
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 8, AUGUST 2016 1269

Thermal-Aware Task Scheduling for Energy
Minimization in Heterogeneous Real-Time

MPSoC Systems
Junlong Zhou, Student Member, IEEE, Tongquan Wei, Member, IEEE, Mingsong Chen, Member, IEEE,

Jianming Yan, Xiaobo Sharon Hu, Senior Member, IEEE, and Yue Ma

Abstract—With the continuous scaling of CMOS devices, the
increase in power density and system integration level have not
only resulted in huge energy consumption but also led to ele-
vated chip temperature. Thus, energy efficient task scheduling
with thermal consideration has become a pressing research issue
in computing systems, especially for real-time embedded sys-
tems with limited cooling techniques. In this paper, we design
a two-stage energy-efficient temperature-aware task scheduling
scheme for heterogeneous real-time multiprocessor system-on-
chip (MPSoC) systems. In the first stage, we analyze the energy
optimality of assigning real-time tasks to multiple processors of
an MPSoC system, and design a task assignment heuristic that
minimizes the system dynamic energy consumption under the
constraint of task deadlines. In the second stage, the optimality
of minimizing the peak temperature of a processor is investi-
gated, and a slack distribution heuristic is proposed to improve
the temperature profile of each processor under the thermal con-
straint, thus the temperature-dependent system leakage energy
consumption is reduced. Through the extensive efforts made in
two stages, the system overall energy consumption is minimized.
Experimental results have demonstrated the effectiveness of our
scheme.

Index Terms—Energy-efficient, real-time MPSoC systems, task
allocation and scheduling, thermal-aware.

I. INTRODUCTION

THE ADVANCE of technology scaling enables the inte-
gration of multiple processing elements, memory hierar-

chies, and dedicated hardware and I/O components on a single
silicon die to form a multiprocessor system-on-chip (MPSoC)
system. An MPSoC system is naturally heterogeneous in the
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sense that its processing elements such as customized hard-
ware modules, programmable microprocessors, and embedded
field-programmable gate arrays have distinctive functionali-
ties and demonstrate varying computing capability [1]. Due
to their powerful parallel processing capability, higher com-
puting density, and lower clock frequencies, MPSoCs have
replaced uniprocessors to become the main design paradigms
for current and future embedded microprocessors in various
application domains [2]. The distinct features of different types
of processors of an MPSoC system can be exploited to meet
the stringent design requirements of emerging real-time appli-
cations. In this paper, we focus on task scheduling issues for
heterogeneous real-time MPSoC systems.

The conventional research on MPSoC systems concentrates
on trading off the performance with resource requirements.
Recently, increasing system integration level and decreasing
feature sizes of very large-scale integration circuits have led
to a striking rise in power density [3], which not only results
in huge energy consumption but also leads to elevated chip
temperatures. Increase in energy consumption causes seri-
ous technical, economic, and ecological problems, such that
energy management has become a critical issue in computing
systems, especially for battery-powered systems that oper-
ate in harsh environments [4]–[6]. High chip temperature
has adverse impact on system reliability, performance, and
cost. A system will fall into the predicament of functional
incorrectness, low reliability, and even permanent damage
if operating temperature exceeds a certain threshold [7].
Industrial studies have shown that a difference in operat-
ing temperature (10 ◦C–15 ◦C) can make a 2× difference in
device lifespan [8]. Thus, energy and thermal management has
become a significant and pressing research issue in computing
systems.

Considerable research efforts have been devoted to the
investigation of task allocation for energy minimization in het-
erogeneous MPSoC systems. The heterogeneities of MPSoC
systems are manifested by the varying core types, different
operating frequencies and power consumptions, and distinc-
tive state switching overheads of processors. Colin et al. [9]
addressed the problem of allocating real-time tasks onto
heterogeneous cores for energy minimization under timing
constraints. The presented allocation heuristics are designed
as approximations to a target load distribution derived analyti-
cally. Awan and Petters [10] explored the energy efficient task

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:tqwei@cs.ecnu.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


1270 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 8, AUGUST 2016

mapping on heterogeneous multicore platform to reduce over-
all energy consumption of a real-time system. The developed
heuristic first assigns tasks to processors to minimize the sys-
tem active energy consumption. It then trades off higher active
energy consumption for increased ability to use more efficient
sleep states to reduce the system static power consumption.
Quan and Pimentel [11] designed a hybrid task mapping
algorithm for heterogeneous MPSoCs to improve system effi-
ciency. The hybrid method aims to maximize the throughput
via static task mappings under a predefined energy budget, and
further improve the performance of the mappings and reduce
the energy consumption by considering the dynamic behav-
ior of applications at runtime. All the above works attempt
to fully exploit the energy saving potentials of heterogeneous
processors. However, the effectiveness of utilizing the hetero-
geneities of an MPSoC system to reduce the chip temperature
is not investigated.

Considering the temperature design constraint, Yu et al. [12]
leveraged the task-level adaptability and designed a thermal-
aware frequency scaling-based scheduling algorithm for max-
imizing the execution quality-of-service of applications on
heterogeneous MPSoC platforms. The presented method con-
verts the temperature threshold into timing constraints, then
optimizes the total workload cycle over all processors by judi-
cious frequency selection. Wang et al. [13] studied the problem
of reducing the peak temperature of real-time applications in
MPSoC systems by utilizing system heterogeneities caused by
manufacturing variations. Although it is effective to reduce the
peak temperature by exploiting the heterogeneities of MPSoC
systems, the energy design constraint is not discussed in these
works. In addition, the heterogeneities of real-time tasks are
not utilized to enhance system temperature and energy profiles.

Real-time tasks are deemed to be heterogenous when they
consume different power at the same operating frequency and
temperature on the same processor [14]. In [15], the het-
erogeneities of both system architecture and real-time tasks
are used to minimize the energy consumption. A relaxation-
based algorithm for three types of heterogeneous platforms are
designed to achieve the task partition that is closest to the opti-
mal solution of the relaxed problems. However, temperature is
not considered as a design constraint. Saha et al. [16] devel-
oped a genetic algorithm-based task allocation that minimizes
the energy consumption under the constraints of temperature
limit and task deadlines. Although both energy and tempera-
ture are taken into account for optimization, the heterogeneity
of real-time tasks is not considered.

In this paper, we present a static two-stage energy-efficient
temperature-aware task allocation and scheduling scheme
for heterogeneous real-time MPSoC systems under the con-
straints of task deadlines and temperature limit. The first
stage of the proposed approach aims to minimize the sys-
tem dynamic energy consumption by assigning the subset
having a larger power dissipation factor to the processor hav-
ing a smaller power dissipation factor. The second stage of
the proposed approach aims to minimize the system leak-
age energy consumption by reducing the peak temperature of
processors through slack distribution. In the two stages, fea-
sibility analysis techniques are also designed to ensure that

the target system meets its timing and thermal constraints.
The major contributions of this paper are summarized as
follows.

1) We analyze the energy optimality of assigning tasks
to multiple processors of an MPSoC system. Based on
this analysis, we design a task assignment heuristic that
minimizes the system dynamic energy consumption.

2) We prove that the peak temperature of tasks in the
thermal steady state is minimal if tasks on the same pro-
cessor assume a uniform steady state temperature. Using
a slack distribution policy that is developed based on
this observation, the temperature profiles of processors
are improved, and the temperature-dependent system
leakage energy consumption is hence reduced.

