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Abstract—Branch-and-bound approaches are promising in pruning fruitless search space during the resource constrained scheduling.

However, such approaches only compare the estimated upper and lower bounds of an incomplete schedule to the length of the best

feasible schedule at that iteration, which does not fully exploit the potential of the pruning during the search. Aiming to improve the

performance of resource constrained scheduling, this paper proposes a parallel structure-aware pruning approach that can traverse

the search space significantly faster than state-of-the-art branch-and-bound techniques. This paper makes three major contributions: i)

it proposes an efficient pruning technique using the structural scheduling information of the obtained best feasible schedules; ii) it

investigates how to perform parallel search to enable efficient multi-directional search and generation of effective fences by tuning the

operation enumeration order; and iii) it presents a framework that supports the sharing of minimum upper-bound and fence information

among different search tasks to enable efficient parallel structure-aware pruning. The experimental results demonstrate that our

parallel pruning approach can drastically reduce the overall resource constrained scheduling time under a wide variety of resource

constraints.

Index Terms—Resource constrained scheduling, branch-and-bound, parallel pruning, structure-aware pruning
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1 INTRODUCTION

BY raising the design abstraction to electronic system lev-
els (ESLs), high-level synthesis (HLS) enables rapid gen-

eration of RTL hardware designs to satisfy performance,
cost, area and power requirements [1], [2]. More and more
HLS tools have been adopted for designing efficient systems
in a wide variety of domains including field-programmable
gate array (FPGA) based systems [3] and application spe-
cific multiprocessor designs [4]. HLS solutions show that
they can achieve optimized designs as well as improve
design productivity.

To enable the design space exploration and performance
estimation, ESL behavior descriptions are converted into
data flow graphs (DFGs), which are used as the intermediate
representation by HLS algorithms. HLS involves three
major tasks: scheduling, allocation and binding. Scheduling
refers to the assignment of operations to control steps (c-
steps). Allocation and binding map the computation opera-
tions in DFGs to hardware resources. In HLS, scheduling is
a major challenge, because it needs to make the trade-off
between various constraints and explore a large number of
possible alternatives to find an optimal or near-optimal

design. In this paper, we focus on HLS under resource
constraints, called resource constrained scheduling (RCS)
[5], [6]. Given a DFG and a pre-defined set of resources
with specified overheads, RCS tries to find a schedule with
minimum overall c-steps. Essentially, RCS is a scheduling
problem with constraints of computation precedence and
resource limits [15].

RCS is an NP-Complete problem [5], [6]. Instead of enu-
merating all feasible schedules, various approaches [7], [8]
are proposed to efficiently prune inferior solutions for RCS.
Branch-and-bound (B&B) approaches [7], [9] are promising
in existing RCS approaches to prune the search space. Dur-
ing the state space exploration, the B&B methods update
the upper bound information of the optimal schedule
dynamically when encountering a better schedule with
shorter length. They utilize the updated upper-bound infor-
mation to shrink the search space as well as to strengthen
the pruning of inferior schedules. As an example, Fig. 1a
shows a typical B&B search scenario. Due to a loose upper-
bound estimation (i.e., v), the search space denoted by the
solid circle is large, and the B&B search indicated by the
solid arrow line is slow. In this stage, the B&B search can
only filter schedules whose lengths are larger than or equal
to v. When a better schedule (denoted by black dots) with
shorter length (i.e., v0) is obtained, the space of the following
search indicated by the dashed arrow line will be restricted
by the new upper bound v0. Consequently, the overall
search space gets reduced. Meanwhile, the B&B search with
shorter upper bound ignores all the schedules whose
lengths are larger than or equal to v0, thus the pruning rate
is accelerated. Although the above B&B search pattern is
promising in pruning unfruitful search space, it only uti-
lizes one search task, and only the upper and lower bound
information is used for pruning. If such search pattern can
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be improved by using other potential avenues besides
sequential search and bound-based pruning, the switching
time between different pruning rate will be reduced. There-
fore the overall searching time can be reduced drastically.

Since more and more computers are supporting multi-
core or many-core computation, the pruning efficiency can
be improved further by utilizing the parallelism. Fig. 1b
shows a parallel search example with two search tasks (task
1 is at the top, and task 2 is at the bottom). We assume that
search task 2 can find a better schedule earlier than task 1.
Since the shorter length of the better schedule can be used
as a new upper-bound for the scheduling, the search space
of both tasks can be reduced simultaneously. Moreover,
due to the early detection of a smaller upper-bound, the
pruning rate is improved earlier than the case in Fig. 1a.
Therefore, in Fig. 1b the B&B search of task 1 is accelerated.
From this example, we can find that the interactions
between different search tasks can benefit the overall search.
Based on the above observations, designing an efficient par-
allel RCS approach needs to address the following three
challenges.

1) How to spawn multiple search tasks to enable effi-
cient parallel exploration on a given search space? In
this paper, we investigate the tuning of operation
enumeration order to enable multi-directional paral-
lel search. It enables the parallel search and genera-
tion of fences at different parts of search space,
which increases the chance of early detection of opti-
mal schedules.

2) How to achieve a better schedule faster than tradi-
tional B&B approach? In this paper, we propose an
efficient level-bound pruning technique for the RCS
problem based on B&B methods, which exploits the
DFG structure information of the up-to-date optimal
schedules. By comparing the scheduling time of par-
tial operations, our approach can discard the incom-
plete schedules whose estimated upper-bound
length equals to the length of the up-to-date optimal
schedule. Therefore, it can prune the search space in
a proactive manner.

3) How to share learning information among different
search tasks to accelerate the searching? This paper
presents a collaborative framework that supports the
sharing of fences and minimum upper-bound
among different search tasks to enable efficient par-
allel level-bound pruning. Each parallel search task
can have multiple “fences” to efficiently avoid deep
recursive search that leads to drastic reduction in
scheduling time.

This paper is organized as follows. Section 2 introduces
the related work on RCS. Section 3 presents the related
background and motivates the need for structure-aware
pruning. Section 4 proposes our scheduling approach using
structure-aware pruning. Section 5 presents our experimen-
tal results. Finally, Section 6 concludes the paper.

2 RELATED WORK

Unlike non-optimal RCS heuristic methods (e.g., list sched-
uling [5], [6], Tabu search [11]), this paper studies how to
quickly obtain a tight schedule under resource constraints.
In the early stage, integer linear programming (ILP) based
approaches [10], [13] were widely investigated in HLS
scheduling. For example, Gebotys and Elmasry [10] pro-
posed a set of efficient formulas that can drastically reduce
the solving time of ILP methods. By using a relaxed ILP for-
mulation together with a greedy algorithm, Rim and Jain
[13] presented an approach that can optimize lower bounds
of operations. Although ILP-based methods allow designers
to describe the RCS problem naturally, the number of varia-
bles in ILP models increases very fast with the size of DFGs.
Consequently, solving complex RCS problems using ILP
models may need prohibitively long time.

Execution interval analysis is another popular approach for
HLS scheduling. Its basic idea is to perform lower- and
upper-bound estimation before real scheduling. Based on
relaxing precedence constraints in behavioral design
descriptions, Timmer and Jess [12] presented a unified
approach for lower-bound functional area and cycle budget
estimations. Shen and Jong [14] proposed a stepwise refine-
ment algorithm for resource estimation based on execution
interval analysis. Their approach can handle loop folding
and conditional branches at the same time. Therefore, it can
quickly produce a tight bound. Although execution interval
analysis can restrict the search within a small range, most of
existingmethods are invented to find near-optimal solutions.

To achieve an optimal resource constrained HLS sched-
ule, an obvious but time-consuming way is to enumerate all
the feasible designs [9]. To effectively avoid unnecessary
enumeration of inferior schedules, Narasimhan and Rama-
nujam [7] presented a B&B approach called BULB using
both lower- and upper-bound information to prune the
search space. In [21], Hansen and Singh proposed an effi-
cient B&B approach that can reduce the scheduling time
considering various resource constraints. In [26], Chen et al.
outlined a two-phase B&B approach that can achieve a
shorter initial upper-bound estimation to enable the overall
quick search within a new smaller search space. In [8], Yu
et al. presented an in-place approach based on a systematic
offspring generation algorithm, which requires only a con-
stant storage space during the traversal of the search tree.
However, so far, most RCS optimization methods only use
a single-core to figure out the solution.

