, in this study.

The unique, i.e., highly-banked, register architecture
design in GPGPUs provides a promising direction to effi-
ciently tolerate the hardware variability. However, generic
PV and NBTI mitigation techniques, such as adaptive body
biasing (ABB) [19] and gate sizing [20], fail to exploit this
unique feature and could cause considerable power and area
overhead when directly applied to GPGPUs register file. In
this paper, we propose to characterize and further leverage
this highly-banked architecture feature to effectively miti-
gate the susceptibility of GPGPUs register file to variations.
Note that we assume other PV- and NBTI-sensitive struc-
tures, such as streaming processors, are handled by conven-
tional variability tolerancemechanisms (e.g., ABB).

In order to mitigate the susceptibility to PV, we first
develop a novel mechanism that classifies registers into fast
and slow categories in the highly-banked register architec-
ture to maximize the frequency improvement. We then
leverage the unique features in GPGPU applications to
effectively tolerate the extra access delay to the slow regis-
ters. Moreover, we propose to dynamically balance the utili-
zation across registers to further tolerate the NBTI
degradation. The contributions of this work are as follows:

� We observe that PV exhibits much stronger system-
atic effects in the vertical direction than that in the
horizontal direction within each RF bank. We then
propose a coarse-grain register classification mecha-
nism by vertically dividing each RF bank into sub-
banks, and applying the variable-latency technique
at the sub-bank level (VL-SB). VL-SB is able to attain
the same frequency improvement as the fine-grain
classification at the register level.

� We further propose RF bank re-organization (RF-
BRO) to virtually combine sub-banks with the same
speed type (i.e., fast, and slow) at the chip test time.
Thus, the same-named registers in a RF bank entry
share the uniform access delay, and the newly
formed RF banks can be classified into fast and slow
categories.

� In order to mitigate the IPC (instructions per cycle)
loss caused by the slow RF banks access under VL-
SB+RF-BRO, we propose to grant warps that heavily
use fast RF banks a higher issue priority (in GPGPUs,
threads are executed in warps). It forces fast RF
banks to serve more threads and minimizes the use
of slow RF banks, and also appropriately enlarges
the progress difference among warps to effectively
hide stalls caused by the long-latency operations.

� We then propose to virtually buildmultiple hybrid RF
banks: each is composed of both fast and slow sub-
banks. And only their fast sub-bank portions are
enabled to hold registers for active threads in partially

active warps. Thus their unused slow sub-bank por-
tions have no impact on the RF access delay.

� We observe that NBTI causes different latency incre-
ment to different RF banks due to the uneven utiliza-
tion across all banks. We propose to dynamically
rename the RF banks required by each block at its
allocation time (in GPGPUs, threads are allocated to
SM at the granularity of blocks) to the virtual RF
banks explored in our RF-BRO technique. This
mechanism considers the uneven bank utilizations
in the NBTI tolerance and shrinks the required
guardband under the aggregated PV and NBTI
effects.

� Finally, to well capture the aggregated PV and NBTI
effects at run time, we further propose to re-organize
the virtual RF banks at the kernel level.

By combining all the explored techniques together, we
achieve 22 percent performance improvement compared to
the baseline case without any optimization under the
impact of hardware variability (i.e., PV and NBTI).

2 BACKGROUND

2.1 GPGPUs Architecture and Its Register File

The key component of a typical GPU is the in-order stream-
ing multiprocessor [1]. Fig. 1 illustrates the SM microarchi-
tecture [27]. In this paper, we study the NVIDIA CUDA
programming model. In CUDA, the GPU executes highly-
parallel kernel functions. The kernel is composed of a grid
of light-weighted threads; a grid is divided into a set of
blocks; each block is composed of hundreds of threads.
Threads are distributed to SMs at the granularity of blocks.

Threads in the SM execute on the SPMD model. A num-
ber of individual threads (i.e., 32 threads in Nvidia GPUs)
from the same block are grouped together, called warp. In
the pipeline, threads within a warp execute the same
instruction but with different data values. Each SM inter-
leaves multiple warps on a cycle-by-cycle basis. At every
cycle, an instruction warp that is ready for execution is
selected and issued by a scheduler, and all threads belong-
ing to that warp access the register file simultaneously. The
execution of a branch instruction in the warp may cause
warp divergence when some threads jump while others fall
through at the branch. Threads in a diverged warp have to
execute in serial fashion which causes multiple lanes to be
idle in the SPMD pipeline. The load/store instruction may
cause the off-chip memory access that can last hundreds of

Fig. 1. An overview of streaming multiprocessor microarchitecture (SP:
streaming processor; SFU: special functional units; LD/ST: load store
units).

3284 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

cycles, and a long latency memory transaction from one
thread would stall all threads within a warp.

In Nvidia PTX standard, an instruction can read up to 4
registers and write 1 register. Therefore, register file in the
SM is heavily-banked (e.g., 16 or 32 banks) instead of multi-
ported to provide high bandwidth, and multiple register
operands required by one instruction can be read from dif-
ferent banks concurrently [1], [23], [24], [25], [26], [28], [29].
Each RF bank is equipped with dual ports to support 1 read
and 1 write per cycle. Each entry in the bank is 128-byte
wide to hold 32 same-named registers [23], [24]. During the
register access, the RF bank ID is obtained based on the
warp ID and register ID, and the port attached to that RF
bank is activated to serve the access request.

Ideally, the register access for an instruction warp finishes
in one cycle [23]. This is not the case when multiple register
access requests map to the same bank and cause a bank con-
flict. In that case, requests have to be served sequentially,
which extends the register access time to multiple cycles and
hurts the performance. In order to reduce the possibility of
bank conflicts, registers in a warp are distributed across the
RF banks. Since multiple source operands for an instruction
warp may not be read at the same cycle due to the bank con-
flicts, operand collectors (shown in Fig. 1) are applied to
buffer the operands. One instruction warp will be allocated
one operand collector once issued by the scheduler. When all
required operands are ready in its assigned operand collec-
tor, the instruction warp proceeds into the execution stage
and releases its operand collector resources.

2.2 Process Variations

Process variations are a combination of random effects (e.g.,
due to random dopant fluctuations) and systematic effects
(e.g., due to lithographic lens aberrations) that occur during
transistor manufacturing. Random variations refer to ran-
dom fluctuations in parameters from die to die and device to
device. Systematic variations refer to layout-dependent var-
iations which cause nearby devices to share similar parame-
ters. Among the design parameters, effective channel length
(Leff) and threshold voltage (Vth) are two key parameters
subject to large variations [13]. The high Vth and Leff varia-
tions cause high variations in transistor switching speed.

2.3 Negative Bias Temperature Instability

Negative Bias Temperature Instability is caused by the gen-
eration of interface trap in the silicon/oxide interface of
PMOS transistors. When a negative voltage (Vgs ¼ �Vdd) is
applied to the gate of the PMOS transistor, the silicon-
hydrogen (Si-H) bonds at the silicon/oxide interface are
broken and generate the interface traps. The interface traps
capture electrons flowing from the source to the drain. As a
result, Vth increases and the transistor becomes slower. This
process is called stress. When the transistor’s delay exceeds
the timing specifications, the timing error occurs. The
increase in Vth can be modeled as [39]:

DVth�stress ¼
�
Kv

ffiffiffiffiffiffiffiffiffiffiffi
tstress

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DVth�t0

2n
p �2n

; (1)

where tstress is the PMOS stress time, Kv is determined by
the electrical field, temperature, and supply voltage, n is the

time exponent parameter which is 1/6 in this case, DVth�t0 is
the initial Vth variation due to process variations.

NBTI degradation can also be partially recovered by
removing the stress voltage, which helps to heal the inter-
face traps and partially recovers Vth. This process is called
recovery. The overall increase of Vth considering both stress
and recovery phases can be described as [40]:

DVth ¼ DVth�stress

1�
ffi

htrec
tstress þ trec

r !

; (2)

where trec is the recovery time and h is equal to 0.35.

3 MITIGATING THE PV IMPACT ON GPGPUS

REGISTER FILE

3.1 Modeling the PV Impact on GPGPUs
Register File

In this study, we leverage the SRAM timing error model in
VARIUS [13], and modify it to model the PV effects on
GPGPUs register file. We focus on the 32 nm process tech-
nology that is generally used in the state-of-the-art GPUs
[26]. We set the WID correlation distance coefficient f as 0.5,
and assume Vth’s s=m = 12%, Leff ’s s=m = 6% [9], [13], the
random and systematic components have equal variances
for both Vth and Leff [4], [9], [13]. Fig. 2 shows an example
of Vth variation map for GPGPUs register file. This figure
indicates Vth has large variation across the whole register
file. Note that we also perform the sensitivity analysis by
varying the ratio between the random and systematic com-
ponents when evaluating our proposed techniques in Sec-
tion 6.4. We generate 100 chips for statistical analysis, and
present the averaged result.

