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Abstract SAT-based Bounded Model Checking (BMC) is
promising for automated generation of directed tests. Due
to the state space explosion problem, SAT-based BMC is
unsuitable to handle complex properties with large SAT
instances or large bounds. In this paper, we propose a
framework to automatically scale down the SAT falsifica-
tion complexity by utilizing the decision ordering based
learning from decomposed sub-properties. Our framework
makes three important contributions: i) it proposes learning-
oriented decomposition techniques for complex property
falsification, ii) it proposes an efficient approach to accel-
erate the complex property falsification using the learn-
ing from decomposed sub-properties, and iii) it combines
the advantages of both property decomposition and prop-
erty clustering to reduce the overall test generation time.
The experimental results using both software and hardware
benchmarks demonstrate the effectiveness of our frame-
work.
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1 Introduction

Boolean Satisfiability (SAT) based Bounded Model Check-
ing [3] is promising for automated generation of directed
tests. The basic idea is to restrict the search range and
transform the test generation problem into a SAT problem.
During test generation using SAT-based BMC, the design
specification is translated to a formal model (e.g., SMV
[12]) and the negation of coverage requirement (e.g., func-
tional fault models [17, 23]) is translated to a set of safety
properties in the form of temporal logic. Given a formal
model M , a safety LTL property p, and a bound k, SAT-
based BMC encodes the state search problem by unrolling
the model k times using the following propositional Boolean
formula.

BMC(M, p, k) = I (s0)∧
k−1∧

i=0

T (si , si+1)∧
k∨

i=0

¬p(si ) (1)

It consists of three parts: i) I (s0) indicates the system initial
state, ii) T (si , si+1) presents the state transition from state
si to state si+1, and iii) ¬p(si ) checks whether property p

is violated in the state si . This formula is transformed to
Conjunctive Norm Form (CNF) and solved by SAT solvers.
Semantically, if there is no satisfying assignment for Eq. (1),
it means that the property holds for the design within bound
k, written M |=k p. Otherwise, the property p will not hold
in M , written M |=/ p. The counterexample (i.e., a satisfy-
ing assignment for BMC(M, p, k)) can be used as a test to
check the functional scenario described by p [11].

In practice, most validation flows need to check various
functional scenarios involving a large number of properties.
To improve the overall directed test generation performance,
property clustering [6] and property learning approaches [9]
are proposed. Since learning can be reused across similar
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properties, many repeated validation efforts can be effi-
ciently avoided. It is important to note that the checking time
of the first property significantly impacts (as demonstrated
in Section VI) the overall test generation time of a cluster of
similar properties. If the checking time for the first property
is too long, it will be detrimental for the overall test gener-
ation time even if the other properties can efficiently utilize
the learning from the first property. Therefore, it is crucial to
reduce the test generation time of the first property as well
as utilize the learning information across similar properties
to reduce the overall validation effort.

Due to random search in conventional SAT solvers, the
test generation time for the base property (first one to be
solved in a cluster) can be prohibitively long in the presence
of complex design and properties. To address this issue, Koo
and Mishra proposed a property decomposition technique
[19] (as shown in Fig. 1a). The basic idea of their method is
to decompose a complex property into several simple sub-
properties based on design structure. After generating tests
for each sub-property, this approach composes the sub tests
to form a test for the original property. Since only part of a
design is involved in the property falsification, the test gen-
eration time of sub-properties can be significantly smaller
than that of the original property. However, the composi-
tion of sub tests cannot be fully automated when there are
complex interactions between components that may lead to
conflicting assignments in sub tests. As a result, composi-
tion of sub tests may require many iterations and/or manual
intervention.

This paper proposes a novel learning-oriented prop-
erty decomposition approach, which supports both efficient
identification of property similarity and automated gen-
eration of directed tests. Unlike the test oriented method
in [19], our approach (as shown in Fig. 1b) uses deci-
sion ordering based learning derived from the checking of
decomposed sub-properties. Such learning can be used to
dramatically accelerate the original property falsification. It

p1 pm

a)  Test−oriented decomposition:
       partial tests are composed to
       produce the final test.

b) Our learning−oriented decomposition:
        learning from decomposed sub−properties
        utilized in solving the original property.

p1 p2 pn......

learnings P

BMC

T’

+

P

......p2

t1 t2 ...... tm

Composition

T

P

Fig. 1 Two property decomposition techniques

is important to note that our approach is based on learn-
ing from decomposed sub-properties, thus it can be fully
automated. Since our target is to reduce the overall test
generation time for a cluster of complex properties, our
approach mainly addresses the following three issues.

1. How to effectively decompose a complex property to
scale down the property checking complexity as well
as achieve profitable learning? This paper proposes
profitable spatial, temporal and hybrid decomposition
techniques to exploit decision ordering based learning
for complex property falsification.

2. How to automatically utilize learning derived from
decomposed sub-properties to reduce test generation
time of the original complex property? This paper pro-
poses a method to predict the decision ordering for
the complex property checking based on the results of
sub-properties.

3. How to reduce the overall time (learning derivation
time and test generation time) when checking multiple
complex properties? This paper proposes two similar-
ity metrics for property clustering to enable knowledge
sharing between a cluster of similar properties.

The rest of the paper is organized as follows. Sections 2
and 3 present related work and background of automated
test generation using SAT. Section 4 proposes our learning-
oriented property decomposition approach. Section 5 pro-
poses an efficient test generation method based on the
decomposition information. Section 6 presents the experi-
mental results. Finally, Section 7 concludes the paper.

2 Related Work

Model checking based property falsification techniques are
promising for automated generation of directed tests [11].
However, due to “state space explosion problem”, Binary
Decision Diagram (BDD) based unbounded model checking
approaches [12] cannot handle complex designs. SAT-based
BMC [3] is a promising alternative to alleviate the capacity
and productivity restrictions over unbounded model check-
ing for many real designs [1]. It has been widely used for
faster bug localization during design verification [5].

The complexity of both designs and properties deter-
mines the model checking performance. To reduce the
checking time, various techniques are proposed. Bjesse and
Kukula [4] proposed a method based on the counterexample
guided abstraction refinement. The basic idea is to gener-
ate stepping stones from the abstracted system and to divide
the search into a number of short searches. Amla et al. [2]
introduced a decompositional algorithm for model check-
ing of timing diagram specifications. Such decompositions
can not only promote the model checking performance, but
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also enable the composition of new regular time graphs hier-
archically. To advance the applicability of model checking
tools to realistic applications, Meyer et al. [24] proposed
an automatic decomposition of duration calculus specifi-
cation into sub-properties that can be verified quickly and
independently. Koo and Mishra [19] proposed a framework
that can decompose a complex property into several sim-
ple sub-properties. By checking all the sub-properties and
combining corresponding sub tests, this method can obtain a
counterexample for the original complex property. Although
these decomposition techniques are time-efficient, it is dif-
ficult to automate their composition procedure in many
scenarios.

Sharing learning across properties can improve the over-
all test generation performance since repeated validation
efforts can be avoided. Based on the observation that con-
flict clauses can be replicated and forwarded as variable
assignment constraints, various incremental SAT solvers
[18, 29] were developed. In the context of Automatic Test
Pattern Generation (ATPG), an incremental SAT framework
[16, 30] which stores learned information was proposed.
Here, learned information is used during the search by tar-
geting similar faults that share a cone of influence. However,
these approaches rely on structural analysis of the circuit
and do not decompose properties. Chen and Mishra [6]
noticed that when checking a large set of relevant proper-
ties, SAT instances of similar properties have a large overlap
of CNF clauses and can be clustered. Conflict clauses gen-
erated by the base property can be forwarded to other
properties in the same cluster. Decision ordering informa-
tion can also be used to guide the SAT search [14, 22].
Strichman [28] presented a BMC optimization technique
based on decision ordering derived from the characteristics
of BMC formulas. Wang et al. [31] analyzed the correlation
among different SAT instances of a property. They used the
unsatisfiable core of previously checked SAT instances to
derive the variable ordering for the current SAT instance.
Zhang et al. [33] investigated the BMC-specific ordering
strategies for SAT solvers. They proposed an incremen-
tal framework for BMC which uses a clever orchestration
approach of variable ordering. Chen and Mishra [9] tuned
decision ordering based on the counterexamples of checked
properties. Test generation complexity can be reduced by
sharing knowledge (i.e. conflict clauses and decision order-
ing) among properties [8]. However, the clustering-based
approaches have one major limitation. The base property
(the first property in a cluster) is solved alone without any
benefit of learning. Therefore, the solving time for the base
property can be too long compared to other properties in
the cluster. Consequently, complexity of the base property
dominates the overall test generation time.