3) We exploit the heterogeneities of both system architec-
ture and real-time tasks to reduce the system energy
consumption. We also utilize feasibility analysis tech-
niques to ensure real-time and temperature constraints
are satisfied.

The rest of this paper is organized as follows. Section II
introduces the system architecture and models and
Section III shows the overview of energy minimization.
Section IV presents the proposed task assignment strategy
for minimizing the system dynamic energy consumption and
Section V describes the proposed slack distribution policy that
reduces the temperature for minimizing the system leakage
energy consumption. The effectiveness of the proposed
approach is verified in Section VI and concluding remarks
are given in Section VII.

II. SYSTEM ARCHITECTURE AND MODELS

Consider an MPSoC system P consisting of M pro-
cessors {P1,P2, . . . ,Pk, . . . ,PM}, where every processor
Pk (1 ≤ k ≤ M) operates at a given supply voltage and pro-
cessing speed pair (vk, sk). Dynamic voltage scaling (DVS) is
not considered in this paper since it would add another dimen-
sion for optimization [10]. In addition, the benefit of using
DVS to reduce temperature is partially offset by the adverse
impact of DVS on system performance.

A. Task Model

We consider real-time periodic tasks to be executed on the
concerned MPSoC platform. Tasks are assumed to be hetero-
geneous in the sense that different tasks exhibit different power
consumptions on the same processor, even executing at the
same operating speed and temperature. This is due to the fact
that power consumptions of tasks strongly rely on circuit activ-
ities and usage patterns of different functional units [14]. Thus,
the activity factor of a task, denoted by μ (ranging in (0, 1]),
is introduced to capture how intensively functional units are
being utilized by the task [17].

The timing characteristics of a periodic real-time task is
in general described by three parameters, that is, the dead-
line, the period, and the worst-case execution time in cycles.
A real-time task must guarantee response within a specified
time constraint, which is referred to as the deadline. In a peri-
odic real-time system, each task requires repeated execution,
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and the time duration between the time point of one task ready
to be executed and that of the next is referred to as the period.
Associating each real-time task with a worst-case execution
time and a period is widely accepted in the real-time system
community and is commonly adopted in the literature.

Assuming that a set � contains N real-time periodic tasks,
denoted by � = {τ1, τ2, . . . , τi, . . . , τN}, and considering the
task activity factor, the characteristics of τi (1 ≤ i ≤ N) is
described by a quadruplet τi : {Di, pi, ci, μi}, where Di is the
deadline, pi is the period, ci is the worst-case execution time in
cycles, and μi is the task activity factor. The hyper-period of
set �, denoted by H, is the least common multiple of periods
{p1, p2, . . . , pN}. Let ET(i, k) be the execution time of task τi

on processor Pk at supply voltage/speed (vk, sk), that is

ET(i, k) = ci

sk
. (1)

B. Power Model

The power consumption P of a CMOS device can be mod-
eled as the sum of dynamic power consumption Pdyn and
leakage (or static) power consumption Pleak, that is

P = � ·Pdyn + Pleak. (2)

Here � is employed to represent system states and indicate
whether the system is currently consuming dynamic power.
Specifically, � = 1 when the processor is in the active state
and � = 0 when the processor is in the idle state.

Dynamic power consumption mainly results from charging
and discharging of gates in the circuits. It is independent of
the temperature, and can be formulated as a function of supply
voltage Vdd and operating frequency f [18], that is

Pdyn = CeffV2
ddf (3)

where Ceff is the effective capacitance. Since s ∝ f , where s
is the processor speed, the power consumption of task τi on
processor Pk at the supply voltage/speed (vk, sk) is

Pdyn(i, k) = Ceff
k μiv

2
ksk (4)

where μi is the activity factor of task τi.
Leakage power consumption mainly results from the leak-

age current and is expressed as

Pleak = Ngate ·Vdd · Ileak (5)

where Ngate is the number of gates, Vdd is the supply voltage,
and Ileak is the leakage current. Ileak can be captured by a
nonlinear exponential equation [19] as

Ileak = Is

(
AT2e(ϑ1Vdd+ϑ2)/T + Be(ϑ3Vdd+ϑ4)

)
(6)

where Is is the leakage current at a certain reference tem-
perature and supply voltage, T is the operating tempera-
ture, and A, B, ϑ1, ϑ2, ϑ3, and ϑ4 are empirically deter-
mined, technology-dependent constants. (6) clearly demon-
strates the complex relationship between the leakage power
and temperature. However, the high-order and nonlinear
terms make (6) prohibitive to perform real-time feasibility
analysis (RTFA). As reported in [20], the leakage current
changes super linearly with the temperature and using linear

Fig. 1. Example layout of four processors with two heat sinks [22].

approximation to model the leakage-temperature dependence
can significantly simplify the leakage model while main-
taining an acceptable accuracy. Therefore, as in [21], we
model the leakage power of processor Pk at the supply
voltage/speed (vk, sk) as

Pleak(k) = (αk + βkT) · vk (7)

where αk and βk are constants depending on processor Pk.

C. Thermal Model

In an MPSoC system, each processor is assumed to be
a discrete thermal element, and there is a set of heat sinks
on top of the processors. These heat sinks are only used
for heat dissipation and generate no power. An example
layout of four processors with two heat sinks is given
in Fig. 1. Heat transfer among the processors and heat
sinks is a complicated dynamic process depending on the
physical system. This dynamic heat transfer process can
be closely approximated by Fourier’s law [16], [22]–[24],
where the thermal coefficients can be obtained by using the
RC models [16], [20]–[25].

Let Gk,m represent the thermal conductance between pro-
cessor Pk and Pm in set P and Gk,m = Gm,k holds for any
1 ≤ k �= m ≤ M. If there is no heat transfer between processor
Pk and Pm, then Gk,m = 0. Gk,k = 0 holds for any processor in
processor set P , and the thermal capacitance of processor Pk

is Ck. Let � = {�1,�2, . . . , �h, . . . , �H} denote the set of
H heat sinks on top of the processors. The vertical thermal
conductance between processor Pk and heat sink �h is Gk,h,
which depends on the interface material and the thickness. If
there is no heat dissipation from processor Pk to heat sink
�h, then Gk,h = 0. The lateral thermal conductance between
heat sink �h and �� in set � is Gh,� and Gh,� = G�,h holds
for any 1 ≤ h �= � ≤ H. The thermal conductance of a heat
sink that dissipates heat to the ambient is Gamb. The thermal
capacitance of sink �h in set � is Ch.

Let Tk(t) and Th(t) be the temperature of processor Pk and
heat sink �h at time instance t, respectively. Let Tamb and
Pk(t) be the ambient temperature of the chip and the power
consumption of processor Pk at time instance t, respectively.
Then according to Fourier’s law, the heat transfer process can
be described as [16], [22], [23]

Ck
dTk(t)

dt
= Pk(t)−

∑
�h∈�

Gk,h(Tk(t)− Th(t))

−
∑

Pm∈P
Gk,m(Tk(t)− Tm(t)) (8)
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Ch
dTh(t)

dt
= −Gamb(Th(t)− Tamb)

−
∑
Pk∈P

Gk,h(Tk(t)− Th(t))

−
∑

��∈�
Gh,�(Th(t)− T�(t)) (9)

where (dTk(t)/dt) and (dTh(t)/dt) are derivatives of the tem-
perature of processor Pk and heat sink �h, respectively. As
shown in [16], [22], and [23], all these thermal parameters can
be derived using the RC thermal model for a given platform.