Note that each SM in GPGPUs exhibits different FMAX
under PV. We model SM-to-SM variations as the ratio of fre-
quencies of the fastest and the slowest SM in a GPGPUs
chip, and model the within-SM variations as the ratio of fre-
quencies of the fastest and slowest critical path. Based on
our experimental results, within-SM variations are 1.7
which is larger than SM-to-SM variations that are around
1.3. This is because each SM has numerous parallel critical
paths; while there are only tens of SMs. SM-to-SM variations
have been smoothed out as FMAX of each SM is determined
by the slowest critical path in it. Moreover, there have been
techniques letting each SM in GPGPUs run at their own
FMAX for PV mitigation [11]. We thus perform the variabil-
ity analysis within the SM. As mentioned in Section 1, regis-
ter file is one of the major structures that limit the SM
frequency, and we assume other PV-sensitive structures are
handled by conventional PV tolerance mechanisms. Thus,
the SM frequency is determined by the register file fre-
quency which is the reciprocal of the slowest register access
time. Fig. 3a demonstrates the register file frequency distri-
bution over 100 chips. There are 15 SMs in the Fermi archi-
tecture, and we use the averaged register file frequency
across SMs to represent the frequency for one chip. There-
fore, Fig. 3a mainly shows the impact of within-SM

Fig. 2. Vth variation map of GPGPUs register file.

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3285

variations on frequency. As it shows, the mean frequency
degradation is 40 percent compared to GPUs without PV.
This is because numerous critical paths in GPGPUs register
file lead to the large within-SM variation which significantly
decreases the frequency.

3.2 Frequency Optimization for GPGPUs Register
File under Process Variations

3.2.1 Variable-Latency Sub-Banks (VL-SB) in GPGPUs

Register File

1) Extending VL-RF to GPGPUs RF
There have been several PV tolerant techniques explored

to optimize the multi-ported register file in CPUs [21], [22]
For instance, Liang et al. [21] proposed n% variable-latency
RF (n% VL-RF) to partition all registers read ports into fast
and slow categories. The slowest (100-n)% ports are marked
as slow and accessed in two cycles. They are not considered
in determining the frequency so that the chip frequency
increases in the presence of PV. When a slow port is
assigned to read a register, port switching technique is trig-
gered to switch to a fast port attached to the same register
and avoid the extra cycle delay.

In our baseline RF design, each SM is equipped with
128KB RF that is composed of 32K 32-bit registers. To
reduce the impact of the extremely slow registers and boost
the frequency under PV, one can apply the n% VL-RF tech-
nique to divide those 32K registers in the SM into fast and
slow categories depending on their access delay. Based on
our sensitivity analysis, setting n% as 70 percent delivers
the optimal trade-off between frequency and the amount of
slow registers. We implement the 70 percent variable-
latency register file (70 percent VL-RF): the slowest 30 per-
cent registers are classified into the slow category and will
take two cycles to finish the read/write operation; fre-
quency is determined by the slowest register of the remain-
ing 70 percent registers in the fast category.

However, the variable-latency RF causes serious IPC loss.
Recall that one operand access in an instruction warp
involves the parallel accesses to 32 same-named registers
from all threads within the warp. As long as there is one
slow register among those 32 registers, the operand access
latency is two cycles. In our baseline RF design [23], [24],
although the 32 same-named registers are implemented
close to each other and included in a single entry of the RF
bank, the PV exhibits weak systematic effects for such a

1,024-bit wide entry. As a result, most 32 same-named regis-
ters contain at least one slow register, and the operand
access latency is generally extended. We observe 23 percent
IPC degradation under 70 percent VL-RF compared to the
baseline case without any optimization under PV. More-
over, the variable-latency technique requires an extra bit
per register to record the speed information as fast or slow,
leading to large power and area overhead.

An alternative design to avoid the large IPC degradation
is to consider each 32 same-named registers as a group,
called register vector, and apply the 70 percent variable-
latency technique at the register vector level, namely, 70 per-
cent VL-RV. Similar to VL-RF, VL-RV requires an extra bit
per register vector and causes considerable power and area
overhead. More importantly, there is large delay variability
among registers within a register vector but the slowest one
determines its access delay. In other words, the variations at
register level are significantly smoothed out at the register
vector level. Thus, dividing register vectors into fast and
slow categories has limited effect on frequency optimization.

2) Variable-Latency Sub-Banks in RF
In our baseline RF design [23], [24], each RF bank holds

64 1,024-bit wide entries. Therefore, PV exhibits much stron-
ger systematic effects in the vertical direction than that in
the horizontal direction within each RF bank. In this study,
we focus on this wide-entry RF architecture containing 16
banks, and the explored techniques perfectly fit to other RF
architecture which is discussed in Section 3.2.4.

We propose n% variable-latency sub-banks in GPGPUs
register file (named as VL-SB) that vertically divides each
RF bank into several sub-banks, and registers within each
sub-bank share the same access speed that is constrained by
the slowest one. Sub-banks exhibit distinct access delay,
and the slowest (100-n)% ones are marked as slow. There is
small delay variability among registers contained in a sub-
bank due to the systematic effects, therefore, the large varia-
tions at register level is well maintained at the sub-bank
level in VL-SB, which maximizes the frequency improve-
ment under the VL technique.

Note that both read and write delay is considered in VL-
SB. We observe that sub-banks with long (short) read delay
are highly likely to exhibit long (short) write delay under
the impact of systematic variations. This makes the sub-
banks classification quite straightforward, and leads to only
two categories that are fast read + fast write (i.e., fast sub-
bank) and slow read + slow write (i.e., slow sub-bank). We
choose to divide each RF bank into two sub-banks because
further aggressively performing the finer-grained partition
(i.e., four sub-banks or more) does not lead to an obvious
frequency increase based on our sensitivity analysis. As can
be seen, only 32 bits are required to keep the speed informa-
tion for the 32 sub-banks in VL-SB, which causes negligible
area overhead.

Since PV also causes delay variability among SMs in the
same GPGPUs chip, one can change the value of n% during
the sub-banks partition in different SMs to ensure the uni-
form frequency across SMs. In that case, each SM has dis-
tinct number of fast sub-banks which may affect the IPC. It
is encouraged to employ the per-SM clocking as discussed
in [11], we thus keep the uniform partition criterion (i.e., 70
percent) for each SM, and our techniques are orthogonal to

Fig. 3. Register file frequency distribution of 100 chips for (a) baseline,
(b) 70 percent VL-RV, and (c) 70 percent VL-SB under process varia-
tions. The frequency of each chip is normalized to the chip without PV.

3286 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

the previously explored inter-SM level PV mitigation mech-
anisms [11].

Figs. 3b, 3c justify the effectiveness of 70 percent VL reg-
ister vectors and 70 percent VL sub-banks by showing the
RF frequency distribution when the two techniques are
enabled, respectively. Every 32 nearby register vectors in
VL-RV are grouped into an array to keep the same area
overhead as VL-SB for a fair comparison. This makes 32
arrays in total, and the slowest one in the fastest 70 percent
arrays decides the frequency. As Fig. 3b demonstrates, the
mean frequency in 70 percent VL-RV increases by 10 per-
cent compared to the baseline case presented in Fig. 3a,
while 70 percent VL-SB in Fig. 3c is able to boost the mean
frequency by 15 percent.

Note that the structural redundancy technique [12],
which adds redundant structures to the processor as spares,
is not applicable to eliminate the slowest x% critical paths in
GPGPUs RF for frequency boosting. If just applying redun-
dancy to replace the slowest x% register vectors which may
distribute across all the RF banks, the register mapping
becomes extremely complicated and impractical. If apply-
ing redundancy to replace the slowest x% RF banks, it will
cause considerable area overhead. Moreover, selective
word-line voltage boosting [2], which was applied to reduce
the cache line access latency under PV effect, is not applica-
ble to GPGPUs RF. Since RF is accessed more frequently
than caches, selective word-line voltage boosting will cause
considerable energy overhead to GPGPUs RF.

3.2.2 Register File Bank Re-Organization (RF-BRO)

The VL-SB technique faces the same challenge as VL-RF
since it distributes registers belonging to the same register
entry (i.e., register vector) into two sub-banks, which may
be classified into different categories. We further propose
RF bank re-organization (RF-BRO) on top of VL-SB that vir-
tually combines two sub-banks from the same category to
form a new RF bank. RF-BRO ensures the uniform access
latency during the parallel accesses to 32 same-named regis-
ters. An operand access from an instruction warp is able to
finish in one cycle as long as it is mapped to the newly
formed RF bank that is composed of two fast sub-banks.

Fig. 4 shows an example of applying 70 percent VL-SB
with RF-BRO on GPGPUs RF. When VL-SB is applied
(step i in Fig. 4), the 16 RF banks are vertically divided
into 32 sub-banks, and 22 of them are fast based on the
70 percent partition criterion (only five RF banks are
shown in Fig. 4 for the illustration purpose). However,
10 RF banks still need two cycles to finish the read/write
operation because they all contain slow sub-banks. With
the help of RF-BRO (step ii in Fig. 4), sub-banks with the

same type are virtually grouped to re-build the RF
banks. For example, the new RF bank 0 is composed of
sub-bank 0 and 5, and its access delay decreases to one
cycle as it gets rid of the slow sub-bank 1. As a result,
there are only five RF banks exhibiting two-cycle access
delay. In other words, the percentage of slow RF banks
reduces from 62.5 to 31.25 percent under RF-BRO.