Parallelism is widely studied in HLS [22], [25]. Chen et al.
[25] proposed a bound-oriented parallel B&B approach
for HLS. Based on the best upper- and lower-bound infor-
mation shared among parallel sub-search tasks, [25] can effi-
ciently locate an optimal result by combining both bound
speculation and search space partitioning techniques. How-
ever, it heavily relies on the analysis of bound information,

Fig. 1. Sequential versus parallel search.
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and does not utilize other features for pruning. Moreover, it
does not study the effect of operation ordering during the
parallel search.

Although parallel B&B approaches have been success-
fully adopted in many domains [27], few of them were con-
sidered in HLS. The BULB approach [7] applied branch-
and-bound for RCS but did not consider schedule structure
or parallel pruning techniques to reduce the RCS efforts. To
the best of our knowledge, our approach is the first attempt
to utilize the structure information of best schedules
obtained so far by sub-search tasks to prune the search
space in parallel.

3 PRELIMINARY KNOWLEDGE

This section introduces basic ideas for HLS scheduling,
including graph-based notations, scheduling related terms,
and a classic B&B RCS algorithm—BULB [7].

3.1 Graph-Based Notations of RCS Problem

RCS employs DFGs to describe the dependence of opera-
tions. A DFG is a Directed Acyclic Graph (DAG) G ¼ ðV;EÞ,
where V is a set of vertices (nodes) designating functional
operations with different types, E is a set of directed edges
describing operation dependencies between nodes. In a
DFG, each vi is tied with an operation opi. Therefore in this
paper, we use vi and opi interchangeably. For any two nodes
vi; vj 2 V , hvi; vji 2 E indicates that the operation of vi must
complete before the start of the operation of vj. We use
typeðopiÞ to indicate the type of functional unit that will be
occupied by opi, and delayðopiÞ to denote the time delay of
opi. In our approach, we assume that the operations with
the same type have the same delay. In other words, if
typeðopiÞ ¼ typeðopjÞ, we can get delayðopiÞ ¼ delayðopjÞ. An
operation without any predecessors is an input operation,
and an operation without any successors is an output opera-
tion. Consider an example shown in Fig. 2. This DFG con-
sists of six nodes and five directed edges. It uses two kinds
of resources (i.e., adders and multipliers). For example, op4
is a multiplication operation with a delay of two c-steps.
This DFG has three input operations and one output opera-
tion. For instance, v1 is an input operation, and v6 is an out-
put operation.

Besides basic graph notations, various graph theory nota-
tions are used to enable the RCS analysis. In this paper, we
use Gr to represent the transpose graph of G by reversing all
edge orientation. G0 ¼ ðV 0; E0Þ is a sub-graph of G ¼ ðV;EÞ if
both V 0 � V and E0 � E. The sub-graph including nodes vi
and all its direct and indirect predecessors is denoted by

GpreðviÞ. The sub-graph that includes the node vi and all its
connected successors is denoted as GðviÞ. The length of a
path in a DFG indicates the number of nodes along the
path. The weighted length of a path is the sum of operation
delays of the nodes along the path, while the delay is deter-
mined by the type of nodes. The path in G with the longest
length is called its critical path and the weighted path with
the longest length is called weighted critical path. We use
CPwðGÞ to denote the length of the weighted critical path of
G, and CPlðGÞ for the length of the critical path ofG. During
the recursive B&B search of G, the scheduling order rðGÞ of
all operations is determined by the length of weighted criti-
cal path CPwðGðviÞÞ 1 � i � N in a non-ascending manner.
For example in Fig. 2, either r1ðGÞ ¼ <v1, v2, v3, v4, v5, v6 >
or r2ðGÞ ¼ <v1, v3, v2, v4, v5, v6 > can be a candidate of
scheduling orders for G, since CPwðGðv1ÞÞ ¼ 6, CPwðGðv2ÞÞ
¼ 5, CPwðGðv3ÞÞ ¼ 5, CPwðGðv4ÞÞ ¼ 4, CPwðGðv5ÞÞ ¼ 3 and
CPwðGðv6ÞÞ ¼ 2.

As an important notion to describe the RCS structure, the
level of a node v (denoted by LevelðvÞ) indicates the longest
length from input nodes to v, i.e., LevelðvÞ ¼ CPlðGpreðvÞÞ.
For the example in Fig. 2, the nodes are partitioned into three
levels. For example, the level of v3 is 1 and the level of v5 is 2.
Before the scheduling, we need to mark the level information
for each node from small levels to large levels. For a node v,
LlðvÞ and LhðvÞ denote the indices of the earliest and latest
visited nodes within the same level of v respectively. For
example, assume that in Fig. 2 the operation scheduling order
for G is <v1, v2, v3, v4, v5, v6 > . Since v1, v2 and v3 are in the
same level, and v1 and v3 are the first and last visited opera-
tion in that level respectively, we can get Llðv1Þ ¼ Llðv2Þ ¼
Llðv3Þ ¼ 1 andLhðv1Þ ¼ Lhðv2Þ ¼Lhðv3Þ ¼ 3.

3.2 Scheduling Based on ASAP and ALAP

In RCS, an operation occupies a specific number of continu-
ous c-steps for execution on corresponding functional unit
during the scheduling. The start time of an operation is
regarded as the first c-step of its execution. The As-Soon-As-
Possible notation estimates the earliest start time of an opera-
tion opi. Since resource constraints cannot be figured out
before the real scheduling, in most approaches, ASAP ðopiÞ
estimates the earliest c-step only considering the operation
precedence constraints. Alternatively, theAs-Late-As-Possible
time of operation opi, denoted by ALAP ðopiÞ estimates the
latest c-stepwhen the operation opi can be started. To achieve
a higher HLS scheduling performance, it is required that
the intervals ½ASAP ðopiÞ; ALAP ðopiÞ� are as tight as possi-
ble. The following definition outlines an approach to cal-
culate the initial ASAP and ALAP values for each
operation opi in a graph G, which is adopted by most
HLS approaches [7].

Definition 3.1. Let G ¼ ðV;EÞ be a DFG of the HLS scheduling,
and opi (i 2 ½1; N �) be the operation of node vi 2 V .
ASAPGðopiÞ denotes the earliest time when the operation opi
can be dispatched, where

ASAPGðopiÞ ¼ CPwðGpreðopiÞÞ þ 1� delayðopiÞ:
ALAPGðopiÞ indicates the latest time when the operation opi
can be dispatched. Let leðSÞ be the length of a feasible schedule
S. It can be calculated by

Fig. 2. An example of an HLS DFG.
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ALAPGðopi; leðSÞÞ ¼ leðSÞ � CPwðGðopiÞÞ:

From the definition, leðSÞ has to be determined before
calculating the ALAP of operations. As an efficient method,
the list scheduling algorithm [5], [6] can achieve such a fea-
sible schedule quickly.

A feasible scheduling for a DFG tries to dispatch opera-
tions within calculated ½ASAP;ALAP � intervals under
the operation dependence constraints posed by the DFG
and the limited resources by the implementation require-
ment. As described in Definition 3.2, a schedule for
a given DFG is an assignment function S which dis-
patches each operation opi at c-step SðopiÞ 2 Zþ. Let S be
a feasible schedule, its length leðSÞ is the largest finished
time of all the operations, i.e., leðSÞ ¼ maxfSðopiÞ þ
delayðopiÞ j opi 2 V g. A schedule is optimal if it is the best
one until that iteration with the smallest length during
the scheduling exploration. Among all possible sched-
ules, the schedule with minimal length is regarded as
the global optimal schedule.

Definition 3.2. Let G ¼ ðV;EÞ be a DFG of a behavior specifica-
tion, and OP be the set of operations corresponding to V ,
where jV j ¼ jOP j ¼ N . Assuming that the target implemen-
tation supplies M types of functions, S ¼ fp1; . . . ;pMg, and
numðpiÞ indicates the number of functional units of type pi

(1 � i � M). A function S : OP ! Zþ is a feasible schedule
of G, iff it satisfies all the following conditions:

1) If hopi; opji 2 E where 1 � i; j � N , then SðopiÞ þ
delayðopiÞ � SðopjÞ holds.

2) For any time t and any operation of type pj,
jfopi j typeðopiÞ ¼ pj ^ ð½SðopiÞ; SðopiÞ þ delayðopiÞ�T ½t; t�Þ 6¼ ;gj � numðpjÞ.

Here condition 1 is the precedence constraint posed by
given DFG, and condition 2 indicates the resource con-
straints during the scheduling of DFG operations. We use
ðopi; SðopiÞÞ to denote the scheduling pair for operation opi.
For example in Fig. 2, assume that the RCS problem only
has one adder and one multiplier. In this case, the binary
relation fðop1; 1Þ, ðop2; 3Þ, ðop3; 4Þ, ðop4; 6Þ, ðop5; 6Þ, ðop6; 8Þg
is a feasible schedule with length 9. The binary relation
fðop1; 1Þ, ðop2; 1Þ, ðop3; 3Þ, ðop4; 5Þ, ðop5; 5Þ, ðop6; 7Þg is one of
the optimal schedules with length 8.