To the best of our knowledge, our approach is the first
attempt to propose efficient property decomposition and

learning techniques to significantly reduce the overall test
generation time for a large set of properties.

3 Preliminaries

3.1 Test Generation Using SAT-Based BMC

Algorithm 1 outlines the test generation procedure using
SAT-based BMC [19]. The algorithm produces a test suite
from: i) a formal description of golden reference model, and
ii) a set of false safety properties in the form of !F(S) indi-
cating the negation of the desired functional scenario S. It
iterates until all the properties are checked. In each iteration,
the bound boundi of each safety property pi is deter-
mined first. Then SAT-based BMC takes model M , negated
property pi , and bound boundi as inputs and generates a
counterexample (test) to falsify the property pi .

Algorithm 1 Test Generation using SAT-Based BMC

Determination of bound is hard in general. Similar to the
work described in [10, 11], we assume that the bound of a
complex property and decomposed properties can be esti-
mated by exploiting the structure of underlying models of
designs (see the example shown in Section 4.5).

3.2 SAT Solving – CDCL Algorithm

Since in SAT-based BMC a test is a satisfying assignment
for a SAT instance, the test generation performance is deter-
mined by the SAT solving procedure. Several popular SAT
solvers such as Chaff [26] and MiniSAT [25] adopt the
Conflict-Driven Clause Learning (CDCL) algorithm [21].

Algorithm 2 shows a general implementation of CDCL
based SAT solving procedure. It contains three parts:

• Periodic functions update SAT settings periodically,
such as updating literal scores after a certain number of
backtracks.

• Boolean Constraint Propagation (BCP) is implemented
in deduce(). It determines all possible implications
made by decide next branch().
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Algorithm 2 CDCL based SAT-solving procedure

• Conflict analysis analyzes the reason of conflict and
creates a conflict clause to avoid the same conflict in
future processing, and then does a non-chronological
backtracking up to the closest decision which caused
the conflict.

3.3 Decision Ordering

Decision ordering specifies which variable should be
selected first and which value (true or false) needs to be
first assigned to this variable. Since different decision order-
ing heuristics can lead to different SAT search trees [22],
decision ordering plays an important role in determining the
performance of SAT solving. The decision ordering heuris-
tic VSIDS [26] is widely used in modern SAT solvers such
as MiniSAT [15] and zChaff [26].

During the SAT solving using MiniSAT, each Boolean
variable is associated with a counter which indicates the pri-
ority for decision ordering at decide next branch(). Initially
the counter value is only determined by the structural infor-
mation of the corresponding CNF file. During SAT solving,
the update of counter values is triggered by specific peri-
odic events (i.e., a certain number of backtracks). Instead
of being divided by a constant factor as implemented in
zChaff, in MiniSAT, variable counters are “bumped” with
larger and larger floating-point based values. When some
variable counter reaches a very large limit value, the value
of all variable counters will be scaled down. All the variable
counter values are stored in a MinHeap, and the func-
tion decide next branch() will choose the variable with the
minimum counter value for decision.

3.4 Property Learning and Clustering Techniques

According to Eq. (1), similar properties are expected to
have a large overlap between their CNF clauses, because
they share both the transition relation T (si , si+1) and part
of property checking (p(si)). Since T (si , si+1) occupies a
major part of CNF clauses, the clause overlap between sim-
ilar properties is large, which enables the conflict clause

sharing between properties for test generation. Alterna-
tively, for similar properties, there exists a large over-
lap between the variable assignments in corresponding
counterexamples. Therefore, the satisfying assignments of
checked properties are effective to predict the decision
ordering for unchecked properties [7].

To fully exploit the learning potential, [6] identifies four
promising similarity metrics for property clustering.

• Similarity based on structural overlap can be used
when the structure information of the design is pro-
vided.

• Similarity based on textual overlap is beneficial when
the properties are well structured, but the information
regarding the design is not available.

• Similarity based on influence can be used when the
cause-effect relations of design component activations
can be inferred.

• Similarity based on CNF intersection can be used
when only the CNF clauses are provided in the absence
of both the design and property information.

Unlike the above clustering methods proposed in [6], the
clustering approaches proposed in this paper are based on
the decomposed sub-properties. Since we consider both the
structure and behavior information of design from the prop-
erty perspective, the proposed clustering approaches in this
paper are more beneficial than the methods in [6]. Although
[9] presented a promising approach to improve the base
property, it solves the base property using the learning from
the SAT instance itself without using any beneficial learn-
ing from other external sources. In this paper, we investigate
the learning derivation from the decomposed sub-properties,
which is more efficient to accelerate the solving of a base
property.

4 Learning-Oriented Property Decomposition

During model checking based test generation, falsification
of a complex property is very time-consuming. It is promis-
ing to exploit the fact that the test of a complex property
and the tests of its sub-properties usually have a large over-
lap in variable assignments. In other words, the results of
sub-property checking can be beneficial for the complex
property checking.

Inspired by the ideas presented in [4], several “step
stone” properties can be exploited to help the complex prop-
erty checking. Fig. 2 shows the basic idea of our method. In
Fig. 2a, due to random search in a decision tree and lack of
guidance by “step stone” sub-properties, the test generation
time is extremely long. In Fig. 2b, P1, P2 and P3 represent
some sub-functional scenarios of property P , and property
P ′ is in the same cluster as P due to their similarity. Since
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a sub-functional scenario involves only a small subset of
components of the original design, the cost of checking P1,
P2 and P3 is typically much lower than checking P . How-
ever, the learning derived from such sub-properties can be
beneficial for checking P , which can reduce the overall test
generation time for P . Furthermore, since P ′ is similar to
P (i.e., they have an overlap on two sub-properties P1 and
P3 ), the learning derived from P can also be utilized to
accelerate P ′’s test generation.

Definition 1 A property series is a sequence of
properties for sharing knowledge. It is in the form

({P1, P2, . . . , Pn} : X−→ P), where P is the target property;
Pi (1 ≤ i ≤ n) is a beneficial sub-property to derive learn-

ing; and “: X−→” indicates that the learning is based on the
decomposition of type X.

In our approach, the goal of property decomposition is
to construct a series of simple properties, which can be
used to derive decision ordering based learning for com-
plex property checking. To construct such a property series,
we propose three types of decomposition methods: i) spatial
decomposition which breaks down a complex system-level
property into several component-level sub-properties, ii)
temporal decomposition which deduces a large-bound prop-
erty (i.e., property activated at a late stage) from some
smaller bound properties (i.e., properties activated at earlier
stages), and iii) hybrid decomposition which combines the
advantages of both temporal and spatial decompositions for
further improvement.

4.1 Decision Ordering Based Learning

Generally, the counterexamples of decomposed beneficial
sub-properties have a large overlap in variable assign-
ment with the original property. They contain rich infor-
mation to guide the SAT solving of the base prop-
erty. Therefore, they can be used as a learning to bias
the decision ordering when checking the base property.

P

P1

P

a) Without step−stone properties b) With step−stone properties

P3

P’

P2

Fig. 2 An example of test generation with learning

Moreover, when the base property checking is done, its
checking result contains abundant learning information (i.e.,
variable assignments) to guide the checking of other similar
properties in the same cluster.

In SAT search, decision ordering plays an important role
to quickly find a satisfying assignment. In our test gener-
ation framework, we developed a heuristic to predict the
decision ordering based on the statistics collected from the
decomposed sub-properties as well as checked complex
properties (see details in Section. 5.2).

