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ABSTRACT
Precisely describing complicate interaction process is still an open
problem in MARTE(Modeling and Analysis of Realtime Embed-
ded System). In this paper, we propose an approach to modeling in-
teraction behaviors to enhance MARTE modeling ability. MARTE
is published by OMG(Object Management Group) in Aug, 2010 as
a standard modeling language for modeling real time and embed-
ded system. Our approach is based on timed CSP(Communicating
Sequential Processes). To describe the multiform time structure in
MARTE, we make an extension to timed CSP. The syntax and se-
mantics of the communicating process specification are given and
also the laws, the trace model and the failures model are defined.
One of the main advantages of our method is to help people to
modeling the complicate interaction process with process algebra,
thus to simplify the modeling and verification of the interaction and
concurrent behaviors in real-time and embedded systems between
different processes. The approach is applied to model and analyze a
Train Over Speed Protection System for Shanghai Bell Company.

Keywords
MARTE, Communicating Process, Clock Constraints, Multiform
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1. INTRODUCTION
Time is a major concern in computer science and software engi-
neering. In real-time systems, response time is very important de-
terminant of correct functioning. They enable the timely delivery
of services. As task complexity increase, real-time systems have
become distributed[1]. The specification and verification of real-
time systems have been one of the major research topics for more
than twenty-five years and they also have very important practical
significance since there are many real-time requirements in safety-
critical systems.

In the domain of real-time and embedded (RTE) systems, the Ob-
ject Management Group (OMG) has recently adopted the UML
Profile for Modeling and Analysis of Real-Time and Embedded
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systems (MARTE), which is currently in the finalization phase. In
its foundations, MARTE defines a broadly expressive Time Mod-
el to provide for a generic timed interpretation of UML models.
The concrete syntax of MARTE, called CCSL(Clocked Constrain-
t Specification Language) (CCSL)[2]. MARTE Time model deals
with both discrete and dense time, physical and logical time. And a
clock gives access to a time structure. A clock can be either chrono-
metric or logical. MARTE allows different times to progress in a
non-uniform fashion and possibly independently to any reference
to physical time which is called multiformed time. A clock con-
straint is a clock relation that applies to two clock expressions [3].

A complicate interaction process required to be modeled in MARTE
often has no way to be clearly described, which is still an open
problem in MARTE. Our approach is to model interaction behav-
iors in MARTE. We make an extension to the timed CSP to describe
the interaction process in MARTE by means of the multiform time
structure and the clock constraints. We give the syntax, semantic,
failures model and failures/divergence model of the communicat-
ing process specification. Timed CSP is a real-time extension of the
process algebra CSP and there are many progress in the develop-
ment of timed CSP. Timed CSP has a well established refinement
theory which proves useful in hierarchical system design. Timed
CSP (TCSP) has incorporated temporal logic in its specification
language and safety and liveness properties of systems can easily
be specified using TCSP[4].

MARTE time model deals with both discrete and dense time, phys-
ical and logical time[3]. And MARTE can also deal with multiform
time, so that we can express time by kilometers or degree and so
on. UML has no support in such kinds of time model. Timed CSP
does very good in handling communicating process. So we propose
an approach to model communicating process of MARTE based on
timed CSP. In our propose, we give the syntax and semantics of the
communicating process specification. Also the trace model, failure
model, and failures/divergence model are defined. Our approach is
applied to model and analyze a Train Over Speed Protection Sys-
tem for Shanghai Bell Company. Our future work will focus on the
tool support work.

This paper is structured in the following way: in Section 2 we give
the preliminaries about MARTE time structure, clock constraints
and communicating Process Modeling. in Section 3 the syntax and
semantics of the communicating process specification are given.
Also the trace model, failure model, and failures/divergence mod-
el are defined in this part. Our approach is applied to model and
analyze a Train Over Speed Protection System for Shanghai Bell
Company in Section 4. Finally in Section 5, we make a conclusion



of our paper and related works and also discuss the future work.

2. PRELIMINARIES
MARTE time model deals with both discrete and dense time. In
MARTE, a clock gives access to a time structure. A clock can be
either chronometric or logical. The chronometric clock is related
to "physical time" while the logical clock is not.