3.3 BULB Algorithm

Na€ıve enumeration of all the possible schedules for a DFG
within the given ½ASAP;ALAP � intervals is extremely time-
consuming. To reduce the unnecessary search time, the
BULB approach [7] was proposed to efficiently prune fruit-
less search space in a branch-and-bound manner.

Algorithm 1 presents the details of the BULB algo-
rithm. In this algorithm, we use Sopt to keep the best feasi-
ble schedule searched so far with the length v. S indicates
the current incomplete enumeration of operations.
globalLow denotes the lower-bound estimation of Sopt’s
length. Sopt is initialized with a feasible schedule obtained
using the list scheduling approach. Before an operation
can be dispatched, both the precedence and resource con-
straints of the operation should be checked. We use the

procedure PrecðopiÞ to check whether all the precedents of
operation opi are complete, and use the procedure
ResAvailableðstep; typeðopiÞÞ to check whether the resour-
ces required by opi are available at the given c-step. Note
that the BULB approach can be easily extended to solve
the scheduling with multiple kinds of constraints (e.g.,
area, energy, power) [21]. For example, if we want to
incorporate power constraints in Fig. 2, during the search-
ing we only need to put a checker for the overall power
consumption estimation at the given c-step step in the
procedure ResAvailableðstep; typeðopiÞÞ. If all specified
constraints hold, steps 1 and 2 will schedule the undeter-
mined operations in two different ways: i) LBoundðSÞ [16]
dispatches the unscheduled operations without consider-
ing the resource constraints, thus it can be used to get the
lower-bound length lower for S; and ii) UBoundðSÞ obtains
a feasible schedule for the undecided operations using the
list scheduling method [5], [6], thus it can be used to esti-
mate the upper-bound length upper of S. If upper is
smaller than v, it means that UBoundðSÞ is better than
Sopt. Therefore, the Sopt and v will be updated in steps 3
and 4. If the upper equals globalLow, step 5 will terminate
the whole BULB procedure. This is because an optimal
schedule has been found. Otherwise, step 6 will update
the ALAP for each operation with a smaller v. If lower is
smaller than v, steps 7-10 will dispatch a new operation
recursively. Otherwise, if lower is not smaller than v, the
current incomplete schedule S can be pruned. Finally, the
algorithm reports an optimal result.

Algorithm 1. BULB Algorithm

Input: i) An HLS DFGDwith resource constraints;
ii) Operations OP ¼ fop1; . . . ; opNg in dispatching order;
iii) A feasible schedule Sopt ofD and its length v;
iv) S, which stores the current incomplete schedule;

Output: An optimal schedule and its length forD
BULB(D,N , i, S, Sopt, v) begin

if i � N then
for step ¼ ASAP ðopiÞ to ALAP ðopiÞ do

if Prec(opi) ^ ResAvailable(step, typeðopiÞ) then
1. lower ¼ leðLBoundðSÞÞ;
2. upper ¼ leðUBoundðSÞÞ;
if upper < v then

3. v ¼ upper;
4. Sopt ¼ UBoundðSÞ;
if v ¼¼ globalLow then

5. Return (Sopt, v);
end
6. UpdateALAP ðÞ;

end
if lower < v then

7. SðopiÞ ¼ step;
8. ResOccupy(step, type(opi), delay(opi));
9. BULBðD;N; iþ 1; S; Sopt;vÞ;
10. ResRestore(step, type(opi), delay(opi));

end
end

end
end
Return (Sopt, v).

end
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4 PARALLEL STRUCTURE-AWARE PRUNING

From Section 3.3, we can find that in B&B approach, the
lower, upper and v are the three main factors involved in
pruning the useless search space. The pruning performance
highly depends on the estimation algorithms for the factors
lower, upper and the value of v. However, the other useful
information of the Sopt has not been fully investigated, espe-
cially when upper equals v. For example, the structural
scheduling information of Sopt (i.e., precedence constraint
and assigned c-steps of operations) has not been exploited
by the pruning strategies of B&B approach.

Based on the example shown in Figs. 2 and 3 shows the
basic idea of the structure-aware pruning. In this figure,
each node represents a functional operation, and the line
indicates the dispatching order. Since the Sopt contains use-
ful scheduling exploration information, by comparing par-
tial operations (i.e., the operations on a cut, which will be
introduced in Definition 4.1) between Sopt and S, the further
search of optimal schedule based on S can be terminated
under some condition. For example, let r1ðGÞ of the design
shown in Fig. 2 be the operation enumeration order, and
assume that Sopt ¼ fðop1; 1Þ, ðop2; 1Þ, ðop3; 3Þ, ðop4; 5Þ,
ðop5; 5Þ, ðop6; 7Þg is the best schedule searched so far. In this
case, upper ¼ 8 and globalLow ¼ 6. If only the operations
op1, op2, op3 have been dispatched in the current schedule S
such that Sðop1Þ ¼ 1, Sðop2Þ ¼ 2, and Sðop3Þ ¼ 3, the subse-
quent recursive search of the current schedule can be can-
celed. This is because that cut formed by operations op1, op2,
and op3 satisfies the level-bound pruning condition as pro-
posed in Section 4.1. However, the traditional B&B
approaches will continue the search, since v ¼ 8 and the
upper of the current search is also 8.

The above structural information is extremely useful
when v 2 ½lower; upper�, since it extends the pruning capa-
bility of the traditional B&B approaches. The structure infor-
mation can be used as a “fence” to prevent the deep fruitless
recursive search in the B&B approaches. In other worlds, it
can be used to prune a large part of the search space. Con-
structing more such fences will certainly reduce the overall
search time. However, since the fence information is gener-
ated from the best schedule searched so far, the current ver-
sion of sequential B&B approaches only maintains the best
schedule as the fence, and updates it when encountering a
better schedule during the search [24]. Resorting to the mul-
ticore platforms, multiple searches can be performed in dif-
ferent parts of the search space to construct fences. During
the parallel search, the search space will be effectively
pruned by the surrounding fences.

This section presents the details of our parallel structure-
aware pruning approach. Section 4.1 proposes our level-

bound pruning condition using the structural information
of schedules. Next, Section 4.2 presents how to create multi-
ple search tasks to explore different parts of the search
space. Finally, Section 4.3 presents a framework that enables
sharing of learning among different parallel tasks, which
can significantly improve the pruning performance.

4.1 Level-Bound Pruning
Fig. 4 illustrates the basic idea of our level-bound pruning
method based on the example shown in Fig. 2. Fig. 4a
presents an optimal schedule searched so far of a DFG G,
and Fig. 4b shows an incomplete schedule of G. Each opera-
tion in the figure is marked with a number indicating the
dispatch time of the corresponding operation. Suppose that
in S all the nodes of the first level have been scheduled and
the other nodes have not been determined yet. To avoid
fruitless search, traditional B&B approaches (e.g., BULB)
only compare leðSoptÞ with both the lower and upper of S for
pruning. Note that, in Fig. 4, the dispatching time of all
Sopt’s operations in the first level is no worse than the one of
S. Such structural scheduling information (i.e., the c-steps of
partial operations and corresponding operation precedence
relations) can be used to prune the search space.

Definition 4.1. For a given DFG G, a cut is an edge set
EG ¼ fe1; . . . ; eng where all the following conditions hold:
1) For each edge ei (1 < i � n), there exists a path from

some source node (i.e., a node without any incoming
edges) to ei.

2) For each source node in Gr, there exists a path from the
source node to some e 2 EG.

For a given cut, PreðCUT Þ denotes its precedent node set;
ImmeðCUT Þ denotes the adjacent input nodes of the edges in
the cut; and PostðCUT Þ denotes the set of descendant nodes. A
cut that separates the nodes in level X and the nodes in the lev-
els lower than X is called an Xth-level cut of G. Assuming
that cutX is the Xth-level cut of G, ImmeðcutXÞ is the Xth
complete level of G.

In RCS, checking two schedules node by node is neither
efficient nor necessary. Alternatively, we introduce the cut
notation which enables the fast comparison and pruning
during RCS. A cut divides a DFG into two disjoint parts
where the first part is the set of all the precedent nodes of
the cut while the second part is the set of all the descendant
nodes of the cut. Consider the example in Fig. 2, fe4; e5g is
the second level cut of G. In G, Preðfe4; e5gÞ ¼ fv1; v2;
v3; v4; v5g, Immeðfe4; e5gÞ ¼ fv4; v5g and Postðfe4; e5gÞ ¼
fv6g. The second complete level of G is fv4; v5g.