Figure 3 shows the basic idea of our heuristic. In a deci-
sion tree, each node indicates a Boolean variable. The left
branch of the node means that the variable is assigned with
true, while the right branch denotes the false assignment1.
Each edge of the tree is associated with a weight, which is
used to predict the decision ordering. Assume that we are
checking two similar complex properties P and P ′, and P

is checked first. The property P with a bound of 3 has two
beneficial sub-properties p1 and p2 with bound 1 and 2,
respectively. Assume that we always check the variables in
the order of a, b, c. Initially, since the weight on all edges
is set to 0, there is no learning when checking p1. However,
after checking p1, the weighted edges will be updated based
on the result of p1 (i.e., a = 0, b = X, c = X). In this
case, the weight of the edge a = 0 will be increased by the
bound of p1 (i.e., 1). Then the decision ordering for p2 can
be predicted based on the result of the updated decision tree.
As indicated by the solid arrow line, when checking p2, the
assignment of a is more likely to be false, and the value of
b and c are unknown. Similarly, we can predict the decision
ordering for P and P ′ based on the learning derived from
the checked properties.

4.2 Spatial Property Decomposition

A complex property may describe a functional scenario with
multiple component interactions. Spatial property decom-
position tries to partition such a complex functional scenario
into several sub-functional scenarios which involve fewer
component interactions.

As shown in Fig. 4a, assume that property P can be bro-
ken into 3 component level sub-properties P1, P2 and P3

with different Cone of Influence (COI)2, where COI (Pi) ⊂
COI (P ) (1 ≤ i ≤ 3). As shown in Fig. 4b, the
spatial decomposition tries to construct a property series

({P1, P2, P3} : S−→ P), where : S−→ indicates that the learn-
ing is derived from spatial decomposition. For a complex
design, when checking a sub-property such as Pi (with

1In this paper, v = 1, v = 0 and v = X indicate that the Boolean
variable v equals to true, false and UNKNOWN respectively.
2Here, COI indicates the variables involved during the property check-
ing.
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Fig. 3 Decision ordering
prediction based on learning
information
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bound K , 1 ≤ i ≤ 3) with a smaller COI, it usually needs
much less time and memory than P . However, the knowl-
edge learned from Pi can be very useful for test generation
of property P .

A Linear Temporal Logic (LTL [12]) formula consists of
temporal operators (G, F, X, U) and Boolean connectives (∧,
∨, ¬ and →). When a property involves complex logic for-
mula syntax, after proper transformation, it can be decom-
posed into a set of sub-properties. If partial counterexamples
generated by the sub-properties can be processed to guide
the complex property falsification, the original property is
spatially decomposable.

Definition 2 A false safety property P is spatially decom-
posable if all of the following conditions hold.

• P can be transformed to the property in the form of p1∧
p2 ∧ . . . ∧ pn or in the form of p1 ∨ p2 ∨ . . . ∨ pn,
where the bounds of sub-properties pi (1 ≤ i ≤ n) are
the same.

• There exists a property series such that ({pi} : S−→ P)

(1 ≤ i ≤ n).

It is important to note that, if the original property is in
the form p1 ∧ p2 ∧ . . . ∧ pn, then at least one sub-property
pi (1 ≤ i ≤ n) is required to have a counterexample.
The bound of P is the minimum bound of pi which has
a counterexample. If the original property is in the form
p1 ∨ p2 ∨ . . .∨ pn, then every sub-property pi (1 ≤ i ≤ n)
should be false. The bound of P is the maximum bound of
all decomposed sub-properties.

According to Definition 2, the following rules can be
used for complex property decomposition.

¬X(p ∨ q) ≡ ¬X(p) ∧ ¬X(q)

¬X(p ∧ q) ≡ ¬X(p) ∨ ¬X(q)

¬F(p ∨ q) ≡ ¬F(p) ∧ ¬F(q)

(2)

In the context of test generation using some fault models
[6], the properties are typically in the form of ¬F(p ∨ q),
¬F(p → q) and ¬F(p∧ q). For a complex property in the

Fig. 4 An illustration of spatial
property decomposition
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form of ¬F(p∨q), it can be decomposed into a conjunctive
form p1 ∧ p2 ∧ . . . ∧ pn. In this case, it is not neces-
sary to use the learning information. Since the size of SAT
instances derived from model checkers partially reflects the
COI and bound information of properties, our framework
needs to sort the sub-properties pi (1 < i ≤ n) according
to the increasing size of their SAT instances. The coun-
terexample of the first falsified property can be used as a
counterexample for the complex property.

It is important to note that the properties in the form of
¬F(p ∧ q) or ¬F(p → q) cannot be directly decomposed
into conjunctive or disjunctive form. However, by explicitly
introducing the notion of a synchronous clock variable clk

[19], the properties in the form of ¬F(p∧q) can be spatially
decomposed as shown in the Eq. (3).

¬F(p ∧ q) = f alse

≡ ¬F(p ∧ q ∧ clk = k) = f alse

≡ (¬F(p ∧ clk = k) ∨ ¬F(q ∧ clk = k)) = f alse

≡ (¬F(p ∧ clk = k) = f alse) ∧ (¬F(q ∧ clk = k) = f alse)

where k = bound of ¬F(p ∧ q).

(3)

It implies that the counterexample of ¬F(p∧q) can ben-
efit from the counterexamples of ¬F(p ∧ clk = k) and
¬F(q ∧ clk = k), i.e., ({¬F(p ∧ clk = k),¬F(q ∧ clk =
k)} : S−→ ¬F(p ∧ q)).

For a property in the form ¬F(p → q), it cannot
be directly transformed into ¬F(¬p ∨ q). In ¬F(p →
q), p denotes the pre-condition and q indicates the post-
condition. When G(¬p) holds, ¬F(p → q) = f alse will
be vacuously true, and the checking of ¬F(p → q) will
report a counterexample without satisfying the precondition
p. This counterexample cannot match the original testing
intention. For the purpose of test generation, in our decom-
position approach, the properties in the form of ¬F(p →
q ∧ clk = k) can be transformed to ¬F(p ∧ q ∧ clk = k)

where k equals to the bound of ¬F(p∧q). The Eq. (3) then
can be used to decompose the property¬F(p∧q∧clk = k).

Note that when checking a complex property which can
be decomposed in disjunctive form, it is not necessary to
check all its sub-properties. If the COI of a sub-property
is similar to the original property, the complexity of such
sub-property will be similar to the complex property. In this
case, the learning is not economical. In other words, the sub-
properties with smaller COI than the complex property need
to be checked.

When a complex property involves too many atomic sub-
properties, checking each of them individually may not
derive useful learning, since each atomic sub-property only
have a narrow view of the system. In this case, the commu-
tative and associative laws can be used to classify atomic

sub-properties into several groups. For example, in Eq. (4),
pi and pk are grouped together, and pj belongs to another
group.

pi ∨ pj ∨ pk = (pi ∨ pk) ∨ pj (4)

For each group, we generate a refined property which
represents all the atomic sub-properties in the group to
derive learning. For grouping, the following rules based on
modular and functional information work well for most of
the time.

• Modular similarity: In each group, all the variables in
the sub-formulas should come from the same compo-
nent (e.g., fetch module in a processor design).

• Functional similarity: In each group, all the sub-
formulas should describe related functional scenarios
(e.g., fetching instructions/data in a processor design).

Algorithm 3 outlines our spatial decomposition method
to derive a set of refined sub-properties with small COI
for deriving learning. The inputs of the algorithm are the
design model D and the complex property P in disjunc-
tive form. Step 1 initializes the SD props with an empty
set. Step 2 tunes sub-properties’ order according to the com-
mutative law and groups sub-properties using the specified
similarity grouping rules. Step 3 selects the ith group of
k sub-properties. If the combined COI of such a group is
smaller than k

n
of P ′s COI, step 4 will generate a refined

property newP for the ith cluster, and step 5 adds newP

to SD props. Finally this algorithm returns a series of sub-
properties for deriving learning (described in Section 5.2).
Since the COI of refined properties is small, the test gen-
eration complexity for the whole sub-property series is
expected to be much smaller than that of the original com-
plex property. It is important to note that Algorithm 3 may
return an empty property series if spatial decomposition is
not beneficial.