III. OVERVIEW OF ENERGY MINIMIZATION

The focus of this paper is to minimize the energy con-
sumption of the concerned MPSoC system in a schedule
duration (SD) under the constraints of real-time task dead-
lines and temperature limit. In this section, we first show
the preliminary for estimating leakage energy consumption,
then present the calculation of system overall energy con-
sumption and define the energy minimization problem. Finally,
we present the framework of our solution to solve the
problem.

A. Preliminary for Leakage Energy Estimation

As the focus of this paper is to minimize the overall
energy consumption of the concerned MPSoC system, devel-
oping a method that can rapidly and accurately estimate the
system energy consumption is of the top priority. However,
this is challenging since derivation of leakage energy con-
sumption is difficult. As introduced in Section II-B, leakage
power varies with temperature and temperature is changing
with time. Here the temperature refers to the operating tem-
perature of processors since heat sinks generate no power.
Either using (8) to compute the temperature at every time
instance is computationally expensive or using thermal model-
ing tool (e.g., HotSpot [26]) to obtain the temperature profiles
is time consuming. Some early works such as [27]–[30]
either simply assume leakage power as a constant or totally
ignore it since leakage energy consumption used to be a
small part of overall energy consumption. However, with the
continuous scaling of integrated circuits, the proportion of
leakage in overall power dissipation is ever-increasing such
that these simplistic energy models can lead to large estimation
errors.

Therefore, to take into account both accuracy and com-
putational cost of leakage energy estimation, we adopt a
compromised method that divides an SD into multiple small
intervals with equal length. During every interval, the oper-
ating temperature is assumed to be constant such that the
leakage power consumed in the interval can be readily derived.
Specifically, let [0, SD] be the schedule duration and L be the
length of every interval. Then [0, SD] can be discretized into R
intervals [0, L], [L, 2L], . . . , [(r−1)L, rL], . . . , [(R−1)L, RL],
where 1 ≤ r ≤ R and R = (SD/L). Let TConst

k,r denote the
constant operating temperature of processor Pk during the
interval [(r− 1)L, rL], then based on (7) and our assumption,

Fig. 2. Example of temperature curve with small variation in each interval.

Fig. 3. Example of execution subintervals.

the leakage power of processor Pk during [(r − 1)L, rL] is

Pleak(k, r) =
(
αk + βkTConst

k,r

)
· vk. (10)

This method is similar to that in [14] and is motivated by
an observation illustrated in Fig. 2, that is, the temperature
variation is small during each interval. Obviously, as long as
the length of such interval is sufficiently small, the accuracy
of this method can be very high.

When we assume the operating temperature during an inter-
val is constant, one immediate question is what temperature
should be selected for the leakage energy calculation. Since
leakage is becoming the dominant source of power dissipation
as the semiconductor technology advances toward the deep
submicrometer era, we select the peak temperature occurring
in the interval as the operating temperature. Now we only need
to focus on how to obtain the peak temperature of a single
interval. We take the first interval [0, L] as an example. The
execution of tasks on a processor during the interval [0, L] can
be depicted using a sequence of execution subintervals, where
the start time and end time of the qth subinterval is denoted by
[stq, edq]. Fig. 3 shows an example of execution subintervals,
where three tasks are arranged to execute on a processor and
11 execution subintervals are produced.

It has been shown in [31] that the peak temperature can
be reached at the start/end times of execution subintervals
since the temperature during each subinterval is monotoni-
cally increasing or decreasing. Thus, the peak temperature of
tasks on processor Pk in the interval [0, L] can be given as

Tpeak
k,1 = max{Tk(t)|t = st1, ed1, st2, ed2, . . . , L}

where st1 = 0. Since the start time of a subinterval is the end
time of its previous subinterval, that is, stq = edq−1, the peak
temperature in the interval [0, L] is updated to

Tpeak
k,1 = max{T(t)|t = st1, st2, . . . , L}. (11)

Applying this method to the following intervals, the peak
temperature of R intervals are derived, and the operating
temperature of these intervals are hence obtained using that
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TConst
k,r = Tpeak

k,r for 1 ≤ r ≤ R. Then the calculation of leakage
power is updated to

Pleak(k, r) =
(
αk + βkTpeak

k,r

)
· vk. (12)

Using (12), we can compute the leakage energy consumption.

B. Calculation of System Overall Energy Consumption

The N real-time tasks in set � are assigned to M processors
in set P . In other words, a given task set � is partitioned into
M subsets {�1, �2, . . . , �k, . . . , �M}, where �k is the subset of
tasks assigned to processor Pk. The leakage power is always
consumed to maintain basic circuits and can be only eliminated
by turning off the system, and the dynamic power is only
consumed when executing tasks. Let Etot

SD represent the total
energy consumption of M processors in an SD, then based
on (1), (4), and (12), it can be computed as

Etot
SD =

M∑
k=1

∑
τi∈�k

Ceff
k μiv

2
ksk · ci

sk
· SD

pi

+
M∑

k=1

(
αkvkSD+ βkvkL

R∑
r=1

Tpeak
k,r

)

=
M∑

k=1

⎛
⎝Ceff

k v2
k

∑
τi∈�k

μici

pi

⎞
⎠SD

+
M∑

k=1

(
αkvkSD+ βkvkL

R∑
r=1

Tpeak
k,r

)
(13)

where the first term is the dynamic energy consumption and
the second term is the static energy consumption.

The expression
∑M

k=1(C
eff
k v2

k

∑
τi∈�k

(μici/pi)) in the first
term of (13) is essentially the overall dynamic power
consumption. Clearly, the dynamic energy consumption
is minimal if the overall dynamic power consumption∑M

k=1(C
eff
k v2

k

∑
τi∈�k

(μici/pi)), denoted by �metric, is mini-
mized. The �metric is in fact an energy metric to estimate the
dynamic energy consumption of the MPSoC system. It can be
formulated into the product of vectors, that is

�metric
(
AM, BM) = AM × BM

= A1b1 + A2b2 + · · · + AMbM (14)

where AM = [A1, A2, . . . , Ak, . . . , AM] and BM =
[b1, b2, . . . , bk, . . . , bM]T . AM captures processor dependent
parameters, where Ak = Ceff

k v2
k is referred to as the power

dissipation factor of processor Pk. BM captures task related
parameters, where bk = ∑

τi∈�k
δi = ∑

τi∈�k
(μici/pi) is

referred to as the power dissipation factor of subset �k, and
δi is the power dissipation factor of task τi. AM is determined
since Ceff

k and vk are known for a given MPSoC system, while
BM is not determined and depends on task assignment. For a
given set � of N real-time tasks, the sum of power dissipation
factors of all tasks, denoted by Y(�), can be calculated as

Y(�) =
N∑

i=1

δi =
M∑

k=1

∑
τi∈�k

μici

pi
=

M∑
k=1

bk = Y0 (15)

where Y(�) is constant for a given set � and is denoted by Y0.

The expression
∑M

k=1(αkvkSD + βkvkL
∑R

r=1 Tpeak
k,r ) in the

second term of (13) is essentially the overall leakage energy
consumption in the duration SD. In this expression, αk, βk,

and vk are constants for a given processor Pk, and SD and
L are parameters decided by the scheduler. Thus, the leakage
energy consumption only depends on Tpeak

k,r , which is the peak
temperature of processor Pk during [(r− 1)L, rL]. Obviously,
the overall leakage energy consumption is minimal if the peak
temperature of processors in every interval are minimized.