3.2.3 The Implementation of VL-SB and RF-BRO

We divide the word-line in each RF bank into two segments
to obtain the sub-banks. This is a widely used method in
SRAM-based structures to reduce the delay [30] or save
dynamic power when only a single word is accessed in a
large cache [31]. Each word-line segment in the sub-bank is
equipped with a local decoder in our VL-SB.

The implementation of VL-SB is similar to that of the VL-
RF technique [21]: the speed information for each RF sub-
bank will be collected by using BSIT [32] at chip test time.
This information is used to mark each sub-bank as fast or
slow, and also set an appropriate SM frequency. Note that
the bank re-organization does not physically move any sub-
bank during the chip fabrication. It virtually re-builds the RF
banks by introducing a 16-entry bank organization table:
each entry in the table records the IDs of two sub-banks that
are assigned to the newly formed RF bank. In order to
implement the bank re-organization technique, the IDs and
the type (fast or slow) of every two same-type sub-banks
are configured into a ROM at the chip test time. They will
be loaded from the ROM and written into the SRAM-based
bank organization table once GPUs are powered on.

Fig. 5 depicts the implementation of the two proposed
techniques. During an operand access to the 32 same-
named registers, the RF bank ID obtained from the warp
and register IDs is used to index the bank organization
table, and retrieve IDs and the speed type of correspond-
ing sub-banks. The same entry in those two sub-banks
will be activated simultaneously for operand access. For
example, when RF bank 2 is accessed, sub-bank 1 and 4
are enabled as shown in Fig. 5. Meanwhile, the speed
type obtained from the table will be ANDed with a busy
signal, and a slow type leads to a distribution of the sig-
nal to all sub-banks. Only sub-banks that are activated to
fulfill this operand access will receive the busy signal
and save it into the attached latch. This is used to pre-
vent the pre-charge at next cycle to ensure the register
read lasting for two cycles and finishing correctly. In
GPGPUs RF, an arbitrator is applied to select a group of
non-conflicting accesses and send to the RF banks at
every cycle [23], [24], [26]. Therefore, the busy signal is
also sent to the RF arbitrator to stall the following regis-
ter read/write to the same RF bank.

Fig. 4. An example of applying 70 percent VL-SB (step i) and RF-BRO
(step ii)(sb:sub-bank).

Fig. 5. Hardware implementation of variable-latency sub-banks and reg-
ister file bank re-organization (RF-BFO).

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3287

3.2.4 Feasibility in Alternative Register File Architecture

Alternative register file architectures are used in contempo-
rary GPGPUs. One example is to group four SIMD lanes in
an SM into a cluster, and eight clusters form a complete 32-
wide SM [28], [29]. In this case, each cluster contains four
register banks, and each entry in a bank is only 16-byte
wide that contains the register values for four threads in a
warp (i.e., four same-named registers). Thus 32 same-
named registers are distributed into eight banks (one bank
per cluster), and the same entries from eight RF banks are
accessed simultaneously for one operand access. As can be
seen, the systematic effects for those 32 same-named regis-
ters are weak since they are evenly distributed to different
clusters. Neither VL-RF nor VL-RV techniques could deliver
good frequency improvement. We can consider this nar-
row-width style RF architecture as vertically dividing the
1,024-bit wide register vectors (i.e., 32 same-named regis-
ters) into eight sub-banks. Thus the proposed RF-BRO tech-
nique can be directly applied for the performance
optimization under PV: we will not sub-divide each register
bank, instead we adopt the VL technique to those 16-byte
wide banks, and virtually re-organize eight banks with the
same speed to form the 32 same-named registers. In sum-
mary, our VL-SB RF design and the RF-BRO mechanism
built upon it are applicable to other GPGPUs RF design.

3.3 Migigating the IPC Degradation under VL-SB
and RF-BRO

Although the VL-SB+RF-BRO technique largely optimizes the
GPGPUs RF frequency under PV impacts, there are still about
30 percent slow banks among the virtually re-organized RF
banks, leading to around 9 percent IPC degradation based on
our experimental results shown in Section 6.1.We further pro-
pose to harness the unique characteristics inGPGPUs applica-
tions to minimize the IPC loss. Note that the slow (fast) RF
banks mentioned in this subsection are RF banks that are vir-
tually composed of two slow (fast) sub-banks under RF-BRO.

3.3.1 Register Mapping under VL-SB and RF-BRO

The SM in Fermi style architecture is armed with two warp
schedulers. Warps with odd and even IDs are dispatched
into those two schedulers, respectively. At every cycle, two
instruction warps are issued based on the round-robin
scheduling policy, and they are likely to have identical PC
since all threads in a kernel execute the same code. Mapping
the same-ID registers from different warps into the same
bank seriously exacerbates the bank conflicts, because dif-
ferent entries within a bank may be requested by the two
simultaneously issued instruction warps. Therefore, the reg-
ister-to-bank mapping mechanism follows the Eq. (3)

ðwarp IDþ register IDÞ%ðthe number of banksÞ (3)

to ensure that different banks hold the same-ID registers
across the warps. As Eq. (3) shows, consecutive warps tend
to map their same-ID registers into nearby RF banks. For
instance, R1 from warp0 and warp1 are mapped to bank 1
and bank 2, respectively. Generally, consecutive warps
exhibit strong data locality [8], their same-ID registers
should be allocated to RF banks with same speed type to

ensure they execute at similar progress. We propose to save
IDs of same-type sub-banks into consecutive entries in the
ROM at the chip test time, therefore, bank0-bank10 are fast
while bank11-bank15 are slow in the bank organization
table under VL-SB and RF-BRO techniques. More specifi-
cally, the virtual banks are sorted from the fastest to the
slowest in the bank organization table. By using Eq. (3),
there are a number of registers per warp mapping to the
slow RF banks. And the slow bank keeps registers with dif-
ferent IDs at the warp level. Fig. 6 demonstrates an example
of register mapping: R11-R15 from warp0 while R0-R4 from
warp11 are assigned to the slow RF bank11-bank15.

3.3.2 Fast-Bank Aware Register Mapping

It has been observed that around 50 percent of registers are
not even allocated by the compiler for the application execu-
tion [25]. This unique feature can be leveraged to minimize
the use of slow RF banks by mapping registers to fast banks
to the maximum degree during the kernel launch time. For
the benchmarks that have high RF utilization, slow banks
are used to ensure high level TLP. We find that a small set
of registers have much higher access frequency than other
registers allocated to the same warp, and they are usually
the registers with small ID. For instance, each warp in
benchmark BN (detailed experiment methodologies are in
Section 5) is assigned 14 register vectors, and R0-R2 are
used 250 percent more frequently than R3-R13. This is
because the compiler tends to re-use the small-ID registers.
We explore a novel fast-bank aware register mapping mech-
anism (named as FBA-RM) that consists of two steps: (1)
obtaining the register resource requirements at the kernel
launch time, and mapping registers only to fast banks if
they are large enough to hold all registers needed by the
parallel threads (i.e., reducing the number of RF banks to 11
in Eq. (3) during the mapping); (2) allocating the large-ID
registers to slow RF banks when they have to be used, there-
fore, the slow banks are rarely accessed. In that case, Eq. (3)
is used for small-ID registers to fast banks mapping and
large-ID registers to slow banks mapping, respectively.

The major disadvantage of the FBA-RM technique is the
increased bank conflicts as most RF accesses are limited to
fast banks, and it fails to effectively mitigate the IPC degra-
dation. In Section 6.1, we perform the detailed evaluation
about FBA-RM by comparing it with other proposed techni-
ques in the following sections.

3.3.3 Fast-Warp Aware Scheduling (FWAS) Policy

Considering that modifying the register mapping mecha-
nism to minimize the use of slow banks has little impact on

Fig. 6. The idea of FWAS. R0-R2 are frequently accessed small-ID regis-
ters. Warp 10-14 in block N are slow warps.

3288 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

performance optimization, we thus adopt the default map-
ping mechanism in Fermi and propose a set of methods to
hide the extra access delay on slow banks.

As Fig. 6 shows, the frequently accessed small-ID regis-
ters in a number of warps (e.g., warp 11) are mapped to
slow RF banks, which seriously delay their execution prog-
ress. And we define this kind of warp as slow warp. We fur-
ther define warps whose frequent register accesses in fast
banks as fast warps (e.g., warp 0). The execution progress
for fast warps is delayed somehow when the default warp
scheduling policy (i.e., round-robin) is applied. This is
because round-robin policy gives each warp the same issue
priority, and when the slow warps occupy the pipeline
resources (e.g., the issue and write slot), the ready fast
warps cannot leverage those resources for execution. As a
result, there is a small progress difference between fast and
slow warps within the same SM. We propose the fast-warp
aware scheduling policy (named as FWAS) that assigns fast
warps higher issue priority than slow warps to maximize
the progress difference between them. This explores the
unique opportunities to mitigate the IPC loss as follows:

(1) The fast warps have shorter execution time, thus the
RF resources allocated to these warps are able to
serve more warps during execution. This is effective
for kernels including a large number of blocks that
cannot be fully distributed to SMs at one time;

(2) The fast warps are able to start their off-chip memory
accesses earlier, which alleviates the memory conten-
tion under the round-robin policy and reduce the
pipeline stall time. This is effective for memory-
intensive benchmarks.