Algorithm 3 Spatial Decomposition



294 J Electron Test (2014) 30:287–306

4.3 Temporal Property Decomposition

In event-driven designs, a transaction consists of a sequence
of correlated events, whose order can be used to indi-
cate different stages of a dynamic system behavior. When
generating a directed test for activating such a transaction,
the corresponding property is specified to validate a single
event or a scenario (a sequence of events). If the investi-
gated event has a large delay (i.e., bound), the complexity of
the property checking using SAT-based BMC will increase
drastically, because it requires increased unrollings of the
design.

Temporal Property Decomposition tries to eclipse the
effect of bound. The basic idea of temporal decomposi-
tion is to deduce the long bound property from a sequence
of short bound properties, i.e. to construct a property

series ({P1, P2, . . . , Pn} : T−→ P) where bound(Pi) <

bound(Pi+1) (1 ≤ i < n), and : T−→ indicates that the
learning can be achieved from temporally decomposed
sub-properties. For example in Fig. 5, P1 and P2 are sub-
properties representing different stages of property P . The
bound of them are k1, k2, and k respectively and k1 <

k2 < k. Because P1’s counterexample is similar to the pre-
fix of P2’s counterexample, P1’s counterexample contains
rich knowledge that can be used for checking P2. Similarly,
during the property checking, P can benefit from both P1

and P2. By using such learning, we can quickly obtain a
counterexample for P .

Definition 3 Let P be a false safety property of the design,
and P is temporally decomposable if all of the following
conditions are satisfied.

• P can be decomposed into false properties p1, p2, . . .,
pn with increasing bounds and P = pn.

• ({¬pi} : T−→ ¬pi+1) (1 ≤ i ≤ n − 1), which indicates
that the counterexample generated from properties pi

can guide the test generation for property pi+1. We use

({¬p1, ¬p2, . . . ,¬pn−1} : T−→ P) to denote ({¬pi} : T−→
¬pi+1) (1 ≤ i ≤ n− 2), and ({¬pn−1} : T−→ P).

P

P2

P1

k1

k2

k

Fig. 5 An illustration of temporal property decomposition

In temporal decomposition, finding the implication rela-

tion (“: T−→”) between properties is a key process. In our
framework, we construct such implication relation by
exploring the partial order of events. For example in Fig. 6,
there are 3 transactions, and each transaction has two events.
We classify the relation between these events in two cate-
gories. The cause-effect relation (marked by ⇒) defines the
causal relation between inter-transaction events. For exam-
ple, there are two events e1 and e5 in transaction T 1. e1 ⇒
e5 means that if e1 happens, e5 should happen in future.
The happened-before relation (marked by ≺) specifies the
relation between events. It indicates which events may hap-
pen before other events under some condition. For instance,
e3 ≺ e5 means that e3 may happen before e5.

During test generation, we apply properties in the form
¬F(e) to indicate that the event e cannot be activated. Gen-
erally, if the event happens with a large delay, BMC needs
to unroll the design many times that can drastically increase
the checking complexity. According to Definition 3, the
“⇒” relation can be used to derive learning. For example,
in Fig. 6, instead of checking the property P1 = ¬F(e5)

directly, we can check P2 = ¬F(e1) first. Since e1 ⇒ e5

implies F(e1) → F(e5) ( i.e., ¬P2 → ¬P1), it indi-
cates that P2’s counterexample can be used to guide the
generation of P1’s counterexample. This can be written as

({P2} : T−→ P1). The “≺” relation also can be used to indicate
the learning information.

In Fig. 6, e3 ≺ e5 indicates that the counterexample
of ¬F(e3) is shorter than the counterexample of ¬F(e5).
Although the occurrence of e3 may not lead to the occur-
rence of e5, the counterexample of ¬F(e3) may still have a
large overlap of variable assignments with the counterexam-
ple of ¬F(e5). Therefore the happened-before relation can
be used as a weak form of implication defined in Definition
3. It is important to note that the cause-effect relation is a
stronger form of happened-before relation.

When checking a property with a large bound, there may
be many events along the path to the target events. Checking

5e1e
e4e2

6e3e

T1

T2

T3

Fig. 6 A sequence of three transactions
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all of them individually is time-consuming. In fact, only the
events that follow branching and merging points along the
path from initial events to target events need to be consid-
ered since they are important in determining the execution
order, while the other points are only used to indicate “⇒”
relations. For example, in Fig. 7, the relation between events
is described using a directed acyclic graph (DAG). Such
information can be derived from the graph model automat-
ically by exploring the structure of the given graph models
(see the examples in Section 4.5). In a DAG, each node indi-
cates an event; each directed edge indicates the relation of
⇒ or ≺; and the weight on each edge is the delay between
two adjacent events. In this DAG, there are 8 events before
e9 (i.e., the target event). For the temporal decomposition in
this DAG, it is beneficial to consider only the branching and
merging events e1, e3 and e7.

Algorithm 4 Temporal Decomposition

Algorithm 4 describes how to obtain a sequence of sub-
properties for temporal decomposition. It accepts the formal
model of the design and a complex property indicating the
target event. Step 1 figures out the corresponding event
graph of the design as well as the source event. Since BMC
can detect errors within smallest range, we use Dijkstra’s
algorithm [13] to find a smallest delay path in Step 2. Step
3 initializes the set TD events with the sub-property based
on initial event. Steps 4 and 5 select the branch events and
append corresponding sub-properties to the TD events.

Event Happen beforeCause effect

e3 e5e4

e1 e2 e7 e8 e9
1

3

1 2

2
2 155

e6

Fig. 7 An example of event relation graph

Finally the algorithm reports the sub-property series gener-
ated by temporal decomposition. By using this algorithm,

({¬F(e1),¬F(e3),¬F(e7)} : T−→ ¬F(e9)) is a property
series for temporal decomposition in Fig. 7.

4.4 Hybrid Decomposition

Spatial decomposition is promising for the properties in the
form of p1 ∧ p2 . . . ∧ pn or p1 ∨ p2 . . . ∨ pn. However,
when the COI of decomposed sub-properties is large, spatial
decomposition may not be economical due to long learning
derivation time. As an alternative, temporal decomposition
exploits learning from different stages of designs. However,
in many scenarios, it is hard to figure out the cause-effect
and happened-before relations from designs.

Figure 8 shows a part of a design. Assume that we need to
generate a test to exercise three events e1,3, e2,2, and e3,4 at
the same time, i.e. clk = k, the corresponding false property
would be P = ¬F(e1,3 ∧ e2,2 ∧ e3,4 ∧ clk = k). By using
spatial decomposition, we can decompose P and achieve a
property series ({¬F(e1,3 ∧ clk = k),¬F(e2,2 ∧ clk =
k),¬F(e3,4 ∧ clk = k)} : S−→ P) for test generation. How-
ever, since e1,3, e2,2, and e3,4 may have large COI, the test
generation will fail because checking SAT instances of sub-
properties may be more costly than the original property.
Temporal decomposition is promising to handle the prop-
erties of large bounds. Since (e1,1 ∧ e2,1 ∧ e3,1 ∧ clk =
k − 4) ⇒ (e1,3 ∧ e2,2 ∧ e3,4 ∧ clk = k), it indicates

that ({¬F(e1,1 ∧ e2,1 ∧ e3,1 ∧ clk = k − 4)} : T−→ P).
However, ¬F( e1,1 ∧e2,1 ∧ e3,1 ∧ clk = k − 4) may still
have large SAT instance size, which needs a long checking
time.