C. Energy Minimization Problem

As analyzed above, it is clear that the system dynamic
energy consumption depends on the task assignment, and
the system leakage energy consumption depends on the peak
temperature of intervals. Thus, both energy-efficient task
assignment and temperature-aware task scheduling are help-
ful to minimize the system overall energy consumption. In this
paper, we propose a task assignment and scheduling scheme to
address the problem of minimizing the system overall energy
consumption under the real-time and thermal constraints.

1) Real-Time Constraint: In a real-time system, each task
should be finished before its deadline. Suppose that the exe-
cution of real-time tasks in the system is preemptable, and the
task with a smaller period has a higher priority. Let RT(i, k)
denote the worst case response time of task τi at the supply
voltage/speed (vk, sk), then it can be formulated as

RT(i, k) = ET(i, k)+
∑

τj∈�k,pj<pi

⌈
RT(i, k)

pj

⌉
× ET( j, k)

(16)

where ET(i, k) and ET(j, k) are the execution time of task
τi and τj, respectively. They both can be obtained using (1).
τj has a higher priority than τi for j < i, and

⌈
(RT(i, k)/pj)

⌉
indicates the number of instances of τj during time interval
RT(i, k).

2) Thermal Constraint: The temperature of the chip should
be below a temperature limit (threshold) Tmax to avoid
temperature-induced failures. The value of Tmax is in gen-
eral specified based on system design requirements. Let Tpeak
denote the peak temperature at any position on the chip during
the SD, that is

Tpeak = max{T(t)|∀t ∈ [0, SD]}. (17)

Here T(t) can be the temperature of processors and heat sinks
at time instance t. The system is deemed to be in a safe mode
when the Tpeak is below the threshold temperature Tmax.

3) Problem Definition: Considering the above design con-
straints, task allocation and scheduling problem of concerned
MPSoC systems is defined as the following. Given a set � of
N periodic real-time tasks and a set P of M heterogeneous
processors, derive a task allocation and scheduling scheme to
minimize the system overall energy consumption in an SD
while satisfying the timing and thermal constraints. In other
words, the problem can be formulated as

Minimize: Etot
SD

subject to: RT(i, k) ≤ Di

Tpeak ≤ Tmax.
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Fig. 4. Framework of the proposed two-stage solution.

D. Framework of Our Two-Stage Solution

We propose a static two-stage task allocation and schedul-
ing scheme to solve the above problem. As shown in Fig. 4,
the proposed scheme is implemented in two stages. In the
first stage, for a given task set �, the proposed scheme parti-
tions tasks into M subsets and assigns them to corresponding
processors, in order to minimize the system dynamic energy
consumption (characterized by �metric). In the second stage,
for the subset assigned to each processor, the proposed scheme
distributes available slack on the processor to local tasks for
reducing the peak temperature Tpeak

k,r of every interval, in order
to minimize the system leakage energy consumption. Through
the efforts made in two stages, the system overall energy
consumption is minimized.

Feasibility analysis techniques are introduced in two stages
to ensure timing and thermal constraints are met. Specifically,
an RTFA technique is adopted in task allocation to check if
the task deadlines are satisfied. A temperature feasibility anal-
ysis (TFA) technique is used in task scheduling to verify the
thermal constraint in the SD. If the peak temperature limit
is violated, the tasks that violates the thermal constraint are
moved to task set for reallocation. The proposed task assign-
ment strategy and slack distribution policy are detailed in
Sections IV and V, respectively.

IV. OUR TASK ASSIGNMENT STRATEGY

This section analyzes the dynamic energy optimality of
assigning tasks to multiple processors, presents a proposition
on optimum task assignment, and develops a task-to-processor
assignment heuristic based on the proposition.

A. Analysis of the Optimality of Task-to-Processor
Assignment

The system dynamic energy consumption is in fact esti-
mated by the dynamic energy metric �metric(AM, BM), which
can be minimized by optimally assigning N real-time tasks to
M processors. Since the vector AM = [A1, A2, . . . , AM] is con-
stant and independent of task-to-processor partition strategies,
the dynamic energy metric �metric(AM, BM) is determined by
the vector BM = [b1, b2, . . . , bM]T , which varies with differ-
ent task-to-processor partition strategies. Specifically, a given

set � of N real-time tasks can be partitioned into M sub-
sets {�1, �2, . . . , �M}, where �k(1 ≤ k ≤ M) indicates
the subset of tasks assigned to processor Pk. It is clear
that there are MN instances of partitioning. In other words,
assigning tasks to processors is essentially a combinatorial
optimization problem. The target of combinatorial optimiza-
tion problem is to find the optimum solution from all feasible
solutions. Let ϒ = {γ1, γ2, . . . , γn} be a solution space
and f (γi) be the value of the objective function correspond-
ing to the solution γi, then the combinatorial optimization
problem involves finding the optimum solution γ ∗ such that
f (γ ∗) = min f (γi) holds for ∀γi ∈ ϒ . Since the combina-
torial optimization problem is known to be NP-hard [32],
the concerned task assignment problem is also NP-hard,
which motivates the proposed suboptimal task-to-processor
assignment heuristic.

For a given MPSoC system, the dynamic power dissipa-
tion of processor set P is characterized by a vector AM =
[A1, A2, . . . , AM]. For the sake of easy presentation, it is
assumed that A1 ≤ A2 ≤ · · · ≤ AM holds. Similarly,
the optimum power dissipation of subsets assigned to indi-
vidual processors can be characterized by a vector BM =
[B1, B2, . . . , BM]T , indicating that the optimum task assign-
ment solution can minimize the objective �metric(AM, BM).
The sum of power dissipation factors of all assigned tasks
is Y0 = B1 + B2 + · · · + BM , as shown in (15). This optimal
task assignment solution minimizes the dynamic energy met-
ric �metric(AM, BM) by correlating the task assignment with
processor power dissipation factors, as described below.

Proposition 1: If dynamic energy metric �metric(AM, BM) is
minimized when AM = [A1, A2, . . . , AM] (A1 ≤ A2 ≤ · · · ≤
AM), BM = [B1, B2, . . . , BM]T , and B1+B2+ · · · +BM = Y0,
then the inequality B1 ≥ B2 ≥ · · · ≥ BM holds.

Proof: The proposition states that for an optimum task
assignment solution, the processor with smaller power dis-
sipation factor ends up with the subset of its assigned
tasks having a larger power dissipation factor. As given in
the proposition, the dynamic energy metric �metric(AM, BM)

is minimized when AM = [A1, A2, . . . , Ai, . . . , Aj, . . . , AM]
(A1 ≤ A2 ≤ · · · ≤ Ai ≤ · · · ≤ Aj ≤ · · · ≤ AM),
BM = [B1, B2, . . . , Bi, . . . , Bj . . . , BM]T , and B1 + B2 +
· · · + Bi + · · · + Bj + · · · + BM = Y0, then the inequality
B1 ≥ B2 ≥ · · · ≥ Bi ≥ · · · ≥ Bj ≥ · · · ≥ BM holds.