In Figure 1, a time base is a totally ordered set of instants. A set of
instants can be discrete or dense. The linear vision of time repre-
sented by a single time base is not sufficient for most of the appli-
cations, especially in the case of multithreaded or distributed appli-
cations. Multiple time bases are then used. A MultipleTimeBase
consists of one or many time bases. A time structure contains a tree
of multiple time bases[3].

Figure 1: MARTE Time Structure

In MARTE, a time structure is a pair (C,R),where C is a set of
clocks, R is a binary relation on

⋃
c∈C(I)c, named precedence. R is

reflexive and transitive.

Clock is an infinite set of instants, it is not realistic to represent con-
straints one by one. A Clock C is a 5-tuple 〈I ,≺,D ,λ ,µ〉 where
I is a set of instants, ≺ is a quasi-order relation on I , named
strict precedence, D is a set of labels, λ : I → D is a labeling
function, µ is a symbol, standing for a unit. For logical clocks, µ

is often called tick, it can be processor cycle or any other logical
activation of a behavior. The ordered set 〈I ,≺〉 is the temporal
structure associated with the clock. ≺ is a total, irreflexive, and
transitive binary relation on I [5].

For the multiform time in MARTE, for example, "the computer
must shutdown in 10s" and "a car must stop within 50m". Both of
the statements express a deadline that "10s" for the former sentence
and "50m" for the latter. We can use either "10s" or "50m" as a
clock. This is so called Multiform Time.

Clock Constraint: The Time structure defines the relations be-
tween different clock instants. Based on instant constraints, it is
easy to build more powerful relations that define infinitely many in-
stant relations. We call these relations clock constraints. clock con-
straints are classified into three families: coincident-based, precedence-
based, and mixed constraints.

Timed CSP: A program in Timed CSP is a term in the abstract syn-

tax, a language construct such with such as a t→ P, P1
t
.P2, P12P2

and so on. Timed CSP assumes a global clock process to maintain
timing information. A process can engage in only a finite number
of events in any finite time determined by the global clock. Events
are assumed to occur instantaneously.

3. COMMUNICATION PROCESS MODEL-
ING FOR MARTE

We model communication process based on timed CSP. We extend
the timed CSP with multiform time and clock constraints. The syn-
tax are defined as follows:
P ::= STOP(STOP)
|SKIP(SKIP)
|WAIT φ (WAIT )

|a φ→ P(timed pre f ix)
|P12P2(externalchoice)
|P1uP2(internalchoice)

|P1
φ

.P2(timeout)
| f (P)(relabelling)
|P1;P2(sequentialcomposition)
|P1A‖BP2(binaryparallelcomposition)
|P1‖|P2(asynchronousparallelcomposition)
|µX ◦F(X)(recursiveprogram)
|P\A(hiding)

where a ∈ ∑,φ ∈ B(C ).B(C ) represents the set of clock con-
straints which we will define it in next section. Actions or events
will be represented over by a,b,..., clocks by A,B. Also sets of clock
are represented by X,Y,... and clock constraints are represented by
α,β ,γ,φ ,...

We know that a time base is an ordered set of instants. Instants from
different time bases can be bound by relationships(coincidence,
precedence or mixed clock constraints). Most logical clock type-
s use a generic time unit called tick. In some case, they may use
more specific units: a processor cycle, for instance, or even units for
physical quantities such as distance(km or m) or angular degree(◦).
We will first give the definition of the clock constraints of the φ .

3.1 Definition of clock constraints
We say that φ ∈B(C ) and C represents clocks, the set of B(C )
of clock constraints is generated by the following grammar:

φ ::= A⊂ B|A≺ B|φ ∧φ |¬φ

for A,B ∈ C , ⊂∈ {⊂,⊆}, ≺∈ {≺,�}.

1. A,B represents clocks

2. ⊂∈ {⊂,⊆} and ≺∈ {≺,�}, represent the clock constraints
and the binary relation between two clocks.

3. ⊂∈ {⊂,⊆}, represents coincidence-based clock constraint.
You can get the detail from next part.

4. ≺∈ {≺,�}
, represents precedence-based clock constraint. You can also
get the detail from next part.