Fig. 6 explains the first opportunity in detail. Generally,
there are multiple blocks executing concurrently in an SM.
Fig. 6 shows an example SM with two blocks: block M and
block N, each block contains eight warps. The frequently
accessed registers (i.e., R0-R2) of all warps in block M (i.e.,
warp 0-7) are mapped to fast banks, so all warps belonging
to block M are fast warps. On the contrary, in block N, most
of their frequently accessed registers in warp 10-14 are
mapped to slow banks, thus these warps are considered as
slow warps. During program execution, FWAS prioritizes
fast warps and allows them to finish earlier. As a result,
warp 10-14 will left behind and become the bottleneck for
block N. When all warps in block M finish execution, the
new coming block within the same kernel will be assigned
to take the resources (e.g., warp slots, registers) just released
by block M. It also contains more fast warps (i.e., use those
fast banks) because its warps will be assigned the same
warp IDs as those warps in block M. On the other hand,
block N will not release its resource until all its slow warps
finish execution. As a result, the number of blocks that con-
tain a larger amount of fast warps increases (in other words,
fast banks are able to serve more warps) during the entire
kernel execution, leading to the IPC improvement.

In order to implement the FWAS policy, the fast warps
have to be identified at the issue stage. However, there is no
clear boundary between fast and slowwarps, because the fre-
quently accessed registers in a fewwarps are allocated to both
fast and slow banks under the default mapping mechanism,
e.g., the heavily used R0-R2 in warp9-warp10 in Fig. 6.

Although slowwarps also access fast banks, it is highly possi-
ble that an instruction with fast bank access belongs to a fast
warp. Instead of performing the accurate fast and slow warp
identification, we choose to simply give the instruction warp
that requires fast bank accesses higher issue priority. At the
decode stage, an instruction warp is marked as fast if it has
fast RF read/write. Note that onlywhen all its operands reads
are mapped to fast RF banks, an instruction warp is consid-
ered as possessing fast RF read. The one-bit fast/slow infor-
mation combined with the ready bit is sent to the selection
logic during the issue stage to perform the FWAS policy.

3.3.4 Hybrid RF Bank for Partially Active Warps

1) Observations on Partially Active Warps
In some GPGPUs benchmarks (e.g., NN), the block size is

even smaller than the warp width of 32 threads, and warps
do not contain enough active threads through the entire exe-
cution. Moreover, in benchmarks with heavy branch diver-
gence, warps usually include several inactive threads. Both
the two cases result in partially active warps, which will not
use all the 32 registers contained in a register vector. We fur-
ther find that a few register vectors usually have the fixed
registers utilized in a branch induced divergent warp. This
is because a divergent branch that is depending on the pro-
grammatic values (e.g., block ID, thread ID) always causes
the fixed threads in a warp active, and such programmatic-
value dependent branches occur quite frequently in
GPGPUs applications [34]. The partially utilized register
vector does not need to map to the pure fast RF bank that is
composed of fast sub-banks only. As long as its utilized
registers are allocated to fast sub-banks, the register access
operation latency can be constrained into one cycle.

2) The Idea of Hybrid RF Bank
In this study, we propose to build multiple hybrid RF

banks and harness the above unique characteristics in
GPGPUs benchmarks to further improve the performance.
Different from the RF-BRO technique that always combines
same-type sub-banks to organize a RF bank, each hybrid RF
bank consists of one fast and one slow sub-bank. It is particu-
larly used to hold register vectors with fixed registers active
in partially activewarps. Since only the fast sub-bank portion
is required to conduct the read/write operations, the hybrid
RF banks can be treated as fast banks, which increase the
total number of fast banks without sacrificing the RF fre-
quency and meanwhile, mitigating the IPC loss. The new
GPGPUs register architecture contains three types of RF
banks: pure fast, pure slow, and hybrid categories.

Note that aggressively increasing the hybrid RF size
reduces the pure fast RF size since the overall amount of sub-
banks remains the same. This may force some fully occupied
register vectors that are supposed to be mapped to pure fast
RF banks being re-directed to the hybrid banks and using
their slow-bank portion, thus, leading to the performance
degradation. Ideally, the size of hybrid RF should match the
total number of partially used register vectors. However,
that number varies significantly across benchmarks.

The programmatic-value dependent branches can be
detected at the compilation time using taint analysis [34].
We adopt this method to mark the special register vectors
that prefer hybrid RF. The register namespace is partitioned
into two sets of architectural register names representing

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3289

the pure fast/slow and hybrid RF, respectively. The amount
of those two types of registers per thread will be sent to the
GPU during the kernel launch time, and meanwhile, the RF
banks are re-configured to match the resource requirements
on hybrid RF banks. To avoid the excessive hybrid RF
resources, the number of hybrid RF banks is equal to the
integer part of a product of the RF banks quantity (i.e., 16)
and the ratio of requested hybrid RF size to the overall
requested RF size. For benchmarks that have insufficient
threads to fill up a warp (this can be identified at the kernel
launch time), all slow sub-banks will be combined with the
fast ones when warps contain no more than 16 active
threads, therefore, all RF banks become fast.

3) The Implementation of Hybrid RF Bank
To implement the dynamic hybrid RF re-organization

under RF-BRO, we switch a certain number of sub-banks
from pure slow RF banks with those from pure fast RF
banks in the bank organization table during the kernel
launch time. For example, sub-bank 3 and 4 are exchanged
in Fig. 7 compared to that in Fig. 4, and build two hybrid RF
banks. Two bits are used in each table entry to record every
sub-bank’s speed information. In a branch induced diver-
gent warp, its register access time on the hybrid RF bank is
fast only when all its active threads use the first half regis-
ters in a register vector. We compact the active threads of
programmatic-value dependent branches into the left-most
portion during kernel launch time, so that they are mapped
to the fast sub-bank portion of the hybrid RF bank.

During the register access, Eq. (3) is applied separately for
pure RF and hybrid RF mapping. In the case that there are
insufficient hybrid RF banks, some hybrid RF IDs are re-
directed to pure RF banks, vice versa. A “read overflow” sig-
nal is enabled if the instruction’s source pure RF ID ismapped
to a hybrid RFbank at the register read stage. It is also asserted
when the active threads in divergent warps fail to compact
into the left-most portion. This means that the slow portion of
the hybrid RF bank has to be enabled. During a RF bank read,
the “read overflow” signal is ANDed with the output of an
OR operation on the speed information bits for that bank,
determining if a “busy” signal should be generated (shown in
Fig. 7). Moreover, the overflow signal is always asserted
when pure slow RF banks are accessed to ensure they have
enough time to finish the access operation. Similarly, a “write
overflow” signal is used for thewrite operation.

3.3.5 Putting All PV Mitigation Techniques Together

The idea of building hybrid RF banks to hold special register
vectors is orthogonal to the warp scheduling policy, we thus
propose to combine the two techniques in Sections 3.3.3 and
3.3.4 together based on VL-SB and RF-BRO, and maximize
both IPC and frequency optimization. Since hybrid RF bank

access just takes one cycle in majority of the time, instruction
warps contain hybrid RF access is simply treated as fast
warpwhen integratedwith the FWAS technique.

The combined PV mitigation technique induces a 16-
entry bank organization table, latches, and some simple
logic gates to control busy and overflow signals. Based on
our HSPICE simulation, these hardware extensions increase
the access latency by 0.00019 ns and area by 0.000691 mm2

under 32 nm technology, which are negligible compared
with the sizable RF.

4 MITIGATING THE NBTI IMPACT ON GPGPUS

REGISTER FILE

As introduced in Section 1, PV is a static impact on GPGPUs
register file access latency, while NBTI will gradually wear
out the transistors at runtime and cause a dynamic impact
on the access latency. It is critical to consider the aggregated
impact of PV and NBTI. In this section, we characterize and
mitigate the NBTI impact on GPGPUs register file based on
our PV mitigation techniques explored in Section 3.

4.1 The Impact of NBTI on GPGPUs Register File
under PV

We first model the NBTI degradation in Vth by calculating
the DVth as described in Eq. (2). We obtain the PMOS stress
cycles (tstress) and recovery cycles (trec) via the microachitec-
ture simulator (details about the simulator can be found in
Section 5), and insert them into Eqs. (1) and (2) to determine
the increase in Vth due to NBTI. According to the alpha
power law [37], transistor switching delay increases as Vth

increases. Thus we can model the NBTI impact as the
increase in the access delay.

Fig. 8 shows the aggregated effect of PV and NBTI on the
access latency of register file banks when running bench-
marks HS and LAVAMD, respectively, for several years
(e.g., 7 years). To well characterize the NBTI effect, the two
benchmarks’ execution are simulated on the same chip with
the same PV impact. Note that the bank ID in this figure is
the virtual ID under our PV mitigation techniques proposed
in Section 3, and banks are sorted based on their access
speed under PV only in descending order. The access
latency of each bank is normalized to the slowest bank in
the fast bank category under PV impact only (i.e., bank 10 in
Fig. 8), which also determines the chip frequency. The yel-
low line in the figure emphasizes this normalized latency,

Fig. 7. The implementation of virtually building hybrid RF banks based
on RF-BRO technique.