For a given DFG G and some given cut, if we have two
schedules (i.e., S1 and S2) which have just finished the

Fig. 3. A structure-aware pruning scenario.

Fig. 4. Comparison of two schedules.
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scheduling of the node set PreðCUT Þ, our level-bound prun-
ing method can be used to determine whether some incom-
plete schedule can be abandoned based on the comparison
of the scheduling information of the same cut of S1 and S2.
Before proving the correctness of our level-bound pruning
method (Theorem 4.1), we define the local optimal schedule
which is based on the result of an incomplete schedule.

Definition 4.2. Let OP be the node set of a given DFG G.
Assume that S is an incomplete schedule of G and node set
OPsch ¼ fopi1 ; opi2 ; . . . ; opimg is a subset of scheduled opera-
tions. A local optimal schedule Sl;OPsch is a complete sched-

ule which has fixed values for OPsch and the optimal
scheduling for the unscheduled operations (i.e., OPnOPsch).
That means Sl;OPsch is a global optimal schedule in the search

space Pm
k¼1½SðopikÞ; SðopikÞ� �Popj2OPnOPsch

½ASAP ðopjÞ;
ALAP ðopjÞ�.
The local optimal schedule Sl;OPsch denotes that when a

set of operations OPsch are assigned with fixed c-steps in
advance, it searches for the “global” optimal solution from
the rest of the nodes. Obviously, Sl;OPsch is an optimal sched-

ule but may not be the globally optimal schedule of the
given DFG.

Theorem 4.1. Assume that S1 and S2 are two incomplete sched-
ules of a given DFG G ¼ ðV;EÞ, and CUT is a cut of G. Let
Sl1;PreðCUT Þ and Sl2;PreðCUT Þ be two different local optimal

schedules based on CUT , and Imme ðCUT Þ be an operation
set fopi1 ; opi2 ;. . . ; opikg. Assume that v1 ¼ leðSl1;PreðCUT ÞÞ
and v2 ¼ leðSl2;PreðCUT ÞÞ. We can conclude that

V
1�j�kðS1ðopijÞ

� S2ðopijÞÞ &&
W

1�j�kð SoptðopijÞ! ¼ SðopijÞÞ¼)v1 � v2.

Proof. See the details in [24]. tu
In RCS, dynamically deciding whether an edge set is a

cut is time-consuming. Since the complete level structures
introduced in Definition 4.1 imply the cut information, our
approach adopts them for the level-bound pruning checking.
Instead of comparing all scheduled operations between two
schedules, in our level-bound pruning method, the compar-
ison is triggered only when all operations in one complete
level have been scheduled.

Definition 4.3. For a given DFG G, S is an incomplete schedule
and Sopt is the best schedule so far. LetOPk be the operation set of
the kth complete level. Assume that all the operations in set OPk

have been scheduled. Based on Theorem 4.1, the level-bound
pruning can be enabled when the following conditions hold.

1) 8opi; opi 2 OPk ! SðopiÞ > 0;
2) 8opi; opi 2 OPk ! SoptðopiÞ � SðopiÞ;
3) 9opi; opi 2 OPk ! SoptðopiÞ < SðopiÞ.

In Definition 4.3, the condition 1 indicates that all the
operations in kth complete level are dispatched. The condi-
tion 2 means that all the operations of S in kth complete level
do not have c-steps smaller than the corresponding opera-
tions of Sopt. The condition 3 denotes that at least one opera-
tion in kth complete level has worse c-step than the
corresponding operation in Sopt. The above conditions indi-
cate that the comparison only needs to check all the opera-
tions in level k. For example in Fig. 4, when the last operation

in the first level is scheduled, the level-bound checking will
be invoked. Since all operations of S in the first complete
level have larger or equal c-steps than the ones in Sopt, the
level-bound pruning can be enabled in this case.

For a given DFG, assume that the ith complete level con-
tains k operations, i.e., OPk ¼ fopi1 ; opi2 ; . . . ; opikg, and all

the operations in the ith complete level have been sched-
uled. Let Sopt be the optimal schedule so far, and let S be the
current schedule. When the level-bound pruning condition
holds for the ith complete level, there exists an operation
opij ð1 � j � kÞ such that SðopijÞ > SoptðopijÞ. In other

words, the recursive procedure of B&B approach backtracks
at least to the operation opij with value SoptðopijÞ þ 1. Let

OP be the operation set which contains both OPk and its
precedent operations, and their c-steps are the same as the
schedule S. According to Theorem 4.1, the local optimal
schedule Sl;OP cannot be better than Sopt. Since Sopt keeps
the up-to-date best schedule along the B&B approach recur-
sion, the current schedule S can be pruned.

Algorithm 2. Our Level-Bound Pruning Algorithm

Input: i) Sopt, the best schedule searched so far
ii) S, the current incomplete schedule
iii) opi, the last dispatched operation of S

Output:Whether Sopt outperforms S.
LevelBound(S; Sopt; opi) begin

if i 6¼ LhðopiÞ then
1. return false;

end
2. OP ¼ fopi1 ; . . . ; opikg ¼ ðlevelðopiÞÞth complete level;
if
V

1�j�kðSoptðopijÞ � SðopijÞÞ
&&

W
1�j�kðSoptðopijÞ 6¼ SðopijÞÞ then

3. return true;
end
4. return false;

end

Algorithm 2 describes the details of our level-bound
pruning approach. Step 1 checks whether all the operations
in current level have been scheduled. Step 2 identifies the
ðlevelðopiÞÞth complete level. Step 3 asserts that Sopt outper-
forms S based on the level-bound condition, and step 4
asserts otherwise. Note that, to save time, the level bound
based approach will be invoked only when all the opera-
tions in the ðlevelðopiÞÞth complete level are dispatched.

4.2 Parallel Level-Bound Pruning

According to Definition 4.3, our level bound pruning
approach enables the construction of fences to avoid fruit-
less search. In fact, each feasible schedule can be utilized as
a fence to restrict the fruitless search. Since we focus on the
pruning based on the operation scheduling information of
some level (i.e., level-bound pruning), the fence can be
decomposed into a set of sub-fences across different levels.
When different parallel search tasks are running collabora-
tively for an RCS problem, multiple fences will be gener-
ated. Since each fence corresponds to one feasible schedule,
if such information can be shared among parallel search
tasks, the search space will be restricted further by different
fences. Consequently, the overall search time can be
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reduced. For example in Fig. 2, assume that the length of an
initial feasible schedule is 8, and there are two search tasks
t1 and t2 using the operation order r01 ¼< v1; v2; v3; v4; v5;

v6 > and r02 ¼< v1; v3; v2; v4; v5; v6 > , respectively. When
t1 finds a better schedule S1, it will create a sub-fence at first
level as $ðv1; 1Þ; ðv2; 1Þ; ðv3; 3Þ$. Similarly, t2 will create a
sub-fence $ðv1; 3Þ; ðv2; 1Þ; ðv3; 1Þ$. When the search of t1
advances to the enumeration fðv1; 3Þ; ðv2; 1Þ; ðv3; 1Þ; ðv4; ?Þ;
ðv5; ?Þ; ðv6; ?Þg where ‘?’ denotes undetermined c-steps, t1
can be safely terminated, since the following search will be
blocked by the fence set by t2. Alternatively, t2 will also ben-
efit from the fence set by t1. The search time could be further
reduced if more high-quality fences are constructed to
restrict the search space of each search task.

By instrumenting fences efficiently in the search space of
collaborative search tasks, our approach can effectively
avoid the deep recursive search, while increasing the chance
to find an optimal schedule earlier than traditional B&B
approaches. Based on this observation, to quickly find an
optimal schedule with parallel search tasks, we need to
address two following major issues: i) how to efficiently dis-
tribute parallel tasks over search space, and ii) how to
quickly detect whether the enumeration of current incom-
plete schedule can be terminated? The following sections
describe the details.