5. If we want to represent two clocks are identical, such as A =
B. We can express it in A⊂ B and B⊂ A

We concentrate on two kinds of clock constraints. One is coincidence-
based clock constraint and another is precedence-based clock con-
straint.

We define two kind of clock constraints. One is Subclock relation.
It includes A⊂B, A⊆B and A = B. Another is Precedence relation.
It includes A ≺ B and A � B. In the below part, we will introduce
each of them one by one, and before them, we will define some
clock-related items.

1. A,B represents clocks instant.

2. offset represent one clock start after period ticks of the other
clocks.

3. period means the offset of one clock and another. Such as
one clock already go through 4 ticks, but another clock has
only 2 ticks, then the offset is 2.

4. N∗ represent nature number.

5. k ∈ N∗, A represents a clock. Then A[k] represent the k-th
tick of the A clock instant.

3.1.1 Subclock

a): A⊂ B
The next clock constraints define a subclock(A) from a given su-
perclock(B), such as a clock with less frequent clock. However,
as opposed, they can also do the contrary and define a superclock
from one or a set of subclock(s). We define it by ⊂, we give its
mathematical declarative way as below.

A⊂ B period = P o f f set = δ

⇔
(∀k ∈ N∗)(A[k]≡ B[(k−1)∗P+δ ]) (!(period = 1 && o f f set =

0))

!(period =1&&offset = 0) means that not exist that period =1 and
in the meantime offset = 0;

For example in Figure 2, we define two instant sets A and B and
we use A ⊂ B to represent the subclock clock constraint. Also
we define a P to define the period and δ to define the offset. For
example, in the below picture, we set the period 2 and the offset 3.
You can see that B ⊂ A and in another way you can say that B is a
subclock of A.

b): A⊆ B
A ⊆ B is the almost the same with A ⊂ B, but exist the probability
that A = B, so we can use the below formula to represent A⊆ B.

A⊂ B period = P o f f set = δ

⇔
(∀k ∈ N∗)(A[k]≡ B[(k−1)∗P+δ ])

c): A = B
We define A = B by if and only if A⊆ B and B⊆ A.

Figure 2: Subclock clock constraint

3.1.2 Precedence
Precedence clock constraint defines many precedence instant rela-
tions. They represent asynchronous relations. The most frequent-
ly used is alternatesWith, which means alternation between two
clocks. It can be divided into two forms: the weak form(A � B)
and the strict form(A ≺ B). The weak form of this relation allows
the ith occurrence of B to be coincident with the ith occurrence of
A, whereas the strict form doesn’t. The strict form requires the two
clocks to be disjoint.

a): Weak Precedence(A� B)
For the weak precedence clock relations we define A� B. A and B
are two clock instants set. We use mathematical declarative way to
express them separately below. See Figure 3.

A� B
⇔

(∀k ∈ N∗)(A[k]� B[k]≺ A[k+1])

The weak precedence clock relations allows the ith occurrence of
B to be coincident with the ith occurrence of A. In the Equation
above, A[k] � B[k] ≺ B[k] A[k] can be equal to B[k]. That is say,
there exist some identical items.

Figure 3: Weak Precedence clock constraint

b): Strict Precedence(A ≺ B) For the strict precedence clock re-
lation, we define A ≺ B. A and B are two clock instants set. We
use mathematical declarative way to express them separately be-
low. See Figure 4.

A≺ B
⇔

(∀k ∈ N∗)(A[k]≺ B[k]≺ A[k+1])

The strict precedence clock relations requires the two clocks to be



disjoint. You can see A[k] ≺ B[k] ≺ A[k + 1] from the equation
above, it mean that no identical items exist.

Figure 4: Strict Precedence clock constraint

3.2 Syntax
The event or action a is in the set of all event ∑, event set A ranges
over the set of subsets of ∑.

1. STOP means just letting the time pass and it is actually a
deadlock process. So we can say that a→ STOP is as simple
as just an event or action a.

2. SKIP represents terminate successfully and communicates
with

√
at anytime.

3. The delay process WAIT φ will wait until the clock constraints

is satisfied and STOP
φ

�SKIP can describe this term.

4. The Process a
φ→ P behaves as P after the event a is observed

and then the clock constraints φ is satisfied.

5. There are two forms of choice: external(P12P2) and internal(P1u
P2). They have the same syntax with original CSP and also
timed CSP.