Fig. 8. Normalized access latency of each virtual register file bank under
PV and NBTI for (a) HS and (b) LAVAMD. The yellow line indicates the
normalized latency under PV impact only, called boundary.

3290 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

and we refer it as the boundary. Banks whose latency is
smaller than the boundary are classified as fast banks, and
those whose latency is larger are classified as slow banks.

As we expected, NBTI exacerbates the access latency of
each bank in Fig. 8. After 7 years, the latency of some banks
(e.g., banks 0, 1, 2, and 3) in both benchmarks is still far below
the boundary. However, the access latency of some fast banks
exceeds the boundary, such as the banks 7, 8, 9 and 10 in HS,
and banks 7 and 10 in LAVAMD. They downgrade to the
slow category if the same boundary applies. To ensure suffi-
cient fast banks, a guardband (i.e., frequency degradation) is
induced, which is determined by the slowest bank in the fast-
est 10 banks under the aggregated PV andNBTI effects.

Fig. 8 also shows the uneven utilizations across all the
register file banks, which implies that NBTI causes different
increase of the access latency to each bank. For example,
bank 7 is utilized heavilier than bank 8 and bank 9 in LAV-
AMD. Thus after 7 years, bank 7 becomes much slower than
bank 8 and bank 9 even though it was faster at the initial
stage before aging. This motivates us to heavily utilize the
banks far away from the boundary while reducing the stress
on banks that are close to the boundary. Therefore, the
guardband, i.e., the frequency degradation, can be well
shrinked to boost the overall performance.

The uneven utilization across the banks is caused by a
combined effect of several factors, such as the number of
concurrent blocks, the block size, the number of frequently
accessed registers and our proposed PV mitigation techni-
ques. Figs. 6 and 9 show two different cases. In Fig. 6, two
blocks execute concurrently in each streaming multiproces-
sor, and each block contains eight warps. Every warp has
three frequently accessed registers (R0-R2). In contrast,
there are five concurrent blocks in Fig. 9, and each block has
only four warps. The first five registers (R0-R4) in each
warp are frequently accessed.

For the case in Fig. 6, banks 2-7 are more heavily utilized
than other banks. The reason is twofold. (1) All warps in
block M are fast warps as discussed in Section 3.3.3, register
resources allocated to block M (i.e., the first eight entries of
each bank in Fig. 6) will be quickly released and re-assigned
to the new coming block under the impact of our proposed
FWAS technique. In other words, the first eight entries of
each bank are serving more blocks and used more heavily
than other entries. (2) Furthermore, when focusing on those
first 8 entires of all banks, banks 2-7 serve more frequently
accessed registers than other banks. E.g., bank 2 serves R2

for warp 0, R1 for warp 1 and R0 for warp 2, those three
registers are all frequently accessed while bank 0 only
serves one frequently accessed register, R0 for warp 0.

However, when the benchmark characteristics (e.g.,
number of concurrent blocks, the block size, and the fre-
quently accessed registers) change, the case is totally differ-
ent. For example, banks 3 and 4 instead of banks 2-7 are
most heavily utilized in Fig. 9. In this case, entries that
marked by the red dotted line in the figure will serve more
blocks under our FWAS technique, and banks 3 and 4 serve
more frequently accessed registers.

This observation indicates that we can design a mecha-
nism that considers the bank utilization differences to com-
bat the NBTI effect and shrink the required guardband.

4.2 Mitigating the NBTI Effect on GPGPUs Register
File under PV

4.2.1 The Block-Level RF Bank Renaming

In this section, we introduce a novel mechanism that
dynamically renames the RF banks required by each block
to mitigate the NBTI impact. This mechanism takes bench-
mark characteristics (e.g., number of concurrent blocks,
block size, and amount of frequently accessed registers) into
consideration, and balances the utilization across the regis-
ter banks based on their access latency under PV and NBTI
effects. Since the register file allocation and deallocation are
performed at the block level, we propose to rename the reg-
ister banks when the block is launched to the GPGPUs SM,
which provides a fine-grained and low-cost solution.

As we observed in Section 3.3.2, registers with small IDs
are always frequently accessed, it is safe to assume that
registers with smaller IDs are accessed more heavily than
those with larger IDs. A simple way to combat the aggre-
gated NBTI and PV effects is to map registers with smaller
IDs to the faster virtual banks. In other words, R0s from all
warps in a block will be mapped to the virtual bank 0 in our
bank organization table, R1s will be mapped to the virtual
bank 1, and so on so forth. This will require two-stage map-
ping: register-to-bank mapping so that the same-named
registers are mapped to the same bank; and the bank-to-
virtual-bank mapping so that the bank will be further
directed to certain virtual bank with appropriate access
delay. However, simply renaming all same-named registers
(e.g., R0s and R1s) within a block to the same bank causes
serious bank conflicts, as we discussed in Section 3.3.1. Our
bank renaming technique will adopt the default register-to-
bank mapping mechanism (as shown in Eq. (3)), and focus
on renaming the bank IDs obtained from Eq. (3) to the
appropriate virtual bank.

Considering that our bank renaming technique requires
the per bank access latency, a NBTI sensor is attached to
each RF sub-bank. The speed of a virtual bank is determined
by its slowest sub-bank. Based on the collected information,
the RF virtual banks are sorted from the fastest to the slow-
est. When a block is launching, we first check the R0 from
its last warp. By using the Eq. (3), we are able to find out
the corresponding bank, saying bank a, for this R0. Bank a

will then be renamed to the fastest virtual bank from the
bank category (either fast or slow bank category) it belongs
to. Similarly, the bank, saying bank b, that holds R1 from

Fig. 9. The unbalanced utilization across RF banks. R0-R4 are frequently
accessed registers. Bank 3 and 4 aremost utilized in this example.

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3291

the last warp will be renamed to the fastest bank from the
remained unmapped virtual banks in the bank category
that bank b belongs to, and so on so forth. This is because
the bank that holds R0 from the last warp of a block tends to
hold the frequently accessed registers from other warps in
the same block, thus, most heavily utilized. Take Fig. 9 as an
example, when block P is coming, its last warp is warp15,
and bank 15 will hold R0 from warp15. As can be seen from
the figure, bank 15 also holds other frequently accessed
registers (i.e., R3 from warp12, R2 from warp13, and R1
from warp14). It implies that bank 15 will be most heavily
used for block P. Since bank 15 belongs to the slow bank cat-
egory, our technique will map bank 15 to the fastest bank
from that slow category, which is virtual bank 11 in our
bank organization table. Moreover, bank 0 holds R1 from
warp15 and it belongs to the fast bank category, therefore,
bank 0 should be mapped to the fastest available bank in
the fast category, which is virtual bank 0 in our bank organi-
zation table.

By doing this, the faster virtual banks from both fast
and slow categories will be more heavily used, reducing
the NBTI stress on banks whose access latency is close to
the boundary. Note that our mapping mechanism consid-
ers faster virtual banks from the fast and slow bank cate-
gories, respectively, it still maintains the benefit of our PV
mitigation techniques proposed in Section 3. One may
notice that our technique could map the frequently
accessed registers from different blocks to the same vir-
tual bank. This has little impact on the bank conflict
because warps from different blocks usually exhibit dif-
ferent execution progress and they are unlikely to access
the same bank simultaneously.

To implement our mapping technique, we attach a reg-
ister bank renaming table to each SM, as Fig. 10 shows.
Each row in this table contains the bank renaming infor-
mation for each block. All warps within the same block
follow the same renaming. The column in the table indi-
cates the virtual bank ID of the given bank ID. The block
ID and the bank ID obtained from Eq. (3) are used
together to find the corresponding virtual bank ID, which
will be used as the index to the bank organization table.
For example, one warp in block 2 is going to access bank
1 in Fig. 10. The corresponding virtual bank ID in the
bank renaming table is bank 6, which means bank 1 is
renamed as virtual bank 6 for this warp. Therefore, the
sixth entry in the bank organization table will be accessed
to finally retrieve the two physical sub-banks. The num-
ber of entries in our bank renaming table is determined
by the maximum number of concurrent blocks supported
by the SM (e.g., 8 blocks in our GPU configuration), and
the number of columns is determined by the number of
register banks (e.g., 16). Furthermore, each element in the
table is 4-bit long to keep the index of each virtual bank
ID. Thus the overall size of the bank renaming table is

only 64 B per SM, which is very small and its latency is
negligible based on our gate-level modeling.

4.2.2 The Kernel-Level RF Bank Re-Organization

Recall from Section 3, each virtual RF bank contains two
sub-banks with distinct access latency, and its speed is
determined by the slowest sub-bank. During the program
execution, the two sub-banks may have different utiliza-
tions and degrade differently due to partially active
warps described in Section 3.3.4. In other words, the
access latency to each virtual bank is varying all the time
which will affect its ranking in the bank reorganization
table. Therefore, the bank re-organization table has to
update periodically to ensure the correct ranking for our
renaming technique.