4.2.1 Derivation of Parallel Search Tasks

The parallel B&B style searching is quite different from
the sequential B&B style search. In parallel search, if all
search tasks have the same operation ordering and the
same search space, parallel search is not beneficial using
multi-cores. However, if different parallel search can
have different operation enumeration order, the search
will become “multi-directional” and the search time can
be reduced drastically. Generally, there are two kinds of
multi-directional search. First, the length of the optimal
schedule equals to the lower bound estimation (i.e.,
globalLow). During parallel search, if one optimal sched-
ule is confirmed by some search task, the overall search
can be terminated. In other words, the search time is
determined by shortest distance between parallel tasks
and their nearby optimal schedules. Apparently, parallel
search is suitable for quick identification of an optimal
schedule. Secondly, the length of the optimal schedule is
larger than the lower bound estimation. Each search task
needs to explore the entire search space. However, if fen-
ces can be used and shared among search tasks, some
part of the search space will be blocked by the generated
fences among search tasks. Therefore, the overall search
time can be reduced.

For recursive B&B style searchingmethods (e.g., BULB), it
is required to check both the status of predecessor operations
(using Prec function in Algorithm 1). In other words, the
operation precedence should be considered during the
design of the operation enumeration order. If the operation
precedence is violated, there will be a large number of long-
distance backtracks to cancel the effect of the early wrong
decisions. In this case, the B&B style searching performance
can be degraded. Besides the long-distance backtrack, stuck-
at-local-search problem [25] also needs to be avoided in the
B&B style search. Therefore, the dispatching order of the
enumerated operations is very important. If there are more
different fences in the top levels (i.e., levels with small indi-
ces), the chance of local search will be reduced due to the
early interception by sub-fences instrumented in top levels.
Therefore, we need to create a proper number of sub-fences
for the top levels to intercept potential unfruitful local search.

Based on the above observation, we design an operation
enumeration ordering scheme for parallel search tasks.
Assume that we have n search tasks (i.e., t0, . . ., tn�1) in total.
To guarantee better performance than the sequential
approach, we set the operation ordering of task t0 to be the
same as the heuristic adopted in the traditional B&B
approaches. For the remaining parallel tasks, to enable gen-
eration of multiple effective sub-fences in top levels, the
operations in top levels should be shuffled as much as pos-
sible while keeping the operation precedence relation. In
our approach, we conduct the guided-random shuffle of
operations by tuning the length of weighted critical paths of
operations which are sorted by the BULB approach. Let
BðiÞ be the binary number of an integer i, and BðiÞ½j�
(i; j > 0) denotes the jth least significant digit of BðiÞ. For
the ith parallel search task ti, our approach uses the follow-
ing strategy to shuffle the operations.

1) If BðiÞ½j� equals to 1, then all the operations in the jth
level of the ti’s DFG are shuffled in guided-random
fashion. For each operation op in the jth level, its

CPwðGðopÞÞ will be increased by randðÞ mod N
Nþ1 �

CPwðGÞ � j, where randðÞ returns a random integer
andN denotes the number of operations in the DFG.

2) If BðiÞ½j� equals to 0, then the lengths of the weighted
critical paths of all operations in the jth level will be
decreased by CPwðGÞ � j.

Fig. 5 shows an example of four parallel tasks with differ-
ent ordering for the design shown in Fig. 2. The leftmost
figure shows the ordering using traditional B&B approach
indicated by a solid arrow line. We mark each operation
with a number, which indicates the tuned length of
weighted critical path of that operation. By using our

Fig. 5. An illustration of different ordering for different search tasks.
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enumeration strategy, the tasks whose ID is larger than 0
can dispatch the operations level by level using our pro-
posed approach. The remaining figures show the operation
enumeration order for tasks 1-3, respectively. Assume that
the level of operation op is l, by reducing the length of criti-
cal paths of operations by CPwðGÞ � l, all the operations

will be enumerated level by level. The notation randðÞ mod N
Nþ1

increases the length of critical paths of operations by a ran-
dom value within ð�1; 1Þ, which indicates the shuffle of
operations in that level. As an example, for task 2, since B(2)
equals ð010Þ2, the operations in the second level needs to be

shuffled. For levels 1-3, the lengths of weighted critical
paths for each operation are reduced by �6� 1, �6� 2 and
�6� 3 respectively, which impose the enumeration priority
based on the level information of operations. While more
tasks are involved in the parallel search, due to the shuffle
and level-based priority of operations, a wide variety of
sub-fences for top levels will be generated to prevent the
deep recursive search.

4.2.2 Collaboration among Parallel Tasks

During the multi-directional search, if parallel tasks explore
search space independently, when the length of optimal
schedules is larger than the lower bound estimation, the
RCS time will be equal to the time of the task which first fin-
ishes the scan of the search space. Based on the observation
in [25], if the upper bound of best schedule searched so far
can be shared among parallel tasks, the search space can be
compacted on-the-fly. Therefore the overall RCS time can be
significantly reduced. Since the sharing of bound is a com-
mon technique for parallel RCS searching, it can be easily
combined with other optimization approaches.

Due to different operation ordering, parallel tasks may
keep different best schedules searched so far during the
search. Such information can be used as a fence whose level
bound information can be used as sub-fences to avoid the
unfruitful deep search. In fact, such fence information can be
shared among parallel tasks to further avoid unfruitful
search. Therefore, besides sharing of bound information, our
approach also supports the sharing of the fence information.

Fig. 6 shows an example of sharing fences between tasks
using the example shown in Fig. 2. We assume that there are
only two search tasks with different operation ordering as
shown in Fig. 5 and both tasks share their obtained fences. In
this figure, due to different operation ordering indicated by
the dashed arrow lines, we can get two different initial feasi-
ble schedules for the same RCS problem. It is important to
note that these two schedules can be used as shared fences

(i.e., f1 and f2) to benefit both the following RCS search. For
example, in Fig. 6a, the current search will backtrack to oper-
ation v1 based on its local fence f1 safely without finding any
better schedule. This is because the operation dispatching
time of v5, v4, v3 and v2 cannot be smaller than 5, 5, 3 and 1,
respectively. When v1 is dispatched at c-step 2, the schedul-
ing will fail because the length of Sl;fv1g is no smaller than the

length of the initial schedule. Then v1 will be dispatched at c-
step 3. Based on the fence f2, all the following enumeration
will be fruitless. Therefore, the search of task 0 will terminate
and assert that its initial schedule is one optimal result. Con-
sequently, the search time of task 0 can be reduced based on
the shared fences.

To effectively share bound and fence information, we
developed a cooperation framework as shown in Fig. 7 that
supports the multi-level bound pruning as well as minimum v

synchronization [25] among parallel search tasks. In this
framework, we partitioned the parallel search tasks into
clusters according to their task IDs. For example in Fig. 7,
we cluster 2 tasks with adjacent IDs. The reason of choosing
adjacent IDs is that they share the same ordering of lower
level operations but different ordering of top level opera-
tions. Therefore, the shared fences have different dispatch-
ing time for top level operations, which can be used
together to effectively avoid the deep recursive search. Each
cluster has a fence pool to keep the shared fences among
parallel search tasks in the same cluster. The fence pool is
implemented by the data structure vector. A parallel task
will periodically check the update of its shared cluster fence
pool. If some new fences are shared, each task in the same
cluster will update its local fence pool to include the newly
generated fences. To enable the collaboration among all
clusters, we construct a global data structure called winner
querywhich enables the query and update of the length (i.e.,
minimum v) and the ID of the task that has found the best
schedule so far. Each parallel task can update the winner
information if it finds a better schedule than the current
winner. It can also periodically query the winner informa-
tion, and update its local v if the schedule of the winner is
better. The update of the local v enables the shrinking of the
search space for the parallel task. Therefore, our framework
can drastically reduce the parallel search time. The whole
framework will terminate with the optimal schedule if any
of the parallel search task stops.

Generally, it is not wise to keep a large set of fences in the
local fence pool of a parallel task. This is because too many
fences will cause a large number of invocations of level
bound pruning, which is time-consuming. To control the
number of fences, we adopt the following strategy in each

Fig. 7. Our RCS framework with bound and fence sharing.Fig. 6. An example of RCS searching with shared fences.
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cluster for fence sharing. At the beginning of parallel search,
each task in a cluster will only figure out one feasible sched-
ule and save it in its local fence pool for the level bound
checking. Initially, the cluster fence pool is empty. During
the search, when one task in the cluster finds a better sched-
ule than its Sopt, it will update the cluster fence pool with
this schedule. This newly added schedule will be propa-
gated to other tasks in the same cluster to enable the multi-
level bound pruning at top levels.