Let �metric(AM, BM)′ be the dynamic energy metric
where the position of exactly two elements in BM is
exchanged. Assume that the position of Bi and Bj (i < j)
is exchanged for �metric(AM, BM)′, then BM becomes
[B1, B2, . . . , Bi−1, Bj, Bi+1, . . . , Bj−1, Bi, Bj+1, . . . , BM]T in
this case. According to the definition of dynamic
energy metric in (14), �metric(AM, BM) = A1B1 +
A2B2 + · · · + AiBi + · · · + AjBj + · · · + AMBM and
�metric(AM, BM)′ = A1B1 + A2B2 + · · · + AiBj + · · · +
AjBi + · · · + AMBM . Since �metric(AM, BM) is the optimum,
�metric(AM, BM)′ −�metric(AM, BM) = (Ai−Aj)(Bj−Bi) ≥ 0.
It is known that Ai ≤ Aj for i < j, then Bi ≥ Bj for i < j is
derived.

Given the optimum task assignment solution BM =
[B1, B2, . . . , BM]T that minimizes the dynamic energy metric
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�metric(AM, BM), any feasible solution in the solution space
can be obtained by exchanging elements in BM =
[B1, B2, . . . , BM]T multiple times. In each iteration of the
exchange, it can be deduced that Bi ≥ Bj holds for i < j.
In other words, the dynamic energy metric �metric(AM, BM)

is minimized when the processor with smaller power dissi-
pation factor ends up with the subset of its assigned tasks
having a larger power dissipation factor. The proposition is
proved.

B. Task-to-Processor Assignment Heuristic

As described in Section IV-A, assigning tasks to individual
processors is an NP-hard problem, which necessitates a task
assignment scheme that observes the proposition presented in
Section IV-A. Specifically, tasks in the subset with the maxi-
mum power dissipation factor is assigned to the processor with
the minimum power dissipation factor, and tasks in the subset
with the next maximum power dissipation factor is assigned to
the processor with the next minimum power dissipation factor.
This process repeats until all subsets of tasks are assigned to
individual processors. Once a task-to-processor assignment is
generated, the slack available on individual processors is dis-
tributed among local tasks. The details of the task assignment
heuristic are given in Algorithm 1.

Algorithm 1 essentially partitions the tasks in the given set �

into subsets, then assigns subsets of selected tasks to individual
processors in set P . The algorithm aims at minimizing the sys-
tem dynamic energy consumption under the timing constraint.
It is motivated by the proposition presented in Section IV-A,
that is, assigning the subset having a larger power dissipa-
tion factor to the processor having a smaller power dissipation
factor can minimize the system dynamic energy consumption.
Since the M processors in set P are sorted in the nondecreasing
order of processor power dissipation factors, the focus of the
algorithm becomes to derive a task-to-processor assignment
that partitions tasks into M subsets, arranged in the nonin-
creasing order of subset power dissipation factors, then assigns
them to corresponding processors. This can be achieved by
assigning tasks with larger task power dissipation factors to
processors with smaller processor power dissipation factors.
In addition, task deadlines are examined to meet the real-time
constraint for each task assignment.

The pseudo code of our task assignment heuristic is given in
Algorithm 1. Inputs to the algorithm are task set �, processor
set P , ambient temperature Tamb, and temperature limit Tmax.
Line 1 of the algorithm initializes subsets {�1, �2, . . . , �M}
to {∅, ∅, . . . , ∅}, chip initial temperature Tinit to ambient
temperature Tamb, and index k to 1. Lines 2–12 iteratively
implement the process of task assignment and scheduling if
the task set � is not empty and not all processors in P have
been considered. In each round of iteration, the tasks in sub-
set �k assigned to processor Pk are determined in lines 3–10.
More specifically, lines 3 and 4 calculate the task power dissi-
pation factor δi of every task τi in set � and sort the tasks in the
decreasing order of δi. Line 5 creates a temporary subset �tem.
Lines 6–10 iteratively assign tasks in set � to processor Pk

and construct subset �k of tasks in a first-fit manner according

Algorithm 1: Energy-Efficient Task-to-Processor
Assignment Under the Real-Time Constraint

Input: task set �, processor set P , ambient temperature Tamb,
and temperature limit Tmax

1 initialization: {�1, �2, . . . , �M} ← {∅, ∅, . . . , ∅},
Tinit ← Tamb, and k← 1;

2 while � �= ∅ and k ≤ M do
3 calculate task power dissipation factor δi of every task τi in

� according to δi = μici
pi

;
4 sort τi ∈ � in the non-increasing order of δi;
5 create a temporary subset �tem;
6 for i = 1 to sizeof (�) do /* use First-Fit to

group tasks into subsets */
7 �tem = �k + τi;
8 if (RTFA(�tem, k) == true) then
9 �k = �k + τi;

10 � = � − τi;

11 assign the slack to tasks in subset �k and check the
thermal constraint using Algorithm 2;

12 k← k + 1;

13 if � �= ∅ and k > M then
14 exit(1); /* the tasks in set � cannot be

feasibly scheduled under the timing and
thermal constraints */

15 else if � = ∅ and k < M then
16 power off the vacant processors in P to save energy;

17 return the target schedule {�1, �2, . . . , �M};
Procedure RTFA(�tem, k)

18 flag = true;
19 for i = 1 to sizeof (�tem) do
20 calculate the worst case response time RT(i, k) using (16);
21 if RT(i, k) > Di then
22 flag = false;
23 break;

24 return flag;

to the schedulability requirement. The task with larger task
power dissipation factor has higher priority when assigned to
the processor. The temporary subset �tem is used to facilitate
the timing feasibility analysis of assigning task τi to processor
Pk (line 7). If the assignment can satisfy the real-time con-
straint, the task is assigned to the processor, and both subset
�k and set � are updated (lines 8–10). The procedure then
moves to the next iteration and considers the allocation of the
next task in set �. Otherwise, the task is not assigned and
the procedure directly moves to the next iteration. The slack
available on processor Pk is assigned to tasks in subset �k

under the thermal constraint using Algorithm 2 (line 11). The
process continues until a feasible schedule is generated for the
system. If there is no feasible schedule for the system under
the constraints, the algorithm exits (lines 13 and 14). When the
task assignment is finished, if the system still has some vacant
processors, these vacant processors are powered off for energy
savings (lines 15 and 16). The target schedule is returned in
line 17. RTFA is called in line 8 to check if the timing design
constraint is satisfied. If the response time RT(i, k) of task
τi exceeds the deadline Di, τi cannot be feasibly assigned to
processor Pk (lines 21–23).
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V. OUR SLACK DISTRIBUTION POLICY

Real-time tasks in a given set � are assigned to individ-
ual processors using Algorithm 1 for reducing the dynamic
energy consumption. RTFA is conducted for the task assign-
ment. Slack is the time when the processor is in the idle
state, which is due to that tasks may not always take the
worst-case execution time to finish and can complete earlier
before the deadline. Using slack distribution can reduce pro-
cessor peak temperature without increasing system dynamic
or leakage energy consumption since slack distribution is in
fact a rearrangement of the available slack time on the proces-
sor rather than introducing additional slacks. On the contrary,
the temperature-dependent leakage energy consumption can
be reduced due to the improved temperature profiles achieved
by slack distribution. In this section, we focus on the design
of temperature-aware slack distribution policy for minimizing
the system leakage energy consumption. Thermal feasibility
analysis is conducted for the slack distribution.

A. Slack Assignment to Reduce Peak Temperature

From the thermal model introduced in Section II-C and the
leakage energy calculation analysis given in Section III-A, it
is advantageous to do slack distribution under thermal steady
state. This is because even if we discretize the SD into a
large number of small intervals, transient thermal analysis may
still be too costly [23]. It has been shown in [23] that steady
state thermal analysis can rapidly and accurately predict the
temperature when task execution times are long compared to
the thermal time constant of the processors; otherwise, it may
lead to overestimated peak temperature when task execution
times are short relative to the processor thermal time constants.
Under the thermal steady state, we prove that the tempera-
ture profiles can be improved if all tasks on the processor
assume a uniform steady state temperature. We then discuss
the policy for slack distribution which can effectively reduce
the processor peak temperature.