Since the bank re-organization technique explored
in Section 3.2.2. only considers the PV impact and is pre-
determined at the chip test time, in this subsection, we
dynamically re-organize the sub-banks to well capture the
aggregated impact of PV and NBTI on the access latency of
all the sub-banks. We propose to trigger the bank re-organi-
zation at each kernel launch time. This is because dynami-
cally re-organizing banks during the kernel execution (e.g.,
at the block allocation time) will cause the data remapping
problem for the active contents currently saved in the banks,
leading to large control overheads.

The implementation of this mechanism is quite simple: at
kernel launch time, the speed information of each sub-bank is
obtained and sorted. Every two continuous sub-banks in this
ranking will be virtually combined into one virtual RF bank,
and recorded in the bank organization table. For example,
when the sub-bank ranking is listed as sb5, sb3, sb28, sb0, . . . ,
sb5 and sb3 will be organized as virtual bank 0 and saved in
the first entry of the bank organization table, similarly, sb28
and sb0 are treated as virtual bank 1 and saved in the second
entry, etc. In thisway, the bank reorganization table is dynam-
ically adapted to the PV andNBTI effects.

4.2.3 The Combined PV and NBTI Mitigation

Technique

As can be seen, the above two NBTI techniques work at the
block level and kernel level, respectively. They can be com-
bined together, called NBTI optimization (NBTI-opt). NBTI-
opt further adds a 8-entry bank renaming table and simple
control logics. Based on our HSPICE simulation, these hard-
ware extensions increase the access latency by 0.00059 ns
and area by 0.002 mm2 under 32 nm technology. Since
NBTI-opt considers the bank speed variations under both
PV and NBTI effects, it can be combined with our PV miti-
gation techniques (named as PV-opt) naturally. We name
the combined PV and NBTI mitigation technique as PV-opt
+NBTI-opt. We also evaluate the power overhead of PV-opt
and NBTI-opt, which is only 1.02mW on average, which is
negligible. Note both the hybrid bank technique in Section
3.3.4 and the kernel-level re-organization in Section 4.2.2
dynamically form virtual banks at the kernel launch time.
When combined together, the kernel-level re-organization
will be triggered earlier to regroup the sub-banks with simi-
lar speed, and the hybrid banks are further built up based
on the new re-organization table.

Fig. 10. The implementation of dynamic register file bank renaming for
each block.

3292 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

5 EXPERIMENTAL METHODOLOGY

We use a cycle-accurate, open-source, and publicly avail-
able simulator GPGPU-Sim (v3.1.0) [26] to evaluate the IPC
optimization under our proposed methodologies. Note that
our 70 percent variable-latency technique causes the fre-
quency variations among SMs, we also model that SM level
frequency differences into the simulator. Our baseline
GPGPUs configuration models the Nvidia Fermi style archi-
tecture: the GPU contains 15 SMs; the warp size is 32; each
SM supports 1,536 threads and eight blocks at most; each
SM contains 128 KB registers, 16 KB L1 data cache, and
48 KB shared memory; L2 cache size is 768 KB; the sched-
uler applies the round robin among ready warps scheduling
policy. The experimental methodology to model the PV and
NBTI impacts have been introduced in Sections 3.1 and 4.1,
respectively. We collect a large set of GPGPU workloads
from Nvidia CUDA SDK [5], Rodinia [6], and Parboil [7].
The benchmarks show significant diversity according to
their kernel characteristics, divergence, memory access pat-
terns, and so on.

6 EVALUATION

6.1 IPC Improvement

6.1.1 Evaluation of VL-SB with RF-BRO

To evaluate the effectiveness of variable-latency sub-banks
with register file bank reorganization (RF-BRO), we compare
it with the VL-RF technique explored by Liang and Brooks
[21]. Fig. 11 shows the IPC of the investigated benchmarks
when those two PV mitigation techniques are enabled. The
results are normalized to the baseline case without any opti-
mization (i.e., frequency is determined by the slowest critical
path). As discussed in Section 3.3.1, bank0-bank10 are
always fast while bank11-bank15 are always slow in all chips
under RF-BRO. The IPC results are identical for all chips and
only one chip’s IPC results for RF-BRO based techniques are
shown in Fig. 11. The averaged IPC results across all 100
chips are shown for 70 percent VL-RF technique. In the base-
line case, all registers have one-cycle access latency, and it
has the same IPC as the ideal case without PV. As it shows,
when compared with the VL-RF mechanism, VL-SB+RF-
BRO successfully reduces the IPC loss from 23 to 9 percent
on average across all the benchmarks since it re-organizes
sub-banks to deliver a considerable amount of fast RF banks.
While VL-RF focuses at a quite fine-grain register level classi-
fication, making it impossible to apply the RF-BRO for fast
RF bank reorganization and almost all the register vectors
accesses take two cycles.

Interestingly, the IPCs of benchmark NW under both VL-
RF and VL-SB+RF-BRO are already approaching to 1. This

is because NW includes very few threads, and there are
insufficient warps running concurrently in the SM to even
hide the stalls for true data dependencies between consecu-
tive instructions from a single warp (in absence of the long
memory operations). As a result, the extra register access
time is well absorbed by those stall cycles, and has little
impact on IPC. On the other hand, the IPC decreases consid-
erably in several computation intensive benchmarks under
VL-SB+RF-BRO, because there are few stall cycles helping
to hide long RF access delay. For instance, the IPC reduction
is 18 percent in benchmark LavaMD that makes SM active
80 percent of the total execution time.

6.1.2 Evaluation of FWAS

Fig. 11 also presents the normalized IPC results when the
fast-warp aware scheduling policy is enabled. We compare
FWAS with the fast-bank aware register mapping (named
as FBA-RM) discussed in Section 3.3.2. Recently, a two-level
scheduling policy has been proposed to boost performance
[8]. This policy splits warps into groups and execute groups
in different paces, which alleviate the memory contentions.
We thus introduce the two-level policy into VL-SB+RF-BRO
and compare it with our proposed FWAS policy. As shown
in Fig. 11, all the three techniques are able to mitigate the
IPC reduction compared to VL-SB+RF-BRO technique: the
IPC losses under FBA-RM, two-level, and FWAS are 7, 5,
and 1 percent, respectively.

The effectiveness of FBA-RM is highly related to the reg-
ister utilization. For instance, NN uses less than 10 percent
of the register file through the entire execution. The fast RF
banks are far enough to support the requirement. Moreover,
since extremely few registers are utilized per warp in NN,
pushing them to the fast banks negligibility increases the
bank conflicts. As a result, the IPC loss of NN decreases
from 11 percent under VL-SB+RF-BRO to only 4 percent
under FBA-RM. Note that VL-SB+RF-BRO applies the
default register mapping mechanism, the slow RF banks
have the same utilization as the fast ones no matter how
many registers are needed, leading to a considerable IPC
loss for NN. On the other hand, the performance penalty is
severely exacerbated when benchmarks need more register
resources. Take HotSpot as an example, it requires around
80 percent of the register file. When FBA-RM allocates the
frequently used registers to fast banks, the negative impact
caused by the increased bank conflicts outweighs the posi-
tive effect of the decreased slow banks accesses, and results
in 16 percent IPC degradation.

As Fig. 11 shows, the two-level technique integrated with
VL-SB+RF-BRO can effectively improve IPC on multiple
memory intensive benchmarks, such as 64H and ST3D, as it
decreases stall cycles caused by long-latency memory

Fig. 11. Normalized IPC results under variable-latency RF (70 percent VL-RF), our proposed variable-latency sub-banks and RF bank re-organization
(70 percent VL-SB+RF-BRO), fast-bank aware register mapping (FBA-RM), two-level scheduling, our proposed fast-warp aware scheduling, 70% VL-
SB + RF-BRO + FWAS + our hybrid banks (PV-opt), and PV-opt + our NBTI mitigation techniques (PV-opt+NBTI-opt). The results are normalized to
the baseline case without any optimization.

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3293

operations. The group size is fixed (i.e., eight warps) in two-
level policy, and there are only eight warps, i.e., one group,
in most SMs when executing PNS. The inter-group level
scheduling in the two-level is inactive.

Similar to the two-level technique, FWAS shows the
strong capability to mitigate the IPC loss for memory-inten-
sive benchmarks. Moreover, FWAS does not have any con-
straint on warp grouping, and it successfully mitigates the
IPC loss of PNS to only 2 percent which is far better than
that under the two-level technique. On average across the
memory-intensive benchmarks (i.e., 64H, NW, PNS, and
ST3D), FWAS boosts the IPC to 105 percent when normal-
ized to the baseline case, which implies a 12 percent perfor-
mance improvement compared to VL-SB+RF-BRO.
Additionally, FWAS can effectively optimize IPC for com-
putation-intensive benchmarks, especially those including
numerous blocks, because it makes the fast RF banks to sup-
port warps at the most degree. For instance, it induces 8 per-
cent IPC gains for both HotSpot and LavaMD compared to
VL-SB+RF-BRO.