Algorithm 3. Update/Query Operations in Our
Framework

UpdateWinner(S; rank) begin
if lenðSÞ < global min then

framework_mutex:lockðÞ;
global min ¼ lenðSÞ;
global winner ¼ rank;
framework_mutex:unlockðÞ;

end
end
QueryWinner() begin

return ðglobal winner; global minÞ;
end
UpdateFencePool(S; rank) begin

cluster_mutex:lockðÞ;
fencePoolSet[rank/clusterSZ].pushback(S);
cluster_mutex:unlockðÞ;

end
QueryNewFences(lfp, rank) begin

fsize ¼ fencePoolSet[rank/clusterSZ].size();
while fpmark < fsize do

lfp.pushback(fencePoolSet[rank/clusterSZ][fpmark]);
fpmark++;

end
end

Algorithm 3 presents the details of the update and query
operations for the information of global minimum bound
and the fence information. We use an array fencePoolSet to
denote the set of fence pools. Two integers global winner
and global min indicate the ID and weighted length of the
best schedule searched so far. Since our framework is imple-
mented using MPI [17], all tasks are implemented using
processes, and all the shared data structures are constructed
in shared memory which can be accessed by parallel pro-
cesses. To achieve minimum v synchronization, all the
search tasks always monitor the change of the global mini-
mum v value by using the procedures QueryWinner, and
dynamically shrink the search space accordingly. When one
task finds a schedule with the length smaller than or equal
to global min, it will try to update the fence pool based on
the aforementioned conditions by invoking the UpdateWin-
ner procedure. To avoid the race condition when updating
the winner query, we create a global lock for all the search
tasks. In each cluster, a task can update and query the
shared fence pool for the newly updated fences using the
functions UpdateFencePool and QueryNewFences. For each
task, lfp indicates the local fence pool of the task. fpmark is a
local iterator that keeps the index of the last index of moni-
tored fences in the cluster fence pool. If there exists newly
added fences, such iterator will be increased while the
shared fences are included in lfp.

Algorithm 4.Multi-Level Bound Pruning

Input: i) S, which is an incomplete schedule;
ii) opi which is an operation dispatched;
iii) rank, which indicates the rank of current process;

Output:Whether to enumerate the remaining operations in S
MLevelPrune(S; opi; rank) begin

QueryNewFences(lfp, rank);
for each fence SF in lfp of S do

if LevelBound(S; SF ; opi) then
return TRUE;

end
end
return FALSE;

end

Algorithm 4 describes the details of our multi-level
bound pruning approach based on the multiple fences in
the local fence pool. When the operation opi is the last dis-
patched operation in a level, MLevelPrune will first update
its local fence pool lfp and then invoke the function Level-
Bound to check each fences in lfp. If some sub-fence works,
the current incomplete enumeration will be terminated.

4.3 Our Parallel B&B Approach

Compared to traditional B&B approach which only uses v

value for pruning, our parallel RCS pruning approach utilizes
the shared bound of multi-directional search and the struc-
ture information of schedules saved in shared fence pools.
Our method can be effectively combined with traditional
B&B style RCS approach to explore further pruning chances,
which can improve the RCS performance drastically.

4.3.1 Implementation of Parallel RCS Search Tasks

Algorithm 5 presents the details of the implementation of a
parallel RCS search task in our proposed framework as
shown in Fig. 7. Step 1 initializes the variable opi:sucTimes
which indicates the times of the successful occupation of the
resource by opi. Step 2 queries the current minimum length
of all possible schedules. If opi is the final unscheduled opera-
tion in levelðopiÞ andMLevelPruneðS; opi; rankÞ returns true,
it means that the current schedule stored in S is worse than
some schedules in the fence pool. Then step 2 sets the global
Boolean variable jump to be true, which indicates that the
level-bound checking may lead to some backtrack of more
than one operations. Step 3 stops the c-step enumeration of
opi. If MLevelPruneðS; opi; rankÞ returns false, the operation
opi will be scheduled. Step 4 indicates that the operation suc-
cessfully gets the intended resource again. Steps 5 and 6 cal-
culate the lower and upper for the current schedule. If upper is
smaller than v, then v and Sopt will be updated in steps 7 and
8. Changing v value will trigger the checking of early termi-
nation condition (i.e., achieving a schedule whose length
equals toGlobalLow) in step 9. Step 10 updates the fence pool
using the achieved schedule in step 8. If lower is smaller than
v, current operation will be scheduled. Step 11 assigns a c-
step to operation opi. Step 12 reserves resources required by
the operation. Then opiþ1 is processed recursively in step 13.
When the search backtracks, the resource occupied by opi is
released in step 14. Steps 15 and 16 deal with the backtracks
caused by the level-bound checking. When opi:sucTimes
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equals to 1, it means that the current step is the smallest for opi
based on the scheduled operations. Since all the subsequent
operations in the dispatching order have been enumerated,
the search by increasing step by 1 is fruitless. Therefore, step
15 indicates that the search of opi can be stopped. Finally, the
algorithm returns a global optimal schedule and its length.
Note that parallel search tasks compete with each other to
find an optimal schedule. If one task finishes first, the other
taskswill be terminated.

Algorithm 5. Parallel RCS Search Task Implementation
using Structure-Aware B&B Pruning

Input: i)D, which is an HLS DFG with resource constraints;
ii) OP ¼ fop1; . . . ; opNg in dispatching order;
iii) Sopt, which is a feasible schedule of length v;
iv) S, which stores the current incomplete schedule;
v) rank, which indicates the rank of current process;

Output: An optimal HLS schedule and its length
ParaRCS(D, OP , i,N , Sopt, S, v, rank) begin

if i � N then
1. opi:sucTimes ¼ 0;
if v > QueryWinnerðÞ:second then

v ¼ QueryWinnerðÞ:second;
UpdateALAP ðÞ;

end
for step ¼ ASAP ðopiÞ to ALAP ðopiÞ do

if opi ¼¼ LhðopiÞ ^MLevelPruneðS; opi; rankÞ then
2. jump = true;
3. return (Sopt, v);

end
if Prec(opi) ^ ResAvailable(step, typeðopiÞ) then

4. opi:sucTimesþþ;
5. lower ¼ leðLBoundðSÞÞ;
6. upper ¼ leðUBoundðSÞÞ;

if upper < v then
7. v ¼ upper;
8. Sopt ¼ ListSchedulingðOP; opiÞ;
if v ¼¼ GlobalLowðDÞ then

9. Report (Sopt, v);
MPI_Abort(MPI_COMM_WRD, -1);

end
10. UpdateFencePoolðSopt; rankÞ;

end
if lower < v then

/* Dispatch the current operation */
11. SðopiÞ ¼ step;
12. ResOccupy(step, type(opi), delay(opi));
13. ParaRCS(D, OP, i+1,N, Sopt, S, v, rank);
14. ResRestore(step, type(opi), delay(opi));
if jump then

if opi:sucTimes¼¼1 then
15. return(Sopt, v);

else
16. jump ¼ false;

end
end

end
end

end
end
return (Sopt, v);

end

4.3.2 Implementation of Our Parallel B&B Method

Algorithm 6 describes our parallel B&B RCS approach. Since
we adopt MPI [17] as our parallel search programming lan-
guage library, Algorithm 6 shows the skeleton of our
approach in the format of MPI. We use Sopt and S to indicate
the best schedule search so far and the current incomplete
schedule, respectively. v is the length of Sopt. In this algo-
rithm, step 1 parses the input file to figure out the DFG of a
given RCS problem as well as the user input constraints for
the problem. Step 2 sorts all the operations of the DFG based
on the length of their weighted critical paths. Step 3 encodes
the task index into binary format. If the current task has an
index of 0, then it will construct the shared information (i.e.,
fencePoolSet and winner information) in a shared memory
which can be accessed by parallel tasks. In our approach, if
the task index is 0, it will have the same operation order as
the BULB approach. Otherwise, as shown in step 5, the opera-
tion order of other parallel tasks will be shuffled based on the
level information of the DFG as well as the binary number of
the task index. Step 6 searches for an initial feasible schedule
for the task, and such schedule will be put into the local fence
pool lfp. It is important to note that this initial schedule will
not be inserted into the cluster fence pools in our approach.
In steps 8 and 9, globalLow andv indicate the lower and upper
bound estimation of the optimal schedule, respectively.
Based on the agreement of all parallel tasks in step 10, the
smallest initial upper bound estimation among all tasks (i.e.,
v ) will be used to shrink the initial search space of all parallel
tasks described in step 11. If any task finishes the search, one
optimal schedule as well as its length will be reported in step
12, and thewhole parallel searchwill be terminated.