Proposition 2: Under the thermal steady state, the peak tem-
perature of tasks on a processor is minimal if all tasks assume
a uniform steady state temperature.

Proof: Suppose that Tstd(i, k) is the steady state temperature
of task τi on processor Pk, which is formulated as [31]

Tstd(i, k) = Pstd(i, k)× Rk + Tamb (18)

where Pstd(i, k) is the power consumption in the steady state
and can be treated as a constant since temperature becomes
steady. Rk is the thermal resistance of Pk and Tamb is the
ambient temperature. Both of them are known. Thus, for the
subset �k, we can conclude that

∑z
i=1 Tstd(i, k) is a con-

stant, where z = sizeof(�k). In the thermal steady state,
the peak temperature of tasks are no more than their steady
state temperature [23] so that the peak temperature of tasks
on processor Pk is max {Tstd(1, k), Tstd(2, k), . . . , Tstd(z, k)}.
Since

∑z
i=1 Tstd(i, k) is a constant, it is easy to see

that max {Tstd(1, k), Tstd(2, k), . . . , Tstd(z, k)} is minimal iff
Tstd(1, k) = Tstd(2, k) = · · · = Tstd(z, k) holds. The propo-
sition is proved.

The discussion above states that the peak temperature of
a processor in the steady state is minimal if all tasks on the
processor assume a uniform steady state temperature, which
motivates the proposed slack assignment heuristic that bal-
ances steady state temperatures of tasks on the processor
through slack distribution. With the improved temperature pro-
files, the temperature-dependent leakage energy consumption
of the system is then reduced, as analyzed in Section III-B.

Let sl∗i be the optimal slack allocated to task τi on processor
Pk for temperature balance, then the average steady power
consumption P̄std(i, k) of task τi during its execution time and
slack time is given by

P̄std(i, k) =
Pstd

leak(k)×
(

ci
sk
+ sl∗i

)
+ Pdyn(i, k)× ci

sk

ci
sk
+ sl∗i

where Pstd
leak(k) is the leakage power in steady state, Pdyn(i, k)

is the dynamic power, and (ci/sk) is the task execution time.
Let Tstd,k be the uniform steady state temperature of tasks

on processor Pk, i.e., Tstd(i, k) = Tstd,k holds for ∀τi ∈ �k.
Given the steady state temperature and power consumption of
task τi, the optimal slack assigned to the task can be derived
by substituting Tstd(i, k) = Tstd,k and Pstd(i, k) = P̄std(i, k)
into (18), and is written as

sl∗i =
Pdyn(i, k)× Rk × ci(

Tstd,k − Tamb − Pstd
leak(k)× Rk

)× sk
− ci

sk
. (19)

In (19), Pstd
leak(k) is dependent upon Tstd,k, and other terms

are constants either dependent upon the processor or the task,
which indicates that sl∗i is determined by Tstd,k. Thus, the
key of solving (19) is to derive the uniform steady state
temperature of tasks on processor Pk.

It has been shown in [16], [22], and [23] that the uni-
form steady state temperature of tasks on the processor is
derived when the processor reaches the steady state condition
((dTk(t)/dt) = 0). Hence we can obtain the uniform steady
state temperature Tstd,k of each processor Pk by substitut-
ing the condition (dTk(t)/dt) = 0 into (8), which are given
as [16], [22], [23]

⎡
⎢⎢⎢⎣

�1,1 · · · �1,M

�2,1 · · · �2,M
...

...
...

�M,1 · · · �M,M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Tstd,1
Tstd,2

...

Tstd,M

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

1
2
...

M

⎤
⎥⎥⎥⎦. (20)

For any 1 ≤ k �= m ≤ M, �k,k = βkvk − ∑H
h=1 Gk,h −∑M

m=1 Gk,m, �k,m = Gk,m, and k = αkvk + Ceff
k v2

ksk.
The optimal slack sl∗i given in (19) is derived under the

assumption that all the slack available on processor Pk is
assigned to tasks in subset �k. Note that the slack assigned
to a task is used to cool down the processor. Similar to the
scenario that assigning slack to a task to slow down the proces-
sor increases the response time of successive tasks, assigning
slack to a task to cool down the processor will lead to an
increase in the response time of successive tasks. Therefore,
there exists a slack bound for a task beyond which the task
will miss its deadline. Let sli,max be the maximum amount
of slack that can be assigned to task τi without violating the
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timing constraint, then the slack actually assigned to task τi is
given as sli = min{sl∗i , sli,max}. The next section describes the
slack assignment heuristic in detail.

B. Temperature-Aware Slack Assignment Heuristic

Based on the proposed slack distribution policy, the slack
assignment heuristic is developed to reduce the peak temper-
ature of processors. The details of the heuristic are given in
Algorithm 2. The algorithm iteratively assigns slack to tasks in
subset �k, and moves the tasks that violate thermal constraint
to set � for reallocation. It takes as input subset �k that is
generated by Algorithm 1, and an arbitrarily small positive
number ε. In each round of iteration, the optimal slack sl∗i
of task τi used for temperature minimization is first calculated
using (19) (line 2). Then the maximum slack sli,max that could
be assigned to τi is derived using procedure SLAK(�k, τi, ε)
(line 3). The slack sli = min{sl∗i , sli,max} is assigned to τi, and
the task execution time is hence updated (line 4). This pro-
cess repeats until all tasks in �k are examined. After the slack
assignment is finished, a TFA procedure is used to evaluate
the thermal feasibility of the resultant task schedule, and those
tasks that violate the thermal constraint are sent back to set �

and considered to be allocated to the next processors as well
as unassigned tasks.

Procedure SLAK derives the maximal slack for a task in
a binary search-based manner. Inputs to the procedure are
task τi, subset �k, and the arbitrarily small positive num-
ber ε. A search space [sll, slh] is defined and initialized to
[0, Di − RT(i, k)], where sll and slh are the lower and upper
bound of the space, and Di and RT(i, k) are the deadline and
response time of τi, respectively (line 7). The search length,
denoted by ρ, is set to slh − sll (line 8). Lines 9–16 describe
the searching process. In each round of iteration, a dummy
task τtem is created and initialized to τi, the median sltem of
search space is calculated and taken as the slack assigned to
the dummy task τtem, and a dummy subset �tem is created and
set to �k+ τtem. Procedure RTFA presented in Algorithm 1 is
called to check if timing constraint of tasks in �tem is met. The
search space [sll, slh] and length ρ are updated in each itera-
tion, and the process stops when ρ is less than yet close enough
to ε. The lower bound sll of the search space is returned as
the maximum slack that could be assigned to task τi (line 17).