6.1.3 Evaluation of Hybrid Banks

We further evaluate the normalized IPC results when vir-
tually building hybrid RF banks at kernel launch time for
partially active warps, named as hybrid banks. The
results of building hybrid banks on top of all other pro-
posed PV mitigation techniques are presented in Fig. 11,
which is named as PV-opt. As expected, the hybrid tech-
nique can further improve IPC to even 1 percent higher
than baseline on average across all benchmarks. This is
because it directs the special register vectors in hybrid RF
banks whose slow portions are rarely utilized. For
instance, NN is a typical benchmark that each warp has
less than 16 active threads, its IPC result is the same as
the baseline case since each RF bank is treated as fast. In
addition, all divergent branches in BP are depending on
programmatic values, hence, most register vectors in
divergent warps are allocated to hybrid banks, which
helps to boost the IPC significantly.

6.1.4 Evaluation of NBTI Mitigation Techniques

Since the proposed NBTI optimizations, i.e., bank-level
renaming and kernel-level re-organization, are built on top
of the PV mitigation techniques, we further investigate the
IPC results of combining all NBTI and PV mitigation techni-
ques, named as PV-opt+NBTI+opt in Fig. 11. As can be
seen, PV-opt+NBTI-opt maintains the IPC improvement
achieved by the PV-opt since it adopts the same register
organization and scheduling policy proposed by the PV-
opt. The IPC results of some benchmarks (e.g., HotSpot and
SLA) under PV-opt+NBTI-opt are slightly lower than that
under PV-opt. This is because warps from different blocks
may access the same virtual bank under the bank renaming

technique, leading to a bank conflict. However, this inter-
block bank conflict occurs infrequently, and causes less than
1 percent performance loss as shown in Fig. 11.

6.2 Guadband Reduction

Fig. 12 shows the guardband requirement for each bench-
mark under PV-opt and PV-opt+NBTI-opt, respectively. All
results are normalized to the baseline guardband require-
ment without any PV or NBTI optimizations. On average,
PV-opt reduces the guardband requirement by 27 percent,
while PV-opt+NBTI-opt further substantially reduces it to
56 percent. This confirms that our proposed PV and NBTI
mitigation techniques effectively reduce the frequency loss
due to the hardware variability. One may notice that PV-opt
+NBTI-opt only reduces the guardband by 3 percent com-
pared with PV-opt for NW. This is because NW has
extremely low utilization on registers, and the NBTI impact
on NW is very small. In contrast, PV-opt+NBTI-opt achieves
38 percent guardband reduction on top of PV-opt for NN
because NN has quite unbalanced utilization across RF
banks, which are then well balanced by the NBTI mitigation
techniques in PV-opt+NBTI-opt.

6.3 Overall Performance Improvement

Fig. 13 compares the overall performance (IPC � frequency)
of each case, and each sub-figure presents the performance
distribution over the 100 investigated chips. The perfor-
mance of each chip is the average performance of all bench-
marks normalized to the ideal case without any PV and
NBTI impacts. As Fig. 13a shows, the mean performance of
the baseline case (i.e., the case with PV and NBTI impacts
but no optimization) is only 45 percent of the ideal case
without PV and NBTI. PV-opt significantly improves the
mean performance by 15 percent over the baseline case, as
shown in Fig. 13c. Our PV-opt achieves 12 percent higher
performance than 70 percent VL-RF (shown in Fig. 13b) due
to its substantial (i.e., 24 percent) IPC improvement. Our
PV-opt+NBTI-opt further improves the frequency by 7 per-
cent comparing to PV-opt with less than 1 percent IPC deg-
radation, and improves the overall mean performance by 22
percent comparing to the baseline case, as shown in
Fig. 13d.

Fig. 12. Normalized guardband under PV-opt and PV-opt+NBTI-opt.

Fig. 13. Overall performance (IPC�frequency) distribution for 100 chips
under (a) baseline, (b) 70 percent VL-RF, (c) PV-opt, and (d) PV-opt
+NBTI-opt. The performance of each chip is normalized to the chip with-
out PV and NBTI imapct.

3294 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

6.4 Sensitivity Analysis

In this section, we further evaluate the effectiveness of our
proposed techniques when varying the random and system-
atic component ratios. Figs. 14a, 14b shows the averaged fre-
quency, the averaged overall performance and the standard
deviation under various srand : ssys scenarios. Both the fre-
quency and overall performance are normalized to the ideal
case without any PV or NBTI impacts. As it shows, the fre-
quency of PV-opt and PV-opt+NBTI-opt increases as the
systematic variations component increases. Under the sce-
nario of srand : ssys = 1:4, the frequency loss of PV-opt
+NBTI-opt is only 16 percent compared to the ideal case
without PV and NBTI impacts. This is because our tech-
nique is effective to leverage the systematic variations to
provide good frequency boosting. Fig. 14 also compares PV-
opt and PV-opt+NBTI-opt with baseline case without any
optimization, 70 percent VL-RF, and 70 percent VL-RV. As
it shows, the frequency of PV-opt and PV-opt+NBTI-opt is
better than 70 percent VL-RV under all three srand : ssys sce-
narios. This confirms that PV exhibits stronger systematic
effects in the vertical direction than that in the horizontal
direction. Also, the overall performances of both PV-opt
and PV-opt+NBTI-opt are better than all other three mecha-
nisms under the three srand : ssys scenarios. Especially, even
when systematic component has minimum impact on varia-
tions (i.e., srand : ssys = 4:1), PV-opt+NBTI-opt is still 13 per-
cent better than the baseline case due to its frequency
benefit, and 11 percent better than 70 percent VL-RF due to
its IPC benefit.

7 RELATED WORK

There have been several studies on analyzing and mitigat-
ing the PV impact on GPGPUs. For instance, Lee et al. [11]
observed the large frequency variations across SMs, and
proposed the PV mitigation techniques at the SM level that
running each SM at its maximum frequency independently
and disabling the slowest SM. Krimer et al. [14], [15] investi-
gated the timing errors under the impact of process varia-
tions, and proposed lane decoupling that enables each
SPMD lane to tolerate timing errors independently of other
adjacent lanes, therefore, boosting the GPGPUs throughput.
Our PV mitigation techniques are orthogonal to those previ-
ously proposed mechanisms.

Several techniques are proposed to mitigate the NBTI
impact in GPUs [37], [38], [39]. For example, Zhang et al.
[38] proposed to a two-level scheduler to mitigate the aging
effect in the warp scheduler of GPUs. Namaki-Shoushtari

et al. [39] proposed a novel register file allocation mecha-
nism to reduce the stress on GPGPUs RF. However they did
not consider the PV impact. Our block-level bank renaming
and kernel-level bank re-organization mitigate the NBTI
impact for GPGPUs under PV.

8 CONCLUSIONS

This paper aims to mitigate the susceptibility of GPGPUs
register file to PV and NBTI. For PV mitigation, we first pro-
pose to vertically divide RF banks into sub-banks, and
explore the variable-latency technique at sub-bank level to
perform the coarse-grain register classification which maxi-
mizes the frequency optimization. We then propose to re-
organize RF banks by virtually combining the same-type
sub-banks at the chip test time, leading to the fast and slow
RF bank categories. The IPC degrades when using the slow
RF banks during the kernel execution. Thus we further
explore two techniques that leverage the unique features in
GPGPUs application to mitigate the IPC loss: the FWAS
(fast-warp aware warp scheduling) technique helps to mini-
mize the use of slow RF banks; and the hybrid bank tech-
nique allocates the partially used register vectors into the
fast sub-bank portions of the virtually built hybrid RF banks
and eliminate the negative impact of their slow sub-bank
portions on performance. To further tolerate the NBTI deg-
radation, we dynamically rename the register banks during
the block launch time, which effectively migrates the NBTI
stress on banks near the frequency boundary to those that
are much far away to the boundary. We also re-organize the
RF banks at the kernel launch time to well capture the
aggregated PV and NBTI impact which keeps changing as
time goes by. Our PV and NBTI mitigation techniques
obtains 22 percent overall performance improvement com-
pared to the baseline case without any optimization.

ACKNOWLEDGMENTS

This work is supported in part by US National Science Foun-
dation (NSF) grants CCF-1320730, CCF-1351054 (CAREER),
EPS-0903806 and matching support from the State of Kansas
through the Kansas Board of Regents. This work is also co-
funded byNSF of China grant 91418203.

REFERENCES

[1] NVIDIA. CUDA Programming Guide Version 3.0., Nvidia Corpo-
ration, 2010.

[2] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung,
“Selective wordline voltage boosting for caches to manage yield
under process variations,” in Proc. 46th Annu. Des. Autom. Conf.,
2009, pp. 57–62.

[3] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL: Uti-
lizing processors with variation-induced timing errors,” in Proc.
41st IEEE/ACM Int. Symp. Microarchit., 2008, pp. 423–434.

[4] A. Agrawal. A. Ansari, and J. Torrellas, “Mosaic: Exploiting the
spatial locality of process variation to reduce refresh energy in on
chip eDRAMmodules,” in Proc. IEEE 20th Int. Symp. High Perform.
Comput. Archit., 2014, pp. 84–95.