To address this issue, we can utilize the hybrid decompo-
sition combining both spatial decomposition and temporal
decomposition. As an example for P , we can get four
property series as follows:

2

2

2
4

1

1

e1,1

e1,2

e2,1

e2,2

e3,1

e1,3

e3,3
e3,2

e3,4

1
1

e2,3

Component1 Component2 Component3

1

Fig. 8 An example of hybrid decomposition



296 J Electron Test (2014) 30:287–306

1. ({¬F(e1,3 ∧ clk = k),¬F(e2,2 ∧ clk = k),¬F(e3,4 ∧ clk =
k)} : S−→ P)

2. ({¬F(e1,1 ∧ clk = k − 4)} : T−→ ¬F(e1,3 ∧ clk = k))

3. ({¬F(e2,1 ∧ clk = k − 4)} : T−→ ¬F(e2,2 ∧ clk = k))

4. ({¬F(e3,1 ∧ clk = k − 4)} : T−→ ¬F(e3,4) ∧ clk = k)

Although checking ¬F(e1,3), ¬F(e2,2), ¬F(e3,4) indi-
vidually without learning can be costly, the overall test
generation time can be drastically reduced because of the
temporal decomposition shown in property series (2) - (4).
It is true that we can consider the above property series
as a dependence graph. As shown in Fig. 9, the property
P depends on ¬F(e1,3), ¬F(e2,2) and ¬F(e3,4); ¬F(e1,3)

depends on ¬F(e1,1); ¬F(e2,2) depends on ¬F(e2,1); and
¬F(e3,4) depends on ¬F(e3,1).

Similarly, when checking the property P ′ = ¬F(e2,3)

with a bound k, it is hard to do the spatial decomposition. To
achieve learning for test generation, we can use the hybrid
decomposition which first temporally decompose the com-
plex property and then spatially decompose the property.
It is important to note that only the temporally decom-
posed sub-property with the smallest bound needs to be
spatially decomposed. In the example of decomposition of
P ′, we can get two property series for test generation of P ′
as follows:

1. ({¬F(e1,1 ∧e2,1 ∧e3,1 ∧clk = k−5),¬F(e1,3 ∧e2,2 ∧e3,4 ∧
clk = k − 1)} : T−→ P ′)

2. ({¬F(e1,1 ∧clk = k−5),¬F(e2,1 ∧clk = k−5),¬F(e3,1 ∧
clk = k − 5)} : S−→ ¬F(e1,1 ∧ e2,1 ∧ e3,1 ∧ clk = k − 5))

Algorithm 5 describes our hybrid decomposition method.
The inputs of the algorithm are a formal model of the design
and a complex property P . Step 1 initializes an empty prop-
erty series set PS. Step 2 tries to decompose property P

spatially and step 3 figures out the corresponding bene-
ficial sub-properties defined in Definition 1. If P cannot
be spatially decomposed, step 4 puts P to the property
set props for the second try of spatial decomposition in
steps 7 and 8. Otherwise, step 5 includes the property series
into PS. Then the algorithm tries to decompose each ben-
eficial sub-property temporally in step 6. If P cannot be
spatially decomposed in step 2, step 7 selects the beneficial
sub-property p with the smallest bound, and step 8 applies

F(e3,4   clk=k)F(e2,2   clk=k)F(e1,3   clk=k)

F(e1,1   clk=k−4) F(e2,1   clk=k−4)

v v

v v v

v v v

p =   F(e1,3    e2,2    e3,4    clk=k)

v

F(e3,1   clk=k−4) 

Fig. 9 An example of property dependence

spatial decomposition on p. Step 9 incorporates the prop-
erty series derived from temporal decomposition into PS.
Finally, the algorithm reports property series PS for test
generation.

Algorithm 5 Hybrid Decomposition

4.5 An Illustrative Example

This section presents an example to illustrate the use of
decomposition methods using a MIPS processor design
shown in Fig. 10. The figure shows the graph model of a
MIPS processor. It consists of five pipeline stages: fetch,
decode, execute, memory and writeback. It has four pipeline
paths in the execute stage: ALU for integer ALU operation,
FADD for floating-point addition operation, MUL for mul-
tiply operation and DIV for divide operation. In the figure,
solid ovals denote functional units; dashed ovals are stor-
ages; solid edges are instruction-transfer (pipeline) edges;
and dashed edges are data-transfer edges. Assume that we
want to check a complex scenario that the functional units
MUL5 and FADD3 will be active at the same time. We
need to generate the property P =!F(MUL5.active =
1andFADD3.active = 1) which is the negation of the
desired behavior. The remainder of this section describes
how to perform property checking using spatial, temporal
and hybrid decompositions.

4.5.1 Example of Spatial Decomposition

In the MIPS design, assume that each functional unit has
a delay of one clock cycle. To trigger the functional unit
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MUL5.active, at least 7 clock cycles are required (there are
7 units along the path Fetch → Decode → . . . → MUL5).
Similarly, to trigger the functional unit FADD3.active, at
least 5 clock cycles are required. To guarantee that both
units are active at the same time, at least 8 clock cycles are
required to activate this interaction - the first clock cycle is
used for instruction initialization; then a MUL instruction
is fetched in the second clock cycle, and an FADD instruc-
tion is fetched in the fourth clock cycle, and so on. Thus the
bound of this property is 8. According to Eq. (3) and Algo-
rithm 3, property P can be spatially decomposed into two
sub-properties as follows. Assuming that the COI of P1 and
P2 are both smaller than half of COI of P , we can get the

property series ({P1, P2} : S−→ P). It is important to note
that the exact value assigned to clk is based on the bound of
the property.

When checking P1 and P2 individually, we can get the
following two counterexamples.

However, if the test generation of P2 is under the guid-
ance of P1’s result, the counterexample of P2 will reflect
P1’s partial behavior (see clock cycle 2 below). It can

Fig. 10 A VLIW MIPS process example

be observed that P2’s counterexample has a large overlap
with P ’s counterexample. Thus the counterexamples of both
P1 and P2 can be used to derive decision ordering based
learning (see Section 5.2) for P ’s checking.

4.5.2 Example of Temporal Decomposition

For temporal decomposition, we need to figure out the
event implication relation first. Because we want to check
the property P , the target event is MUL5.active =
1&FADD3.active = 1. Fig. 11 shows the implication
relation for this event. There are 7 events in this graph, and
e7 is the target event.

Assuming e1 is the initial event, from e1 to e7, there is
only one path e1 → e2 → e4 → e6 → e7. Along this path
there is a branch node e4. According to Algorithm 4, we
need to check two events e1 and e4 using following proper-

ties. We can get the property series ({P e1, P e4} : T−→ P).
By using our learning technique during the test genera-

tion, P e1 can benefit P e4, and P e4 can benefit P . It is
important to note, from e4 to e7, there are no branch nodes.
In other words, if e4 is triggered, then e7 should be triggered
2 clock cycles later. That means, the test for P e4 is also a
test for P .

4.5.3 Example of Hybrid Decomposition

By using our hybrid decomposition method described in
Algorithm 5, the complex property P can be first spatially
decomposed and then temporally decomposed. In this case,
the spatial decomposition is the same as the example shown
in Section 4.5.1. Therefore we can get the property series

({P1, P2} : S−→ P). Since each of the properties (P1 and
P2) is related to only a single pipeline path, they can be fur-
ther decomposed temporally. P1 can be decomposed into

a property series ({P1 1, P1 2} : T−→ P1), and P2 can be

decomposed into a property series ({P2 1, P2 2} : T−→ P2),
where P1 1,P1 2, P2 1 and P2 2 are described as follows.
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Fig. 11 The event implication
graph for property P
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5 Test Generation Using Property Decomposition
and Learning Techniques

In our framework, the decomposed sub-properties have two
utilities: i) they can be used to efficiently cluster similar
complex properties; and ii) they can be used to derive deci-
sion ordering based learning to reduce the test generation
time. We have developed a test generation framework based
on property decomposition and learning techniques.

Figure 12 shows the overview of our test generation
framework. Firstly, properties are decomposed based on the
structure information of the design. Since this step only
analyzes the structure of the design, the decomposition
overhead is negligible compared to model checking com-
plexity. Then by comparing the similarity of decomposed
sub-properties, complex properties are grouped into sev-
eral clusters. The accumulative learning (shown using arrow
towards “Learning” box) from the decomposed beneficial
sub-properties as well as the checked complex properties
in a specific property cluster can be utilized to improve
the test generation time of unchecked complex properties.
It is important to note that, in our approach, only the base
property checking directly utilizes the learning from its sub-
properties. The non-base property solving is based on accu-
mulative learning from both checked sub-properties and the
base property. The following sub-sections will describe our
test generation approach in detail.