Algorithm 6. Our Parallel B&B RCS Algorithm

Output: An optimal schedule and its length forD
main(argc, argv) begin
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WRD, &procnum);
MPI_Comm_rank(MPI_COMM_WRD, &rank);
1.D ¼ ParseDFGFromFileðÞ;
2. OP ¼ fop1; . . . ; opNg ¼ SortOperationsðDÞ;
3. code ¼ Binaryðrank; dlog2procnumeÞ;
if rank¼¼0 then

4. Init(fencePoolSet,global_winner, global_min);
else

5. OPrank ¼ ShuffleðD;OP; codeÞ;
end
6. S ¼ Sopt ¼ InitialFeasibleSchðDÞ;
7. lfp.pushback(S);
8. globalLow ¼ leðLBoundðSÞÞ;
9. v0 ¼ leðSoptÞ;
10.MPI_Allreduce(&v0, &v, 1,MPI_INT,

MPI_MIN, MPI_COMM_WRD);
11. ParaRCSðD;OPrank; 1; N; Sopt; S;v; rankÞ;
12. Report (Sopt, v, rank);
MPI_Abort(MPI_COMM_WRD, -1);

end

5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approach, we con-
ducted various experiments with different kinds of resource
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constraints. We collected the DOT files of following bench-
marks from theMediaBench benchmark [18], which is a stan-
dard DSP benchmark suite: i) ARFilter with 28 nodes and 30
edges, ii) Cosine 1 with 66 nodes and 76 edges, iii) Collapse
with 56 nodes and 73 edges, iv) EWF with 34 nodes and 47
edges, and v) Feedback with 53 nodes and 50 edges. We also
used the benchmark FDCT with 42 nodes and 52 edges
from [23]. To enable the comparison with the in-place
approach [8], we unfolded the EWF design for two times
(i.e., EWF2) and three times (i.e., EWF3), respectively. We
developed a DFG representation to unify the benchmark
formats from different sources, which can be used as a part
of the input (together with the resource constraints and par-
allel search settings) of our approach. For comparison, we
also generated ILP models for RCS using IBM ILOG CPLEX
CP Optimizer [19], which adopts the branch-and-cut method
[28] for efficient searching.

By using the C programming language, we implemented
the BULB method [7], the hybrid parallel pruning approach
[25] and our approach [20] that incorporates the proposed
parallel structure-aware pruning techniques. To enable the
parallel searching, we use the MPI library [17] for construct-
ing parallel processes. To avoid the overload of the level

bound checking, we restrict the number of tasks in a cluster
to be 4 in the experiment. All the experimental results were
obtained on a Linux sever with 96 Intel Xeon 2.4 GHz cores
and 1 TB RAM. Since our approach shuffles the operations
in guided-random fashion in the same level, different oper-
ation ordering can easily cause the search time variation.
Therefore, we run each RCS problem instance five times
and record the mean value for the comparison. In this
experiment, we consider functional unit constraints as well
as power and area constraints during the scheduling. Table 1
lists the settings for various types of operations used in the
experiment. It is important to note that by slightly modify-
ing the ResAvailable function our level-bound pruning
approach can be applied on the pipelined designs directly,
since it only needs to check the dispatch time of the first
sub-operations. In this experiment, we assume that the
pipelined multipliers (i.e., PMUL) have two stages and each
stage needs one c-step.

5.1 Scheduling under Functional Unit Constraints

Table 2 presents the experimental results carried out with
different functional unit constraints on the five benchmarks.
The first column of the table indicates the name of the
benchmarks. The second column presents the functional
unit constraint for the design. We use notation “x, y” to
denote that only x adders and y non-pipelined multipliers
are adopted for the RCS. For example, in the first row of
ARFilter design, “1, 3” denotes that only one adder and
three non-pipelined multipliers are used for the given
design. Due to the space limit, we did not provide the num-
ber of other functional unit types. The third column gives
the optimal c-steps for the whole design under the specified
resource constraints. The fourth column presents the ILP
solving time using the CPLEX CP Optimizer. Among all
benchmark items, only one of them (i.e., ARFilter design

TABLE 2
Scheduling Results under Functional Unit Constraints

Bench- # of # of CPLEX BULB LEVEL ML1 MD8 Hybrid8[25]/+L ML8 # of # of BULB ML8

Mark +, � csteps (sec.) [7] (sec.) [24] (sec.) (sec.) (sec.) (sec.) (sec.) +, � csteps [7] (sec.) (sec.)

ARFilter 1, 3 16 NA 0.31 0.15 0.13 0.29 0.39/0.18 0.13 1, 1 19 < 0.01 < 0.01
1, 4 16 NA 0.78 0.25 0.26 0.75 1.01/0.28 0.26 2, 1 19 < 0.01 < 0.01
1, 5 16 NA 0.77 0.24 0.26 0.73 1.03/0.27 0.26 2, 2 13 < 0.01 < 0.01
2, 3 15 2.32 0.01 0.01 0.01 0.01 < 0.01/< 0.01 < 0.01 3, 1 19 < 0.01 < 0.01

Collapse 2, 1 22 NA NA NA 118.81 38.14 0.02/0.02 38.16 2, 1 NA NA NA
2, 2 21 NA NA NA NA NA < 0.01/< 0.01 NA 2, 2 NA NA NA

Cosine 1, 2 28 NA 107.43 29.68 19.83 < 0.01 < 0.01/< 0.01 < 0.01 1, 2 28 < 0.01 < 0.01
2, 2 20 NA 622.83 29.21 55.92 0.80 34.54/3.12 0.52 2, 2 15 34.98 0.61
3, 3 16 NA 0.02 0.01 < 0.01 < 0.01 0.01/0.03 < 0.01 3, 3 12 0.11 0.01

FDCT 1, 2 26 NA 36.91 26.63 19.94 < 0.01 < 0.01/< 0.01 < 0.01 1, 1 26 558.69 < 0.01
2, 2 18 NA 201.59 90.56 40.78 2.12 13.99/0.19 1.67 1, 2 26 < 0.01 < 0.01
2, 3 14 NA 19.80 21.16 6.04 1.37 2.85/2.18 0.53 2, 2 13 9.68 < 0.01
2, 4 13 NA 4.07 5.94 2.01 0.14 0.87/0.11 0.13 2, 3 13 < 0.01 < 0.01
2, 5 13 NA 0.92 0.60 0.52 < 0.01 0.04/0.04 < 0.01 3, 2 12 0.11 0.02
3, 4 11 NA 0.55 0.48 0.43 0.15 0.67/0.64 0.07 3, 3 10 0.07 < 0.01
4, 4 11 NA 0.12 0.03 0.03 < 0.01 0.23/0.08 < 0.01 4, 4 9 < 0.01 < 0.01

Feedback 4, 4 13 NA 154.18 155.74 127.22 1.14 3.82/5.30 0.81 4, 4 13 NA 3.67
4, 5 13 NA NA NA NA 3.62 4.50/3.72 1.13 4, 5 13 NA 7.70
5, 5 13 NA 4.87 4.92 4.02 0.06 1.51/1.59 0.04 5, 5 13 22.62 0.07

y NA means that the value is not achieved within time limit (3,600 seconds). “�” and “�” indicate non-pipelined and pipelined multipliers, respectively.

TABLE 1
The Settings of the Functional Units

Functional
Unit

Operation
Class

Delay
(unit)

Power
(unit)

Energy
(unit)

Area
(unit)

ADD/SUB +/- 1 10 10 10
MUL/PMUL �/� 2 20 40 40
DIV / 2 20 40 40
MEM LD, STR 1 15 15 20
Shift < < ; > > 1 10 10 5
Other ... 1 10 10 10
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with two adders and three multipliers) can achieve the opti-
mal result within the time limit (i.e., 3,600 seconds). The fifth
column presents the scheduling timing using the BULB
approach [7]. The sixth column shows the results using our
structure-aware approach presented in [24] with a single
core. It is important to note that BULB approach only com-
pares the structure of incomplete schedules with the struc-
ture of the optimal schedule searched so far. In other words,
it only keeps one fence during the search. Unlike [24], the
seventh column gives the results using our structure-aware
pruning approach with a single core and multiple fences.
Here, ML stands for the checking with multi-level pruning.
The eighth column adopts the parallel multi-directional
search with eight cores. However, it does not instrument
any fences during the search. To show the effectiveness of
our proposed techniques, the ninth column shows the com-
parison between the hybrid approach [25] (running with
eight cores) and its modified version, where each sub-task
utilizes fences to conduct the efficient pruning. The tenth
column presents the results using our parallel structure-
aware pruning with eight cores. Since our approach can be
directly applied on the pipelined designs, we also conduct
the experiment on the same benchmark with different pipe-
lined functional units. The last four columns present the
pipelined functional unit constraints, c-steps of optimal
schedules, RCS time using the BULB approach [7], and RCS
time using our parallel structure-aware approach (with
eight cores), respectively.