The chip temperature should be below a temperature limit,
as described in (17) to avoid the temperature-induced failures.
To check if the thermal constraint is satisfied, we need to know
the temperature of processors and heat sinks. As discussed in
Section V-A, transient thermal analysis is prohibitive due to its
extremely expensive computation cost, and steady state ther-
mal analysis is less costly but may result in overestimated peak
temperature. Fortunately, it is safe to use steady state thermal
analysis to check the thermal constraint since if the overes-
timated peak temperature is below the temperature limit, the
actual peak temperature must be as well. Thus, obtaining the
steady state temperature of processors and heat sinks becomes
the focus. At the end of Section V-A, we show the derivation
of processor steady state temperatures, as in (20). Similarly, we
can obtain the steady state temperature T ′std,h of each heat sink

Algorithm 2: Temperature-Aware Slack Assignment for
Subset �k Under the Thermal Constraint

Input: subset �k, an arbitrarily small positive number ε
1 for i = 1 to sizeof (�k) do
2 calculate the optimal slack sl∗i of task τi using (19);
3 derive the maximum slack sli,max for task τi using

SLAK(�k, τi, ε);
4 allocate slack sli = min{sl∗i , sli,max} to τi and update

execution time ET(i, k) = ET(i, k)+ sli;

5 if (TFA(�k) == false) then
6 move the tasks in �k that violate the thermal constraint to

� for re-allocation using Algorithm 1;

Procedure SLAK(�k, τi, ε) /* SLAK is a binary
search-based method */

7 [sll, slh] = [0, Di − RT(i, k)];
8 ρ = slh − sll;
9 while (ε < ρ) do

10 sltem = (sll + slh)/2;
11 τtem = τi + sltem, �tem = �k + τtem;
12 if (RTFA(�tem, k) == true) then
13 [sll, slh] = [sltem, slh];
14 else
15 [sll, slh] = [sll, sltem];

16 ρ = slh − sll;

17 return sll;

Procedure TFA(�k)
18 calculate the steady state temperature Tstd,k of Pk using (20);
19 calculate the steady state temperature T ′std,h of �h using (21);
20 if Tstd,k ≤ Tmax and T ′std,h ≤ Tmax then
21 return true;
22 else
23 return false;

�h by substituting the steady state condition ((dTh(t)/dt) = 0)
into (9), which are given as [16], [22], [23]

⎡
⎢⎢⎢⎣

�′1,1 · · · �′1,H
�′2,1 · · · �′2,H

...
...

...

�′H,1 · · · �′H,H

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

T ′std,1
T ′std,2

...

T ′std,H

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

 ′1
 ′2
...

 ′H

⎤
⎥⎥⎥⎦. (21)

For any 1 ≤ h �= � ≤ H, �′h,h = −Gamb −∑M
k=1 Gk,h −∑H

�=1 Gh,�, �′h,� = Gh,�, and  ′h = GambTamb. Based on the
steady state thermal analysis, we can utilize the steady state
temperature to verify the thermal feasibility of the resultant
task schedule, as given in Procedure TFA (lines 18–23).

VI. EVALUATION

Extensive simulation experiments have been conducted
to validate the proposed scheme. The proposed scheme is
compared with two benchmarking algorithms rate mono-
tonic first fit (RMFF), rate monotonic best fit (RMBF) [33],
and a state-of-the-art approach hybrid worst-fit genetic algo-
rithm (HWGA) [16]. Benchmarking algorithms RMFF and
RMBF [33] are taken as baseline schemes to exhibit the
energy efficiency of the proposed algorithms. The two algo-
rithms assign priority to tasks based on task periods. A
task with shorter period has higher priority than a task with
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TABLE I
PROCESSOR PARAMETERS AND CONSTANTS [21]

longer period. RMFF is a partition algorithm that assigns the
task with the highest priority to the first processor that can
accommodate the task, while RMBF is a partition heuristic that
assigns the task with the highest priority to the processor with
smallest unused capacity among those processors on which it
fits [33]. HWGA integrates a worst-fit based partition heuristic
with the genetic algorithm to generate a task allocation that
reduces the energy consumption while satisfying all system
constraints [16]. The worst-fit based partition scheme assigns
the task with the highest priority to the processor with maxi-
mum remaining capacity. For the sake of fair comparison, the
same simulation settings are adopted for the proposed method
and benchmarking algorithms RMFF, RMBF, and HWGA.

A. Experimental Settings

We perform our experimental simulations based on a 2× 3
MPSoC system (M = 6). Our processor model is built on
65 nm technology [19], [21]. The supply voltage v, process-
ing speed s, and constants α, β, and Ceff of six processors
are listed in Table I. Four real-life benchmarks (task sets)
from the Embedded System Synthesis Benchmark Suite [34]
are utilized to validate the proposed scheme. The benchmarks
are automotive-industrial, consumer-networking, telecom, and
mpeg, which consist of 16, 20, 17, and 15 tasks, respectively.
As its name indicates, each benchmark represents an appli-
cation. The periods of tasks in applications are assumed to
equal their deadlines. The task activity factors μ are uniformly
distributed in the interval [0.4, 1], which demonstrates the het-
erogeneous nature of tasks [17]. We use HotSpot [26] to obtain
the RC thermal model for the above platform. The floorplan
and HotSpot parameters are given as follows. The number of
processors is six, the area per processor is 4 mm2, the die
thickness is 0.15 mm, the heat spreader side is 20 mm, and
the heat sink side is 30 mm. The average of thermal resis-
tance and capacitance of processors are selected as 0.8 K/W
and 340 J/K, respectively. The ambient temperature is set to
45 ◦C. Simulation experiments have been carried out under
varying thermal constraints (Tmax = 60 ◦C, 65 ◦C, 70 ◦C, and
75 ◦C) to verify the effectiveness of the proposed algorithms.

B. Simulation Results

1) Evaluation of the Accuracy and Efficiency of the
Proposed Energy Estimation Method: We evaluate the accu-
racy and efficiency of the proposed energy estimation method,
which is given in (13). Specifically, we test the performance
of the proposed energy estimation method when the proces-
sor runs at different supply voltages and in SDs with varying
lengths. The proposed energy estimation method is compared

TABLE II
ACCURACY AND EFFICIENCY EVALUATION OF THE PROPOSED ENERGY

ESTIMATION METHOD

with the baseline approach presented in [14] from the aspects
of energy consumption and computation cost. The baseline
approach splits an SD into a series of small intervals and
assumes the temperature (and hence the leakage power) in
every interval is close to a constant. To achieve an accurate
energy estimation, we let the length of every interval be small,
that is, 0.01 s.

Let EPro and EBas denote the system energy consump-
tion calculated by using the proposed method and baseline
approach [14], respectively. Err = (EPro − EBas/EPro)× 100%
denotes the relative error of the proposed method when com-
pared to the baseline approach in terms of system energy esti-
mation. Let ACTPro and ACTBas denote the average CPU time
consumed by the proposed method and baseline approach [14],
respectively. Spe = (ACTBas/ACTPro) denotes the speedup
achieved by the proposed method when compared to the base-
line approach in terms of average CPU time. The simulation
results given in Table II clearly show that the proposed esti-
mation method is accurate and efficient. As can be seen in the
table, the system energy consumption estimated by the pro-
posed method is close to that of the baseline approach. The
maximal relative error is no more than 3.9%. On the other
hand, the proposed method can reduce the computational cost
and achieves up to 14.5× of speedup in terms of average
CPU time.