6. The timeout operator P1
φ

.P2 transfers control from P1 to P2
if no communications occur after the clock constraints φ sat-
isfied.

7. f(P) has a similar control structure with P but the observable
events will be renamed according to the function f.

8. The sequential composition P1;P2 represents that it will start
the P2 process after P1 is finished.

9. Parallel composition of two processes P1 and P2 is parame-
terized by two sets of events.

10. In the construct P1A‖BP2, P1 may only perform the events in
A and P2 in B, P1 and P2 must cooperate on events from A ∩
B.

11. Asynchronous parallel composition is expressed using ‖| op-
erator. This operator is also known as interleaved parallel
composition.

12. The expression µX ◦F(X) is used to denote recursive process
and the unique fixed point of the semantic domain mapping
represented by F.

13. The hiding operator in P\A is used to specify the hiding of
events in A from the environment.

3.3 Semantics
In this section, we will define the communicating process specifi-
cation of MARTE. Since our specification is based on timed CSP,
we keep some of the operator from timed CSP and change some of
them. In this section, we just define the ones we changed.

Wait The delay process WAIT φ will wait until the clock constraints
is satisfied and then it will change state (via an internal event) to
become the terminating process SKIP. It is initially able to perform
nothing.

init(WAIT φ ) = {}

It may evolve to a WAIT process with a smaller argument that sat-
isfied during the course of its delay. However, it may not evolve
beyond the end of its delay.

WAIT φ

ϕ
 WAIT φ−ϕ [ϕ ∈ φ ]

At the end of its delay it performs an internal action to permit ter-
mination.

WAIT φ

φ ,ϕ→ SKIP

The term WAIT φ denotes the system behaves as P after that the
system satisfies the clock constraints φ defines. And WAIT φ can

also be denoted in another way STOP
φ

�SKIP.

Timed Prefixing The process a
φ→ P is initially prepared to engage

in event a ∈ ∑.

init(a
φ→ P) = {a}

It is prepared to wait for its environment for any clock constraints,
without changing its state.

a→ P
ϕ
 a→ P

When it performs its initial event, it will begin to behave as P when
it satisfies the clock constraints φ . It’s operational semantics is as
below.

a→ P
(φ ,a)→ P

While a
φ→ P behaves as P when the system satisfies the clock con-

straints φ defines, after the event a is observed.

Timeout The timeout operator is a form of external choice. The

process P1
φ

.P2 initially executes P1, but if P1 is failed to communi-
cate with environment after the system has satisfied the clock con-
straints φ , then a timeout control is passed to P2. Initially it may
perform the same events as P1.



init(P1
φ

.P2) = init(P1)

It may evolve as P1 evolves, but not beyond clock constraints φ .

P1
ϕ
 P′1

P1
φ

.P2
ϕ
 P′1

φ−ϕ

. P2

[ϕ ∈ φ ]

It may perform any events that P1 may perform before the clock
constraint φ ; external events resolve the choice in favour of P, in-
ternal ones do not.

P1
(ϕ,a)→ P′1

P1
φ

.P2
(ϕ,a)→ P′1

[ϕ ∈ φ ]
P1

(ϕ,τ)→ P′1
P1

φ

.P2
(ϕ,τ)→ P′1

φ−ϕ

. P2

[ϕ ∈ φ ]

Furthermore, the timeout may occur by the clock constraints φ .

P1
φ
 P′1

P1
φ

.P2
(φ ,τ)→ P2

And the timeout operator P1
φ

. P2 transfers control from P1 to P2
if no communications occur before the system satisfies the clock
constraints φ define. If there is more than one clock constraints, we
can concatenate them, such as

a
φ1+φ2→ P = a

φ1→ WAIT φ2;P.

3.4 Laws
The laws below shows that if there are more than one clock con-
straint, they can be checked one by one.

L1 : a
φ1+φ2→ P = a

φ1→ WAIT φ2;P

L2 : P1
φ1+φ2
. P2 = P1

φ1
. WAIT φ2;P2

The next laws show that the processes can be performed no matter
which order they are and the result are same.