5.1 Clustering Using Decomposition Based Similarity

By decomposing a complex property into several sub-
properties, spatial and temporal methods unveil different
aspects of a system via utilizing structure and behav-
ior information. For spatial decomposition, decomposed
sub-properties involve fewer functional components, which
in turn indicate partial behavior of the original complex
property. For temporal decomposition, decomposed sub-
properties infer different execution stages which can be
considered as stepping stones of the desired behavior. Based
on above facts, decomposed sub-properties can be used as
preferable candidates to determine the similarity between

complex properties. They can be used to cluster similar
properties together for sharing learning.

Definition 4 Assume that two properties P and P ′ can be
spatially decomposed, and their property series are ({p1,

p2, . . ., pm}: S−→P) and ({p′
1, p′

2, . . ., p′
n}: S−→ P ′) respec-

tively. Let |A| denote the cardinality of the set A. The spatial
similarity between property P ′ and P is

|{p1, p2, . . . , pm}⋂{p′
1, p

′
2, . . . , p

′
n}|

Max(|{p1, p2, . . . , pm}|, |{p′
1, p

′
2, . . . , p

′
n}|)

× 100 %

To reduce the complexity of a property, spatial decompo-
sition divides a complex property syntactically. The spatial
similarity can be simply determined by checking how many
sub-properties are same between properties.
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Fig. 12 Our test generation framework
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For example, assume that there are two spatially de-

composed property series ({a, b, c}: S−→P) and ({b, c, d ,

e}: S−→ P ′). The spatial similarity between P and P ′ is
50 %.

Unlike spatial decomposition, temporally decomposed
sub-properties denote the potential events during the system
execution. The behavior of the original complex prop-
erty can be considered as an ordered sequence of such
events (sub-properties). For two complex properties, the
more similarity between two event sequences implies that
more learning can be shared between two original com-
plex properties. In our method, the temporal similarity is
based on the matching of same segments between two event
sequences.

Definition 5 Assume that two properties P and P ′ can
be temporally decomposed, and their property series are

({p1, p2, . . ., pm}: T−→P=pm+1) and ({p′
1, p′

2, . . ., p′
n}: T−→

P ′=p′
n+1) respectively. Let σ(P, i) denote the consec-

utive sub-property pair (pi, pi+1) of P , and δ(P, i) =
bound(pi+1) - bound(pi) denote the bound difference
between two elements of the pair. Let α(σ(P, i), P ′)
be a Boolean predicate (0 means false, 1 means true)
to determine whether σ(P, i) is a consecutive sub-
property pair of P ′. The temporal similarity of P ′ over
P is

�m
i=1 (δ(P, i)× α(σ(P, i), P ′))

Max(�m
i=1 δ(P, i), �n

j=1 δ(P
′, j))

× 100 %

For example, let P.b indicate that the bound of property
P is b. Assume that there are two temporally decomposed

property series ({a.1, b.3, c.5}: T−→P.10) and ({b.3, c.5, d.8,

e.9}: T−→ P ′.10). The temporal similarity between P and P ′
is 20 %.

As shown in Algorithm 5, hybrid decomposition ap-
proach adopts both spatial and temporal methods. We can
consider the hybrid method as a two-phase method (i.e., first
spatial decomposition and then temporal decomposition, or
vice versa). Since the second phase only decomposes light-
weight sub-properties for further improvement, it can be
ignored for similarity checking. In other words, the first
phase of hybrid method plays a key role in similarity check-
ing. In the case of spatial decomposition followed by tempo-
ral decomposition, the sub-properties derived from spatial
decomposition already show the similarity between proper-
ties. Similarly, in the case of first temporal decomposition
and then spatial decomposition, only one sub-property with
smallest bound is involved for spatial decomposition. There-
fore the temporally decomposed sub-properties are enough
to determine the similarity between complex properties in
this case.

5.2 Derivation of Decision Ordering Based Learning

Unlike the heuristics proposed in [9], we consider the bound
information in our variable assignment statistics (an illus-
trative example is shown in Fig. 3). Let varStat[sz+ 1][2]
(sz is the variable number for a complex property) be a 2-
dimensional array to keep literal statistics. Initially, varStat
[i][0] = varStat[i][1] = 0 (1 ≤ i ≤ sz). Since spa-
tially decomposed sub-properties have the same bounds
and are checked first, in our approach, the weight of such
sub-properties is set to 1. However for temporal decomposi-
tion, the sub-property with larger bound can provide better
support to the original property. Therefore, the weight of
temporally decomposed sub-properties is equal to its real
bound. When the base property checking is done, the weight
change on literals also equals to the bound of the checked
complex property.

Algorithm 6 Update of Weight Statistics of Literals

Algorithm 6 describes our approach to achieve the accu-
mulative weight for all literals to predict decision ordering
of unchecked properties. After each property checking,
varStat will be updated. Based on the satisfying variable
assignment (i.e., test) of P , each element of varStat[i][ ]
will be increased by boundP according to the value of
the variable vi (i.e., test.V arAssign[i]). It is important to
note that, if variable k is not determined yet when check-
ing P , the value of both varStat[k][0] and varStat[k][1]
will remain unchanged. By using Algorithm 6, the deci-
sion ordering heuristic of unchecked properties is gradually
tuned by the checked properties based on the information
saved in varStat .

MiniSAT employs a variant of the VSIDS heuristic.
However, MiniSAT does not support explicit ordering for
literals. It only keeps activity scores for variables and
clauses, which cannot be used to predict the variable polar-
ities (i.e., Boolean values of variables). Based on the
statistics collected in varStat , if a variable has not been
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Fig. 13 Test generation results
using MiniSAT

determined yet, its polarity can be predicted at the beginning
and the restart of the search using the following formula:

polarity(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

true (varStat[i][1] > varStat[i][2])
f alse (varStat[i][1] < varStat[i][2])
skip (varStat[i][1] = varStat[i][2])

(5)

5.3 Test Generation Using Our Method

Algorithm 7 outlines our test generation approach illus-
trated in Fig. 12. The inputs of the algorithm are a formal
model of the design, a property set P and corresponding
satisfying bounds, and the similarity threshold for property
clustering. In Algorithm 7, step 1 initializes DecompProp

and testP . Step 2 decomposes all the complex properties
and step 3 clusters them according to decomposition based
similarity. For each property cluster, steps 4-13 utilize both
decomposition and learning techniques to reduce the over-
all test generation time. Step 4 initializes varStat and step
5 decomposes p′

0 (p′
0 is the base property, i.e., the property

to check first) into a set of properties props by apply-
ing suitable decomposition methods. Step 6 translates the
decomposed sub-properties into a set of CNFs for SAT solv-
ing. To handle the simpler sub-properties first, step 7 sorts
the encoded CNFs according to their DIMACS file size.
Steps 8 and 9 solve each decomposed sub-property individ-
ually, and update varStat accordingly. Since the complex
properties in cluster Clu are assumed to be similar to p′

0,
steps 10-13 check the m+ 1 (m ≥ 0) properties one-by-one
based on the statistics collected in varStat . Finally, step 14
reports the test set testP for all properties in P .