[5] (2015). [Online]. Available: http://www.nvidia.com/object/
cuda_sdks.html.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[7] (2012). Parboil Benchmark Suite [Online]. Available: URL: http://
impact.crhc.illinois.edu/parboil.php.

Fig. 14. Averaged (a) frequency and (b) overall performance (IPC�fre-
quency) results under different random and systematic component ratios.
The standard deviations across all chips are also shown in each case.

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3295

[8] V. Narasiman, C. J. Lee, M. Shebanow, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU performance via large
warps and two-level warp scheduling,” in Proc. 44th Annu. IEEE/
ACM Int. Symp. Microarchit., 2011, pp. 308–317.

[9] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas,
“VARIUS-NTV: A microarchitectural model to capture the
increased sensitivity of Many-cores to process variations at Near-
threshold voltages,” in Proc. 42nd Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2012, pp. 1–11.

[10] N. S. Kim, T. Kgil, K. Bowman, V. De, and T. Mudge, “Total
power optimal pipelining and parallel processing under process
variations in nanometer technology,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2005, pp. 535–540.

[11] J. Lee, P. Ajgaonkar, and N. S. Kim, “Analyzing throughput of
GPGPUs exploiting within-die core-to-core frequency variation,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2011, pp. 237–246.

[12] S. Seo, R. G. Dreslinski, M. Woh, Y. Park, C. Charkrabari,
S. Mahlke, D. Blaauw, and T. Mudge, “Process variation in Near-
threshold wide SIMD architectures,” in Proc. 49th Annu. Des.
Autom. Conf., 2012, pp. 980–987.

[13] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas, “VARIUS: A model of process variation and resulting
timing errors for microarchitects,” IEEE Trans. Semicond. Manuf.,
vol. 21, no. 1, pp. 3–13, Feb. 2008.

[14] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improv-
ing the timing-error resiliency of Wide-SIMD architectures,” in
Proc. 39th Annu. Int. Symp. Comput. Archit., 2012, pp. 237–248.

[15] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang, “Synctium: A
near-threshold stream processor for energy-constrained parallel
applications,” IEEE Comput. Archit. Lett., vol. 9, no. 1, pp. 21–24,
Jan. 2010.

[16] (2009). NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi [Online]. Availavle: http://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf.

[17] D. Kanter. (2010). AMD’s cayman GPU architecture
[Online]. Available: http://realworldtech.com/page.cfm?
ArticleID=RWT121410213827

[18] (2012). NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110, http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[19] J. Tschanz, J. Kao, and S. Narendra, “Adaptive body bias for
reducing impacts of die-to-die and within-die parameter varia-
tions on microprocessor frequency and leakage,” IEEE J. Solid-
State Circuits, vol. 37, no. 11, pp. 1396–1402, Nov. 2002.

[20] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A
process-tolerant cache architecture for improved yield in nano-
scale technologies,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 13, no. 1, pp. 27–38, Jan. 2005.

[21] X. Liang, and D. Brooks, “Mitigating the impact of process varia-
tions on processor register files and execution units,” in Proc. 39th
Annu. IEEE/ACM Int. Symp. Microarchit., 2006, pp. 504–514.

[22] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating
parameter variation with dynamic fine-gain body biasing,” in Proc.
40th Annu. IEEE/ACM Int. Symp.Microarchit., 2007, pp. 27–42.

[23] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M.i Guo, R. Canal,
and X. Liang, “An energy-efficient and scalable eDRAM-based
register file architecture for GPGPU,” in Proc. 40th Annu. Int.
Symp. Comput. Archit., 2013, pp. 344–355.

[24] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy optimi-
zations in GPGPUs,” in Proc. 40th Annu. Int. Symp. Comput. Archit.,
2013, pp. 487–498.

[25] M. Abdel-Majeed and M. Annavaram, “Warped register file: A
power efficient register file for GPGPUs,” in Proc. IEEE 19th Int.
Symp. High Perform. Comput. Archit., 2013, pp. 412–423.

[26] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2009, pp. 163–174.

[27] W. W. L. Fung and T. Aamodt, “Thread block compaction for effi-
cient SIMT control flow,” in Proc. IEEE 17th Int. Symp. High Per-
form. Comput. Archit., 2011, pp. 25–36.

[28] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for
managing thread context in throughput processors,” in Proc. 38th
Annu. Int. Symp. Comput. Archit., 2011, pp. 235–246.

[29] M. Gebhart, S. W. Keckler, and W. J. Dally, “A Compile-time man-
aged multi-level register file hierarchy,” in Proc. 44th Annu. IEEE/
ACM Int. Symp. Microarchit., 2011, pp. 465–476.

[30] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to understand large caches,” Univ. Utah and Hewlett
Packard Lab., HP Laboratories, Tech. Rep. HPL-2009-85, 2007.

[31] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi,
S. Nagao, S. Kayano, and T. Nakano, “A divided word-line struc-
ture in the static ram and its application to a 64k full CMOS ram,”
IEEE J. Solid-State Circuits, vol. 18, no. 5, pp. 479–485, Oct. 1983.

[32] M. Tehranipour, Z. Navabi, and S. Falkhrai, “An efficient BIST
method for testing of embedded SRAMs,” in Proc. IEEE Int. Symp.
Circuits and Systems, 2001, pp. 73–76.

[33] N. Goswami, B. Cao, and T. Li, “Power-performance co-
optimization of throughput core architecture using resistive mem-
ory,” in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit.,
2013, pp. 342–353.

[34] M. Rhu and M. Erez, “Maximizing SIMD resource utilization in
GPGPUs with SIMD lane permutation,” in Proc. 40th Annu. Int.
Symp. Comput. Archit., 2013, pp. 356–367.

[35] P. Aguilera, J. Lee, A. Farmahini-Farahani, K. Morrow, M. Schulte,
and N. S. Kim, “Process variation-aware workload partitioning
algorithms for GPUs supporting spatial-multitasking,” in Proc.
Conf. Des., Autom. Test Eur., 2014, pp. 1–6.

[36] J. Tan and X. Fu, “Mitigating the susceptibility of GPGPUs register
file to process variations,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2015, pp. 969–978.

[37] X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang, “Run-time tech-
nique for simultaneous aging and power optimization in
GPGPUs,” in Proc. 51st Annu. Des. Autom. Conf., 2014, pp. 1–6.

[38] Y. Zhang, S. Chen, L. Peng, and S. Chen, “Mitigating NBTI degra-
dation on finfet GPUs through exploring device heterogeneity,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2014, pp. 577–582.

[39] M. Namaki-Shoushtari, A. Rahimi, N. Dutt, P. Guppta, and R. K.
Gupta, “ARGO: Aging-aware GPGPU register file allocation,” in
Proc. 9th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codes. Syst. Syn-
thesis, 2013, pp. 30:1–30:9.

[40] A Tiwari and J. Torrellas, “Facelift: Hiding and slowing down
aging in multicors,” in Proc. 41st Annu. IEEE/ACM Int. Symp.
Microarchit., 2008, pp. 129–140.

Jingweijia Tan received the BS degree in com-
puter science and technology from Jilin Univer-
sity, China, and the MS degree in computer
science from the University of Kansas. She is cur-
rently working toward the PhD degree in electrical
engineering at the University of Houston. Her
research interests include computer architecture,
high-performance computing, GPUs, hardware
reliability and variability, energy-efficient proces-
sor design, and emerging technologies. She is a
student member of the IEEE.

Mingsong Chen received the BS and ME degrees
from the Department of Computer Science and
Technology, Nanjing University, Nanjing, China, in
2003 and 2006, respectively, and the PhD degree
in computer engineering from theUniversity of Flor-
ida, Gainesville, in 2010. He is currently an associ-
ate professor with the Institute of Computer
Science and Software Engineering of East China
Normal University. His research interests are in the
area of design automation of cyber-physical sys-
tems, computer architecture and formal verification

techniques. Currently, he is an associate editor of Journal of Circuits, Sys-
tems andComputers.

3296 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Yang Yi received the BS and MS degrees in elec-
tronic engineering from Shanghai Jiao Tong Uni-
versity, and the PhD degree in electrical and
computer engineering from Texas A&M Univer-
sity. She is an assistant professor in the Depart-
ment of Electrical Engineering and Computer
Science (EECS) at the University of Kansas
(KU). Her research interests include very large
scale integrated (VLSI) circuits and systems,
computer aided design (CAD), neuromorphic
architecture for brain-inspired computing sys-

tems, and low-power circuits design with advanced nano-technologies
for high-speed wireless systems.

Xin Fu received the PhD degree in computer engi-
neering from the University of Florida, Gainesville,
in 2009. She is currently an assistant professor at
the Electrical and Computer Engineering Depart-
ment, the University of Houston, Houston. Her
research interests include computer architecture,
high-performance computing, hardware reliability
and variability, energy-efficient computing, and
mobile computing. She received 2014 US National
Science Foundation (NSF) Faculty Early CAREER
Award, 2012 Kansas NSF EPSCoR First Award,

and 2009NSFComputing Innovation Fellow. She is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TAN ETAL.: MITIGATING THE IMPACTOF HARDWARE VARIABILITY FOR GPGPUS REGISTER FILE 3297

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