L3 : P12P2 = P22P1

L4 : P1uP2 = P2uP1

L5 : P1A‖BP2 = P2B‖AP1

L6 : P1 ‖
C

P2 = P2 ‖
C

P1

There are also some special laws that when event a communicate
with SKIP, we can just skip the process SKIP. Such as:

L7 : a
φ→ SKIP = a

L8 : a ‖ SKIP = a

L9 : P;SKIP = P

3.5 Trace Model
In this section we show how to calculate the set of traces of any
process that using the notations introduced so far. Stop and Skip
has only one trace.

traces(Stop) = {s|s = 〈〉}= {〈〉}

traces(Skip) = {s|s = 〈〉}= {〈〉}

For WAIT φ , no matter the clock constraints φ being satisfied or
not, there is only one trace which is empty.

traces(WAIT φ = {s|s = 〈〉}= {〈〉})

For a
φ→ P, if the clock constraints φ is satisfied, then the traces

contains the trace of P. If not, it only contains the event a.

traces(a
φ→ P) = {s|s = 〈〉∨ (s0 = a)∨ (s0 = a∧ s′ ∈ traces(P))}

= {〈〉}∪{a}∪{(a_s|s ∈ traces(P))}

For P1
φ

.P2, if the process P1 has failed to communicate with any
visible event and the clock constraints is satisfied, then the traces
are the trace of P1 and P2. Else, the trace contains only the trace of
P1.

traces(P1
φ

.P2)= {s|s= 〈〉∨(s|s∈ traces(P1))∨(s|s∈ traces(P2))}
= {〈〉}∪{s|s ∈ traces(P1)}∪{(s|s ∈ traces(P1))∧ (s|s ∈

traces(P2))}

3.6 Failure Model
Refusal: In general, let X be a set of events which are offered
initially by the environment of a process P, which in this context
we take to have the same alphabet as P. If it is possible for P to
deadlock on its first step when placed in this environment, we say
that X is a refusal of P. The set of all such refusals of P is denoted
as refusals(P).

re f usals(P){X |(〈〉,X) ∈ f ailures(P)}

The refusals of Wait, Timed Prefixing and Timeout are as below:

refusals(WAIT φ ) = {}

refusals(a
φ→ P) = {X |X ⊆ (re f usals(P))}

refusals(P1
φ

.P2) = re f usals(P1)∩ re f usals(P2)

Divergence: CHAOS is a status that the system is do something
internal and not communication with external, it’s a very bad status.
A divergence model of a process is defined to handel the CHAOS
condition. It will behavior as any trace of the process after which
the process behaves chaotically.



divergences(P) = {s|s ∈ traces(P)∧ (P\ s) =CHAOSαP}

It follows that divergences(P) ∈ traces(P)

The divergence of Wait, Timed Prefixing and Timeout are as below:
divergences(WAIT φ ) = {}

For a
φ→ P, if the clock constraints φ is satisfied, then the diver-

gences is {〈α〉_s|α ∧ s ∈ divergences(P)}. If not, the divergences
is {}.
divergences(a

φ→ P) = {}
|{〈α〉_s|α ∧ s ∈ divergences(P)}

For P1
φ

.P2, if the clock constraints φ is satisfied, then the diver-
gences is divergences(P1)∪divergences(P2). If not, the divergences
is divergences(P1).

divergences(P1
φ

.P2) = divergences(P1)
|divergences(P1)∪divergences(P2)

Failures model: The failures models extends the traces model with
refusal sets, which are set of event X ⊆ ∑ that a process can refuse
to perform. A failure is a pair (s, X), consisting of a trace s, and a
refusal set X which identifies the events that a process may refuse
once it has executed the trace s. The observed behavior of a pro-
cess in the stable failures model is described by the pair (trace(P),
failures(P)).

f ailures(P) = {(s,X)|s ∈ traces(P)∧ (X ∈ re f usals(P\ s))}

The failures of Wait, Timed Prefixing and Timeout are as below:
f ailures(WAIT φ ) = {}

For a
φ→ P, if the clock constraints φ is satisfied, then the failures is

{(s,X)|s ∈ traces(P)∧X ∈ re f usals(P/s)}. If not, the failures is
{}.