To show the efficacy of our multi-level bound pruning
and multi-directional search separately, we present the ML
(multi-directional search with fences) and MD (multi-direc-
tional search without fences) results in Table 2. For the
designs with non-pipelined constraints (in columns 2-10),
we can find that our approaches (i.e., ML1, MD8, ML8) can
not only outperform the state-of-the-art ILP solver with the
branch-and-cut heuristic, but also can drastically improve
the RCS performance using the B&B style searching. As a
sequential pruning method, ML1 outperforms both BULB
and LEVEL. It is important to note that, for the ARFilter
design, the performance of ML1 is a little bit worse than the
performance of LEVEL. This is because ML1 has more fen-
ces for level bound checking. Since the overall search time is
small, the overhead of multiple fence checking time will
occupy a large portion of the overall search time. MD8 is a
parallel pruning approach with multi-directional search. It
shares the bound information among sub-tasks without
instrumenting any fences. For all the benchmarks except the
ARFilter design, such parallel searching method outper-
forms all the sequential searching approaches listed in the
table. The reason why ARFilter cannot benefit from theMD8
search is that the length of optimal schedule equals to the
upper bound estimation for ARFilter design with different
constraints. Without fences, all the sub-tasks will search all
the search space to ensure this fact. Therefore, MD8 cannot
benefit in the case of ARFilter. Hybrid8 [25] is based on the
search space partitioning and upper bound speculation.
Based on the assumption that optimal results are evenly
scattered in the search space, it is promising to quickly find
one optimal result by some sub-search task. However, if the
length of the optimal schedule equals to the upper bound
estimation (see the example of ARFilter) or the partitioned

search space has no optimal schedules, then Hybrid8 will be
easily stuck at the local search. Our structure-aware tech-
nique can be incorporated in Hybrid8 to promote its search-
ing performance. We developed the Hybrid8+L approach,
which enables the level bound checking for each sub-task.
However, in order to avoid the unnecessary overload of
level bound checking for lightweight sub-tasks, we do not
share the fences among sub-tasks. For each sub-task in
Hybrid8+L approach, it only checks the level bound infor-
mation in the same way as the LEVEL method [24]. By our
observation, the structure-aware pruning can help Hybrid8
to reduce the overall searching time drastically. For the
design FDCT under the constraint of two adders and two
multipliers, Hybrid8 method needs 13.99 seconds for sched-
uling, while Hybrid8þ L approach requires only 0.19 sec-
ond. When combining both multi-level bound pruning and
multi-directional search methods, ourML8 approach shows
a better performance than MD8. In most cases, our ML8
approach can achieve a significant improvement over MD8.
Moreover, our ML8 approach outperforms (no worse than)
Hybrid8 approach for 17 out of 19 benchmark items. Even
for the Hybrid8þ L approach, our approach outperforms
for 15 out of 19 benchmark items. Similarly, for the designs
with pipelined functional units (in columns 11-14), we can
find that our parallel pruning approach (i.e., ML8) outper-
forms the BULB approach by several orders of magnitude.

To compare with the latest RCS approach in HLS [8], we
conducted the experiments on the designs (i.e., EWF, EWF2,
EWF3, ARF and FDCT) using the same benchmarks as listed
in [8]. Fig. 8 shows the comparison results between our
approach ML8 (on a server with 96 2.4 GHz cores) and the
in-place method (on a desktop with a 3.0 GHz CPU [8]).
From this figure, we can find that our approach significantly
outperforms the in-place method [8] for 33 out of 37 bench-
mark items. Our approach can achieve up to 30 times
improvement for some benchmark items. Note that, due to
the space limit, we only present the results for the non-pipe-
lined designs. For the pipelined designs, we can observe the
similar trend.

The core number (i.e., process number in MPI) plays an
important role during the search. Fig. 9 shows the schedul-
ing results for the non-pipelined designs with different
number of cores. Generally, the more cores are used for the
parallel search, the more speedup can be achieved. How-
ever, the performance of our parallel search approach is
determined by the gap between the upper-bound estima-
tion and the real length of the optimal schedules. As an
example of ARFilter 1 4, with the increasing number of

Fig. 8. Comparison with the in-place approach [8].
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cores, the performance does not change. This is because, in
this example, the upper bound estimation equals to the
length of optimal schedule. Therefore, during the multi-
directional search, no new fences will be found and shared.
Moreover, each sub-task needs to scan all the search space.
So each of them uses the similar search time. Therefore, the
search time cannot be reduced with more cores. For all the
other cases, we can find that RCS with more cores will have
better RCS performance. When 64 cores (i.e., ML64) are
adopted, our approach can outperform both the BULB and
LEVEL approaches by several orders of magnitude for the
given benchmarks.

5.2 Scheduling under Area and Power Constraints

The area and power are two key issues in hardware design.
The scheduling under such constraints can be considered as
a variant of the time-minimum resource constrained sched-
uling [21]. Since both area and power can be treated as spe-
cial kinds of resources, our parallel structure-aware
pruning can be used to promote the scheduling perfor-
mance under such constraints. We did the experiment with
the designs given in Table 2 using these two constraints.
Due to the space limit, we only present the results for the
non-pipelined FDCT design. Our approach also provides
similar results for the other designs. In the experiments, all
the parallel methods use eight cores.

Fig. 10 shows the RCS result using the BULB approach,
LEVEL approach, Hybrid approach and our structure-aware
parallel pruning approaches. Under the area constraint of
140 units, we check the RCS with different power con-
straints (from 60 to 120 with an increment of 20). From this
figure, we can find that our ML8 approach can achieve the
best performance. Compared to the state-of-the-art B&B
style pruning methods (i.e., Hybrid8 [25]), our approach can
improve the pruning performance by up to 403 times. It is

important to note that, for the design of FDCT , when the
RCS time using MD8 is small (e.g., 0.01 second under the
power constraint of 60), ML8 does not outperform the MD8
too much. This is becauseMD8 can quickly find the optimal
result with less help from ML8 approach. However, when
MD8 failed to hit the optimal result within a short time, our
ML8 approach can improve the search performance by up
to 5.5 times. We also conducted RCS for the FDCT design
with a smaller area constraint (i.e., 100 units). As shown in
Fig. 11, we check the RCS with different power constraints
(from 40 to 50 with an increment of 10). From this figure, we
can find a similar trend in Fig. 10. In this case with a power
constraint of 40 units, the BULB approach cannot get an
optimal schedule within the time limit (i.e., 3,600 seconds).1

When the power constraint equals to 50 units, neither BULB
nor LEVEL can figure out an optimal schedule within the
time limit. However, for both cases, our ML8 approach can
achieve the optimal result within 0.01 second. When the
power constraint is larger than 50, we can find thatML8 can
achieve up to 422 times improvement (for the case with 100-
unit area and 50-unit power) compared to the Hybrid8
approach [25]. Moreover, under the benefit of our structure-
aware pruning technique, the performance of Hybrid8
approach can be further improved. We can find that the
Hybrid8þ L approach can achieve up to 26.1 times
improvement (for the case with 100-unit area and 60-unit
power) compared to the Hybrid8 approach. Since both the
results of Hybrid8þ L approach and ML8 approach are
smaller than 1 seconds, both RCS time is quite similar and
acceptable in practice.

6 CONCLUSION

This paper presented a novel parallel structure-aware prun-
ing approach for efficient resource-constrained HLS sched-
uling. Unlike existing B&B style algorithms which only
compare the upper- and lower-bounds between optimal
schedule searched so far and current incomplete enumerat-
ing schedule, our approach investigated the structural
scheduling information of optimal schedule candidates (i.e.,
fences) to prevent the search of non-optimal schedules in a
proactive manner. Based on the collaborative multi-direc-
tional search and the shared fence and bound information
among parallel search tasks, our approach can promote the

Fig. 9. Scheduling results with different number of cores.

Fig. 10. Scheduling results with an area of 140 units.

Fig. 11. Scheduling results with an area of 100 units.

1. For the ease of comparison, we set the search time of the failed
search to be 3,600 seconds in Fig. 11. In this case, the results of BULB
cannot be compared with other search time results.
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overall RCS performance drastically. Comprehensive exper-
imental results using various benchmarks with different
resource constraints demonstrated that, by integrating our
structure-aware pruning method, the performance of exist-
ing B&B style approaches can be further improved. Com-
pared with state-of-the-art parallel branch-and-bound
techniques, our parallel structure-aware pruning method
can improve RCS performance by several orders of
magnitude.
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