6 Experiments

In this section, we present two case studies: a MIPS proces-
sor design and a stock exchange system. Both of them are

Algorithm 7 Our Test Generation Approach

generated from high-level graph models [10], which enable
automatic analysis of spatial and temporal decompositions.
The design is transformed into a formal specification. The
testing targets (based on fault modes) are converted into
properties. Based on the graph traversal on the graph models
using the breadth-first-search approach, the decomposition
of each complex property of the two case studies can be
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Table 1 Test Generation Results for the MIPS Design

Clustering Learning # of Clusters Time Speedup

Methods Methods (second)

MiniSAT None 16 23.11 1

Intra+Inter 2 3.14 7.36

Structural Spatial 2 2.49 9.28

Clustering Hybrid (S-T) 2 2.22 10.41

Temporal 2 3.20 7.22

Hybrid (T-S) 2 2.30 10.05

Intra+Inter 3 3.98 5.81

Textual Spatial 3 2.50 9.24

Clustering Hybrid (S-T) 2 2.37 9.75

Temporal 3 5.19 4.45

Hybrid (T-S) 3 2.56 9.03

Intra+Inter 2 3.14 7.36

Influence-based Spatial 2 2.49 9.28

Hybrid (S-T) 2 2.22 10.41

Clustering Temporal 2 3.20 7.22

Hybrid (T-S) 2 2.30 10.04

Intra+Inter 16 12.78 1.81

CNF Spatial 16 4.92 4.70

Intersection Hybrid (S-T) 2 3.55 6.51

Clustering Temporal 16 18.48 1.25

Hybrid (T-S) 16 6.76 3.42

Intra+Inter 4 4.22 5.48

Decomposition-based Spatial 4 2.48 9.32

Hybrid (S-T) 2 2.19 10.55

Approach Temporal 4 5.57 4.15

Hybrid (T-S) 4 2.07 11.16

conducted within 0.01 second, which is far less than the SAT
solving time of the complex property. Therefore, we do not
provide the property decomposition time explicitly in the
experiment. They are included in either the sub-property or
complex property checking time. We used NuSMV [27] to
generate SAT instances (in DIMACS format) for automated
test generation. Since from graph models we can figure out
the bound of each property, the derived SAT instances are
all satisfiable. In our approach, we assume that there exists a
larger overlap between the variable assignments of original
complex property and decomposed sub-properties. Accord-
ing to the observation that decision ordering-based learning
are more effective than conflict-based learning under this
assumption [7], we only investigate the decision ordering-
based learning in our decomposition-based test generation
approach. To incorporate our learning-based techniques, we
modified the SAT solver MiniSAT-2.2 [25], which supports
efficient decision ordering tuning. The experimental results
are obtained on a Linux PC using 2.0GHz Core i7 CPU with

3 GB RAM. Since the intra- and inter-property approach [9]
outperforms the methods described in [6], we only compare
our method to the heuristics proposed in [9].

6.1 A MIPS Processor Design

This section demonstrates the effectiveness of our
approaches using a pipelined MIPS processor design illus-
trated in Section 4.5. Since interactions between functional
components [19] are recognized as complex scenarios, in
this case study, the directed tests are generated for interac-
tion faults.

We selected 14 complex properties from the MIPS
design based on the “2-interaction fault model”3. To
check each property individually, Fig. 13 shows the test

3A k-interaction property involves interactions among k compo-
nents. For example, “!F(decode.stall∼=1 & fetch.stall∼=1)” is a
2-interaction property that involves interactions between fetch and
decode units.
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Table 2 Test Generation Results for 3-Interaction Properties Using Decomposition-based Clustering

Interaction Prop. Similarity MiniSAT Intra+Inter Spatial Hybrid (S-T) Temporal Hybrid (T-S) Max

Units (Tests) Ratio Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Speedup

p1
∗ - 0.82 0.71 0.19+0.10 0.17+0.07 0.66+0.08 0.24+0.02 3.41

MUL(2) p2 66.6 % 0.78 0.1 0.09 0.09 0.09 0.10 8.67

FADD(1) p3 66.6 % 0.90 0.10 0.10 0.10 0.09 0.10 10.00

p4 66.6 % 0.91 0.11 0.10 0.10 0.09 0.10 10.11

Summary all - 3.41 1.02 0.58 0.53 1.01 0.56 6.43

p5
∗ - 0.87 0.62 0.15+0.14 0.10+0.08 0.56+0.12 0.13+0.08 4.83

MUL(3) p6 66.6 % 0.87 0.10 0.08 0.10 0.10 0.10 10.88

p7 66.6 % 0.86 0.10 0.10 0.10 0.09 0.11 9.50

p8 66.6 % 1.01 0.10 0.11 0.10 0.11 0.09 11.22

Summary all - 3.61 0.92 0.58 0.48 0.98 0.51 7.52

p9
∗ - 1.91 0.83 0.25+0.09 0.13+0.07 1.18+0.09 0.20+0.04 9.55

MUL(2) p10 66.6 % 1.94 0.08 0.08 0.08 0.08 0.08 24.25

FADD(1) p11 66.6 % 1.98 0.09 0.08 0.08 0.08 0.08 24.75

p12 66.6 % 1.92 0.09 0.08 0.08 0.08 0.08 24.00

Summary all - 7.75 1.09 0.58 0.44 1.53 0.48 17.61

p13
∗ - 1.64 0.89 0.27+0.16 0.14+0.15 1.55+0.20 0.15+0.08 5.66

MUL(3) p14 66.6 % 2.52 0.14 0.14 0.15 0.14 0.13 19.38

p15 66.6 % 1.98 0.08 0.08 0.09 0.08 0.09 24.75

p16 66.6 % 2.30 0.08 0.09 0.09 0.08 0.09 28.75

Summary all - 8.44 1.19 0.74 0.62 2.05 0.64 13.61

∗Base property

generation results using MiniSAT with different learning
techniques. When MiniSAT is used for the SAT solving,
the intra-property learning method [9] can get 1.40X over-
all improvement over MiniSAT. We can find that both of
our spatial and temporal decomposition techniques out-
perform the methods using MiniSAT and intra-property
learning approach. In this case, directed test generation
using spatial decomposition method (4.20X improvement
over MiniSAT) is better than temporal method (1.06X
improvement over MiniSAT). This is mainly due to the fact
that the temporally decomposed sub-properties still have
large bounds, which needs a long solving time. To fur-
ther reduce the test generation time, we applied hybrid
decomposition in two ways: spatial followed by temporal
(S-T) and temporal followed by spatial (T-S). The results
show that the hybrid approach “S-T” and “T-S” can achieve
6.42X and 4.09X overall improvement over MiniSAT,
respectively.

We also derived 16 complex “3-interaction prop-
erties” from the MIPS design, which involve inter-
actions of 3 different functional units of different
pipeline paths. Besides our decomposition-based clustering

method, Table 1 presents the test generation results using
various clustering approaches on these 16 properties. The
first four clustering methods are introduced in [6], whereas
the last one is our proposed decomposition-based clustering
technique. Since structural clustering and influence-based
clustering have the same clustering results, their test gener-
ation time using the same learning approaches is identical.
It is important to note that the clustering strategies are
independent with the learning mechanisms. This case study
shows that different kinds of learning can be beneficial to
the same clustering method. The first column of this table
indicates the clustering type. The second column presents
the type of the learning strategies. In this column, “None”
means that no learning is applied. “Intra+Inter” means that
the intra-property learning is applied on the base property
and the inter-property learning is shared among all other
properties [9]. The test generation schemes of “Spatial”,
“Temporal” “Hybrid (S-T)” and “Hybrid (T-S)” are sim-
ilar to the “Intra+Inter” approach. The only difference is
that the base property adopts the learning from spatial, tem-
poral and hybrid (S-T or T-S) decomposition approaches,
respectively (as described in Section 4). The third column
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Table 3 Test Generation
Results for the OSES Example Clustering Learning # of Time Speedup

Methods Methods Clust. (second)

MiniSAT None 12 16.51 1.00

Structural Inter+Intra 4 4.06 4.07

Clustering Temporal 4 2.58 6.40

Textual Inter+Intra 4 4.06 4.07

Clustering Temporal 4 2.58 6.40

Influence-based Inter+Intra 3 5.59 2.95

Clustering Temporal 3 7.41 2.23

CNF Intersection Inter+Intra 5 3.33 4.96

Clustering Temporal 5 3.14 5.26

Decomposition Inter+Intra 4 7.85 2.10

based Approach Temporal 4 2.56 6.45

presents the number of clusters using different clustering
methods. The fourth column gives the overall test generation
time using MiniSAT. Since the overlap between different
CNFs of properties is too small, the CNF-intersection clus-
tering fails to cluster the properties. That means each cluster
contains only one property. Finally, the last column shows
the speedup of the overall test generation time compared

to the method using MiniSAT. It can be found that, when
using MiniSAT for SAT solving together with decompo-
sition based learning, our decomposition-based clustering
approach can achieve the best performance compared to
other clustering approaches irrespective of learning cate-
gories. The combination of the decomposition-based clus-
tering and hybrid decomposition approaches can achieve

Table 4 Test Generation Results for OSES Design Using Decomposition-based Clustering

Transac. Prop. Bound CNF Size Decom. MiniSAT Intra + Inter Temporal Decomposition