f ailures(a
φ→ P) = {}

|{(s,X)|s ∈ traces(P)∧X ∈ re f usals(P/s)}

For P1
φ

. P2, if the clock constraints φ is satisfied, then the fail-
ures is {(s,X)|s ∈ traces(P1)∧X ∈ re f usals(P1/s)}∪ {(s,X)|s ∈
traces(P2)∧X ∈ re f usals(P2/s)}. If not, the failures is {(s,X)|s ∈
traces(P1)∧X ∈ re f usals(P1/s)}.

f ailures(P1
φ

.P2) = {(s,X)|s ∈ traces(P1)
∧X ∈ re f usals(P1/s)}
|{(s,X)|s ∈ traces(P1)∧X ∈ re f usals(P1/s)}
∪{(s,X)|s ∈ traces(P2)∧X ∈ re f usals(P2/s)}

Failures/divergence model: The failures/divergence model fur-
ther extends the failure model to handle divergence. The semantics
of a process in the failures/divergences model is a pair

(failures⊥P,divergence(P)) where divergence(P) is defined as the
set of all traces that can lead to divergent behavior.

failures⊥P = f ailures(P)∪{(s,X)|s ∈ divergences(P)}.

The failures of Wait, Timed Prefixing and Timeout are as below:
f ailures⊥(WAIT φ ) = {}

For a
φ→ P, if the clock constraints φ is satisfied, then the fail-

ures/divergence is {(s,X)|s 6= 〈〉∧(s,X)∈ f ailures(P)}∪{(s,X)|s∈
divergence(P)}. If not, the failures/divergence is {}.

f ailures⊥(a
φ→ P) = {}

|{(s,X)|s 6= 〈〉∧ (s,X) ∈ f ailures(P)}
∪{(s,X)|s ∈ divergence(P)}}

For P1
φ

. P2, if the clock constraints φ is satisfied, then the fail-
ures/divergence is {(s,X)|s 6= 〈〉∧(s,X)∈ f ailures(P1)∪ f ailures(P2)}∪
{(s,X)|s∈ divergence(P1)∧divergence(P2)}. If not, the failures/divergence
is {(s,X)|s 6= 〈〉∧(s,X)∈ f ailures(P1)}∪{(s,X)|s∈ divergence(P1)}.

f ailures⊥(P1
φ

.P2) = {(s,X)|s 6= 〈〉∧ (s,X) ∈ f ailures(P1)}
∪{(s,X)|s ∈ divergence(P1)}}
|{(s,X)|s 6= 〈〉∧ (s,X)
∈ f ailures(P1)∪ f ailures(P2)}
∪{(s,X)|s ∈ divergence(P1)∧divergence(P2)}

4. TRAIN OVER SPEED PROTECTION SYS-
TEM

Safety is very important to urban metro system and VOBC(Vehicle
OnBoard Controller) system is used to guarantee the safety and
control the operation of the subway system. There are several main
functions in VOBC, such as Mode Switch, Train Integrity Moni-
toring, Over Speed Supervision and Protection, Zero Speed Relay
and so on. In this section, we take the Over Speed Supervision and
Protection system as an case study.

Over Speed Supervision and Protection system is a new type of
vehicle equipment. It is of great significance in prevent the the over
speed of the train. When the result of train speed plus the tolerance
speed is big than the permitted speed, they have to apply common
brake or emergency brake to protect the train. The below formula
shows how can we determine whether the train is over speed or not.

trainSpeed + permittedSpeed > toleranceSpeed

1. trainSpeed represents the current speed of the train.

2. permittedSpeed represents the permitted speed in a mode and
is different in different modes.

3. toleranceSpeed represents the tolerant speed in a mode. That
is a limited speed. It is also different in different modes.

There are several modes in VOBC, they are RMR(Restricted Manu-
al Reverse), RMF(Restricted Manual Forward), WM(Wash mode),



OFF and WSP(Wayside Signal Protection). The permitted speed
and tolerance speed is different in different modes. In RMR, RMF
and WM modes, we don’t need the permitted speed. So if
(trainSpeed > toleranceSpeed), we say the train is over speed. In
OFF mode, if the train is not still, we say the train is over speed.
But in WSP mode, there has a permitted speed and it very compli-
cated to get it. We will not discuss how to get the permitted speed,
we just to know that there is a permitted speed in this mode and if
(trainSpeed + permittedSpeed > toleranceSpeed), then the train
is over speed. If the train is over speed, the emergency brake must
be applied.