2) Comparison of the Energy Consumption: We compare
the proposed scheme with the methods RMFF, RMBF [33],
and HWGA [16] in energy efficiency. The benchmarking
methods RMFF and RMBF first arrange tasks in the order
of increasing task periods, then allocate tasks to individ-
ual processors using the first fit and best fit heuristics. The
state-of-the-art approach HWGA allocates tasks to individual
processors using the genetic-algorithm worst-fit based heuris-
tics. In the proposed scheme, processors are arranged in the
order of increasing processor power dissipation factor while
tasks are organized in the order of decreasing task power dis-
sipation factor. Tasks with large power dissipation factor are
then assigned to processors with small power dissipation fac-
tor, which has been proved to be able to minimize system
dynamic energy consumption in Section IV-A. The available
slack on the processor is allocated to tasks for achieving a uni-
form steady state temperature. Through this slack distribution,
the peak temperature of tasks on the processor is minimized, as
proved in Section V-A, then the temperature-dependent system
leakage energy savings is hence maximized.
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Fig. 5. Average energy consumption of benchmarks under four system thermal constraints using the proposed algorithm and three benchmarking schemes.

Fig. 5 shows the average energy consumed by the sys-
tem when executing four benchmarks (automotive-industrial,
consumer-networking, telecom, and mpeg) under four sys-
tem thermal constraints using the proposed algorithm and
three benchmarking schemes HWGA [16], RMBF, and
RMFF [33]. The system thermal constraint takes the values of
Tmax = 60 ◦C, 65 ◦C, 70 ◦C, and 75 ◦C. The energy consump-
tion given in the figure is averaged over 1000 test instances.
As can be seen in the figure, the proposed algorithm consumes
the least energy for a given thermal constraint among the
four algorithms. Specifically, the proposed algorithm achieves
energy savings of up to 11.1%, 20.1%, and 23.3% as com-
pared to benchmarking methods HWGA, RMBF, and RMFF,
respectively. For example, for the scenario of benchmark
automotive-industrial under the constraint Tmax = 70 ◦C, the
energy consumption (EPro = 311.7 J) of the proposed scheme
is 11.1% lower than that (EHWGA = 350.6 J) of HWGA. For
the scenario of benchmark mpeg under the constraint Tmax =
75 ◦C, the energy consumption (EPro = 312.7 J) of the pro-
posed algorithm is 20.1% lower than that (ERMBF = 391.6 J)
of RMBF. For the scenario of benchmark automotive-industrial
under the constraint Tmax = 75 ◦C, the energy consumption
(EPro = 301.5 J) of the proposed algorithm is 23.3% lower
than that (ERMFF = 393.2 J) of RMFF.

3) Comparison of the Schedule Feasibility: We also com-
pare the proposed scheme with benchmarking algorithms
HWGA [16], RMBF, and RMFF [33] from the aspects of
schedule feasibility under different thermal constraints. In
addition to the algorithm adopted, the schedule feasibility is
affected by two factors, that is, the input benchmark (task set)
assigned to processor set and the thermal constraint set by
system designer. In the simulation, we adopt four benchmarks
and the temperature limits Tmax are set to 60 ◦C, 65 ◦C, 70 ◦C,
and 75 ◦C. The feasibility is calculated as the ratio of the num-
ber of benchmark instances that can be feasibly scheduled to
the total number of benchmark instances. The total number of
benchmark instances employed in feasibility test is 1000.

The feasibility test results are given in Fig. 6. As shown in
the figure, when thermal constraint is loose (Tmax = 75 ◦C),
the feasibility of the proposed algorithm, HWGA, RMBF, and
RMFF are nearly 100%. As expected, the feasibility of the four
algorithms are decreasing with the increase in benchmark size
for a given thermal constraint. For instance, for the scenario
of Tmax = 65 ◦C, the feasibility rates achieved by HWGA
in the case of benchmarks automotive-industrial (N = 16),
consumer-networking (N = 20), telecom (N = 17), and mpeg
(N = 15) are 95.2%, 92%, 94.5%, and 96%, respectively. This
is because increasing benchmark size leads to heavier work-
load on processors, which may incur violation of thermal and
timing constraints. It also has been demonstrated in Fig. 6 that
for a given benchmark, the feasibility of the four algorithms
decreases when a rigorous thermal constraint is applied.

The proposed algorithm outperforms benchmarking algo-
rithms HWGA, RMBF, and RMFF in feasibility by up to
15%. For example, for the scenario of benchmark consumer-
networking under the constraint Tmax = 60 ◦C, the feasibility
of the proposed algorithm exceeds that of HWGA, RMBF, and
RMFF by 6%, 11%, and 15%, respectively. This is primarily
due to that the proposed algorithm allocates tasks to indi-
vidual processors with considerations of timing and thermal
constraints, while RMBF and RMFF performs task allocation
without considering the thermal constraint. As compared to
the state-of-the-art method HWGA, the proposed algorithm
utilizes a thermal-aware slack assignment heuristic to improve
processor temperature profiles and exploits feasibility analysis
techniques to ensure the timeliness of the system.

4) Comparison of the Time Complexity: Due to the
differences in the hardware platforms, it is difficult to
directly compare running time with the three benchmark-
ing algorithms. Therefore, we provide a time complexity
analysis in this section. The time complexity of the pro-
posed scheme and benchmarking methods HWGA [16],
RMBF, and RMFF [33] are O(M2N2), O(Maxgen ·M2NlogM),
O(MNlogN), and O(MNlogN), respectively, where M is the
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Fig. 6. Compare the proposed algorithm with benchmarking schemes HWGA [16], RMBF, and RMFF [33] in schedule feasibility.

Fig. 7. Log–log plot of the time complexity of the proposed scheme and
benchmarking methods HWGA [16], RMBF, and RMFF [33].

number of processors in the processor set, N is the number of
tasks in the task set, and Maxgen is the maximum number of
generations for the genetic algorithm used in method HWGA.

Fig. 7 shows the log–log plot of time complexity for the
proposed scheme and benchmarking methods HWGA, RMBF,
and RMFF. The plot is generated based on the setting of
M = 6 and Maxgen = 1000. It has been demonstrated in
the figure that the time complexity of the proposed scheme
is much lower when compared to that of the state-of-the-
art method HWGA, and is close to that of benchmarking
methods RMBF and RMFF. The reason why RMBF and
RMFF have the lowest time complexity is that they do not
take into account the thermal constraint and thermal control,
which adversely impacts their performance in schedule feasi-
bility, as the results in Section VI-B3. However, the proposed
scheme can not only achieve a similar low time complex-
ity, but also has a high schedule feasibility, as the results in
Sections VI-B3 and VI-B4.

VII. CONCLUSION

This paper proposes a task allocation scheme and
a slack assignment policy for heterogeneous real-time

MPSoC systems. The proposed task allocation scheme mini-
mizes the system dynamic energy consumption by assigning
tasks to individual processors in the way that the processor
with a small power dissipation factor ends up with allocated
tasks in a subset having a large power dissipation factor. The
proposed slack assignment policy that reduces the system leak-
age energy consumption by improving processor temperature
profiles, is motivated by the observation that the peak tem-
perature of tasks on a processor is minimal if tasks assume
a uniform steady state temperature. Feasibility analysis tech-
niques are utilized to ensure the timing and thermal constraints
can be satisfied.

The proposed energy estimation method is evaluated with
aspects to accuracy and efficiency. The simulation results
show that as compared to the baseline approach, the proposed
method can not only accurately estimate the energy consump-
tion within 3.9% relative error, but also achieve up to 14.5×
speedup in terms of CPU time. The proposed algorithms are
compared with benchmarking schemes RMFF, RMBF, and
HWGA in terms of energy efficiency and schedule feasibility.
The simulation results show that the proposed algorithms con-
sume up to 23.3% less energy and achieve up to 15% higher
feasibility as compared to benchmarking schemes.
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