Type (Tests) Vars. Cls. # Time (s) Time (s) Speedup Similarity Time (s) Speedup

p1
∗ 10 119098 362519 4 1.69 0.36 4.69 90 % 0.16 10.56

Market p2 10 146024 362500 4 0.16 0.13 1.23 90 % 0.06 2.67

Sale p3 10 118988 362519 4 2.13 0.31 6.87 90 % 0.39 5.46

Summary all - - - - 3.98 0.80 4.98 - 0.61 6.52

p4
∗ 10 119371 326326 4 0.64 0.34 1.88 90 % 0.28 2.29

Market p5 10 147159 398680 4 5.43 5.17 1.05 90 % 0.42 3.91

Buy p6 10 119191 326326 4 1.05 0.24 4.38 90 % 0.26 4.38

Summary all - - - - 7.12 5.75 1.24 - 0.96 7.42

p7
∗ 11 131414 398741 5 0.18 0.26 0.69 91 % 0.18 1.00

Limited p8 11 131546 398741 5 2.20 0.21 10.48 91 % 0.11 20.00

Sale p9 11 131678 398741 5 0.67 0.25 2.68 91 % 0.16 4.19

Summary all - - - - 3.05 0.72 4.24 - 0.45 6.78

p10
∗ 11 156144 398743 5 0.68 0.26 2.62 91 % 0.14 4.85

Limited p11 11 156276 398743 5 0.26 0.18 1.44 91 % 0.19 1.37

Buy p12 11 156012 398743 5 1.42 0.14 10.14 91 % 0.21 6.76

Summary all - - - - 2.36 0.58 4.07 - 0.54 4.37

∗Base property
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the maximum speedup (11.16 times improvement over
MiniSAT).

To illustrate the effectiveness of our decomposition-
based clustering and learning approaches, Table 2 provides
more test generation details. Based on the similarity defined
in Sec. 5.1, we clustered the sixteen properties into four
clusters, where each cluster has four properties. The first
column shows the interaction types. For example, MUL(2)
and FADD(1) indicate that the 3-interaction properties
involve 2 multiplication units and 1 floating-point addi-
tion unit. The second column shows the property index.
The third column provides the similarity between the base
property and other properties in the same cluster. For the
3-interaction properties, since the temporally decomposed
sub-properties cannot directly reflect the similarity informa-
tion, this column only presents the spatial similarity. The
fourth column presents the test generation time using Min-
iSAT without any learning. Column 5 shows the test gen-
eration time using both the Intra+Inter approach introduced
in [9]. In each cluster, we adopted intra-property learning
for base property checking, and applied inter-property learn-
ing for other properties in the same cluster. Columns 6-9
provide the results using our four decomposition methods.
In columns 4-9, each cell gives the test generation time
using MiniSAT or our modified MiniSAT. In the first row of
each property cluster, we provide the SAT solving time for
both sub-properties and the original property in the form of
a+b, where a indicates the sub-property solving time and b

denotes the original property solving time. Finally, column
10 provides the max overall speedup over MiniSAT using
the following formula:

column4

Min(Column5, Column6, Column7, Column8, Column9)
. (6)

In the summary row, we provide the overall test generation
time and the speedup over MiniSAT for each cluster.

Table 2 shows that our decomposition methods outper-
form both MiniSAT and the Intra+Inter method [9]. In this
case, we can find that the spatial method outperforms tem-
poral method. This is because that: i) we adopted spatial
similarity to cluster the properties; and ii) the temporally
decomposed sub-properties still have large bounds, which
can easily result in a large overhead. To further reduce
the test generation time, the temporally/spatially decom-
posed sub-properties can be further spatially/temporally
decomposed. Due to the extra learning derived by hybrid
decomposition method (T-S or S-T), the overall test gen-
eration time is reduced in all the four clusters. It can be
found that the hybrid method outperforms both spatial and
temporal decomposition methods. The major reason is that
the hybrid decomposition approach is promising in reducing
the base property checking time. The smaller base prop-
erty checking time implies less overall test generation time

for a cluster of similar properties. The results indicate that,
when the hybrid decomposition is applicable to a design,
it can achieve the best test generation time. It shows that,
for the overall test generation time of these four clusters,
our decomposition methods can achieve up to 17.61 times
improvement over MiniSAT. Compared to the Intra+Inter
method [9], our decomposition methods can achieve up
to 2.27 (1.09/0.48=2.27) times improvement by using
MiniSAT.

From the above experimental results, we can find that
the hybrid methods (i.e., S-T and T-S) can always achieve
best performance for the directed test generation of the
MIPS design. As shown in Fig. 13, for MiniSAT, the hybrid
S-T approach consistently outperforms spatial decompo-
sition method, and hybrid T-S approach outperforms the
temporal decomposition method. From Table 1, we also
can find that the hybrid approaches can achieve the best
results (marked in bold font) when employing different
property clustering strategies. Specifically, Table 2 shows
the test generation details using the decomposition-based
clustering approach. From this table, we can consistently
find that the hybrid approaches together with property
decomposition-based clustering can achieve the best per-
formance. Although hybrid S-T and hybrid T-S approaches
adopt different decomposition order, all the above exper-
iment results demonstrate that the test generation time
difference between the two hybrid approaches is quite small
compared to the solving time of original complex properties.
Therefore, for directed test generation, hybrid decompo-
sitions are better choices than both spatial and temporal
decomposition methods.

6.2 A Stock Exchange System

The on-line stock exchange system (OSES) [11] is a con-
trol intensive design which mainly deals with stock order
transactions. All these scenarios are described by a UML
activity diagram which contains 27 activities and 29 transi-
tions. We extracted the formal model from the specification
and transform it to a NuSMV specification. We generated
18 properties to check all possible stock transactions. Since
each transaction involves operation activities (events) in a
path of the UML activity diagram, spatial decomposition
is not feasible in this case. Therefore, we only adopted the
temporal decomposition to reduce the test generation time.
In this example, each transaction is temporally decomposed
into several stages which specify branch activities along
the transaction flow, and for each stage we created a sub-
property. Among the 18 properties, we selected 12 complex
ones whose CNF clause number is larger than 300000.

Table 3 shows the clustering and test generation results
for the 12 properties. It can be found that the combination of
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the decomposition based clustering and temporal decompo-
sition based learning can achieve the best performance (i.e,
6.45 times improvement over MiniSAT). This is consistent
with the results achieved in Sec. 6.1.

To illustrate the efficiency of our approaches, Table 4
shows the test generation details using our temporal decom-
position technique. By using the decomposition based clus-
tering, the 12 properties are clustered into 4 groups, and
each group has 3 properties. The first column indicates the
transaction type of properties. There are four transaction
types in this example: market buy, market sell, limit buy and
limit sale. The second column indicates the property index.
The third column provides the bound information for each
property. Columns 4-5 give the variable and clause statistics
of the generated CNF files for each property. For each prop-
erty, we performed the temporal decomposition. Column 6
shows the number of decomposed sub-properties (includ-
ing the base property). The seventh column presents the test
generation time using MiniSAT without any decomposition
and learning techniques. Columns 8-9 present the results
using the Intra+Inter approach proposed in [9], including
the overall test generation time and corresponding improve-
ment over MiniSAT. The final three columns show the test
generation time using our temporal decomposition method.
Column 10 gives the temporal similarity between the base
property and the other properties in a cluster, and columns
11-12 give the test generation time as well as its improve-
ment over MiniSAT. Our approach can achieve 4.37-7.42
times improvement over MiniSAT, and 1.07-5.99 times
improvement over the Intra+Inter approach.

7 Conclusion

Since fewer tests can achieve required coverage, directed
tests are promising to reduce overall validation effort.
However, most automated directed test generation meth-
ods, especially for SAT-based BMC, suffer from the state
space explosion problem. Although learning techniques are
promising to check a cluster of similar properties, the base
property cannot benefit from any external learning because
it is checked first. To enable efficient test generation for
a large number of properties using SAT-based BMC, this
paper presented a novel approach that utilizes both property
decomposition and learning techniques to reduce the over-
all test generation time. The case study using both hardware
and software designs demonstrated the effectiveness of our
method.
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