Even if the situation is different in different mode, but we can
make an assumption. We assume there is permitted speed in RM-
R/RMF/WM/OFF modes and the permitted speed is 0. So in OFF
mode, the permitted and tolerance speed is both 0. Then we can say
that no matter in which mode, if (trainSpeed + permittedSpeed >
toleranceSpeed), the train is over speed.

So the whole process becomes that the driver initiate the train using
the monitor device and then change the mode of the train. VOBC
get the permitted and the tolerance speed by TIM and get the cur-
rent speed of the train by the speed sensor. After that, VOBC have
to determine whether the train is over speed or not. If the train
is over speed, VOBC must apply the Emergency Brake. If not, if
the train have to stop, Driver can apply common brake. After that,
VOBC have to clear the history of the emergency brake. We can
see the whole process by the sequence diagram of train over speed
protection system in Figure 5: Then we got to know that no mat-
ter in which mode, if VOBC is in status of "Not Active" or the
Emergency Brake is applied, VOBC must set the tolerance speed
to 0. In another words, if the VOBC is not active, if the train runs
a distance, we say that’s not make sense and we must call an E-
mergency Brake. In the description of "a distance", that’s kind of
multiform time. In another circumstance, if the emergency brake is
applied, VOBC must set the toleranceSpeed to 0. We change it in
another way to say, if there’s distance of the train when emergency
brake applied, we must set toleranceSpeed to 0. That’s very like
the condition we say just now.

Train overspeed protection system have four different condition-
s, which are used to decide whether to call the emergency brake.
When VOBC is not active, the train is off and the emergency brake
has already been applied, then set the tolerance speed to 0, and
when the train speed is bigger than 0, the emergency brake must
apply. When the train is not in the conditions above, the driver s-
elect mode, and the tolerance speed is different according to the
mode and then, if the train speed is large than the tolerance speed,
the emergency must be applied then. We can say in brief descrip-
tion:

(1) If the VOBC is not active, toleranceSpeed = 0. So if trainSpeed
> 0, then apply Emergency Brake

(2) If the VOBC is OFF, toleranceSpeed = 0, So if trainSpeed > 0,
then apply Emergency Brake

(3) If Emergency Brake has already applied, toleranceSpeed = 0,
So if trainSpeed > 0, then apply Emergency Brake

(4) If Emergency Brake has already applied, toleranceSpeed is based
on which mode, if trainSpeed > toleranceSpeed, then apply Emer-
gency Brake

We define the state diagram of the call emergency brake function
below. TS represents the speed of the train and TSM represents
the tolerance speed in the selected model. And we also need to
say that "�" does not mean that "bigger than", it mean that one
time point is "earlier" than the other time point. And you can see
the state transition of train oversoeed protection system with clock
constraints in Figure 6.

Figure 6: State transition of train overspeed protection system
with Clock Constraints

After we analysis the property of the train over speed supervisor
and protection system with natural language and also UML chart,
now we define the models using our new language: Multiform
Time CSP:

Before we define the model, we have to define some process and
clock constrains.

TOSSP: means Train Over Speed Supervisor and Protection sys-
tem process. It represent the whole process of the system and we
will check its safety property then.

φ : means a clock constraint which represents the time is over than
the time we want to check.

OSC: mean Over Speed Check. It represent to check whether the
train is over speed

EB: mean the train applied Emergency Brake.

The model is as below:
TOSSP = trainInit
→ (checkVOBCActive



Figure 5: Sequence Diagram of Train OverSpeed Protection System

→ ((VOBCActive→ OSC)
|((VOBCNotActive

→ (WAIT distance�0−→ EB)

|(WAIT
φ

.STOP))))
2checkEBApplied

→ (Applied distance�0−→ EB)
|(NotApplied→ OSC))

OSC = selectMode
→ getPermittedSpeed
→ getToleranceSpeed

→ ((µGetT S•GetT S
φ

.STOP)
|(µGetT S•GetT S
trainSpeed+permittedSpeed�toleranceSpeed−→
STOP))

We define the safety property of the over speed supervisor and pro-
tection system. We can only say the train is safe if the train stop
without over speed or when it is over speed, the Emergency brake
is applied.
Safety Property: TOSSP = trainInit STOP|EB

We analysis the Train Over Speed Supervision and Protection sys-
tem in detail.
TOSSP = trainInit→

(checkVOBCActive→
((VOBCNotActive→ (WAIT distance�0−→ EB)

|(VOBCActive
→ selectMode
→ getPermittedSpeed
→ getToleranceSpeed

→ (µGetT S•GetT S
φ

.STOP)
|(µGetT S•GetT S
trainSpeed+permittedSpeed�toleranceSpeed−→
STOP))

2checkEBApplied→
(Applied distance�0−→ EB)

|(NotApplied
→ selectMode
→ getPermittedSpeed
→ getToleranceSpeed

→ (µGetT S•GetT S
φ

.STOP)
|(µGetT S•GetT S
trainSpeed+permittedSpeed�toleranceSpeed−→
STOP))

We can see that in the TOSSP process, not matter it goes to which
branch, it will ends with stop, EB or OSC. And let’s see the OS-
C process. You can easily find that each branch ends with STOP



or EB. They we can say that for the process TOSSP, the process
will either ends with STOP or applied Emergency Brake. And it
satisfies the safety property defined before.

5. RELATED WORK
C. André, F. Mallet, M-A.Peraldi-Frati, defined extensions to the
simple time model of UML2. They focus on the specificity of the
ablity to take account of multiform time and use an example to ana-
lyze behaviors depending on multiform time [5]. This work is very
good at modeling of multiform clock and the case study is clas-
sic and representive. But our work focus on modeling interaction
behaviors in MARTE. We make an extension to the timed CSP to
describe the interaction process in MARTE by means of the mul-
tiform time structure and the clock constraints to better model and
verification the concurrent systems.

Stefano Cattani and Marta Kwiatkowska propose a real-time ex-
tension to the process algebra CSP. they handle real time by means
of clocks[7]. Based on timed CSP, our work is to work is to de-
scribe the interaction process in MARTE using the multiform time
and clock constraints in MARTE. JOEL OUAKINE and JAMES
WORRELL proposed some mild modifications to the syntax and
semantics of Timed CSP which significantly increase expressive-
ness and able to capture some of the most widely used specifica-
tions on timed systems as refinements (reverse inclusion of sets
of behaviors) which may then be verified using the model checker
FDR[8]. There work does not handle multi-clock problems.

There has been many synchronous languages, such as Esterel, Lus-
tre, SCADE, Signal, etc. Esterel is used to program reactive sys-
tems. The advantage of Esterel is that it allows the simple expres-
sion of parallelism and preemption[9] SCADE (Safety Critical Ap-
plication Development Environment) is a tool-suite based on the
synchronous paradigm and the Lustre language. It is able to be
used in highest criticality applications[10].

Our approach is to model interaction behaviors in MARTE. We
make an extension to the timed CSP to describe the interaction pro-
cess in MARTE by means of the multiform time structure and the
clock constraints. We give the syntax, semantic, failures model
and failures/divergence model of the communicating process spec-
ification. Timed CSP is a realtime extension of the process algebra
CSP and there are many progress in the development of timed CSP.
Timed CSP has a well established refinement theory which proves
useful in hierarchical system design. Timed CSP (TCSP) has in-
corporated temporal logic in its specification language and safe-
ty and liveness properties of systems can easily be specified using
TCSP[4].

6. CONCLUSION AND FUTURE WORK
MARTE time model are very suitable for describing discrete and
dense time, physical and logical time, multiform time. Timed CSP
handles is designed for communicating process modeling.

In this paper, we propose an approach to modeling interaction be-
haviors in MARTE. We make an extension to the timed CSP to
describe the interaction process in MARTE by means of the multi-
form time structure and the clock constraints. The syntax, seman-
tic as well as the failures model and failures/divergence model of
the communicating process specification, are given. Our approach
is applied to describe a real-time system, train integrity monitor
system of VOBC, to simplify the modeling and verification of the
real-time and embedded system for Shanghai Bell Company.

Future work will focus on the application of more areas and ex-
tend the classic CSP modeling and verification tools to support the
communicating process specification of MARTE.
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