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Abstract
SAT-based BMC is promising for directed test generation

since it can locate the reason of an error within a small
bound. However, due to the state space explosion problem,
BMC cannot handle complex designs and properties. Although
various optimization methods are proposed to address a
single complex property, the test generation process cannot be
fully automated. This paper presents an efficient automated
approach that can scale down the falsification complexity
using property decomposition and learning techniques. Our
experimental results using both software and hardware bench-
marks demonstrate that our approach can drastically reduce
the overall test generation effort.

I. Introduction
Satisfiability (SAT) based Bounded Model Checking (BMC)

[1] is widely used for directed test generation. However,

when checking a large design with complex properties (i.e.,

properties with large cone of influence or deep bounds), BMC

based methods are very costly since large SAT instances

indicate long SAT search time.
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Fig. 1. Two property decomposition techniques

To address this problem, Koo et al. proposed a property

decomposition technique [2] as shown in Figure 1a. The basic

idea is to decompose a complex property into several simple

sub-properties, and then compose the tests corresponding

to sub-properties to obtain a test for the original property.

Since the test generation time of sub-properties is typically

several orders of magnitude smaller than the original property,

the state space explosion problem can be avoided in many
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scenarios. However, the composition of tests of sub-properties

is a major bottleneck in this method. The human intervention

and expert knowledge may be required to use this method.

As an alternative, in this paper, we propose a learning-

oriented decomposition technique shown in Figure 1b which

can be fully automated. Unlike the test-oriented method in

[2], our approach is based on the decision ordering learned

during the test generation of decomposed sub-properties. Such

learnings can be used to drastically accelerate the original

property falsification [3]. Therefore the overall test generation

effort can be significantly reduced. Our method makes three

important contributions: i) it proposes a method to spatially or

temporally decompose a complex property into several simple

but profitable sub-properties; ii) it proposes an approach to

derive learnings from the decomposed sub-properties; and iii)

it proposes a method to guide the complex property checking

using derived learnings.
The rest of the paper is organized as follows. Section II

presents related work on decomposition techniques as well

as optimization heuristics for SAT-based BMC. Section III

presents our test generation methodology using property de-

composition and learning techniques. Section IV presents the

experimental results. Finally, Section V concludes the paper.

II. Related Work
To address the complexity during the design and verifica-

tion, various decomposition techniques are proposed. Lin et al.

[4] proposed a new formulation of Ashenhurst decomposition

based on SAT solving. It can efficiently decompose a Boolean

function into a network of smaller sub-functions. However,

this method is mainly used in logic synthesis. As described in

Section I, although Koo et al. [2] presented a promising design

and property decomposition method for test generation, it is

hard to automate the composition of generated partial tests

corresponding to the decomposed properties.
Sharing learnings across properties can improve overall per-

formance since the repeated validation efforts can be avoided.

In [5], Chen and Mishra noticed that when checking a large set

of relevant properties, SAT instances of similar properties have

a large overlap of CNF clauses and can be clustered. A large

number of conflict clauses generated by a base property can be

forwarded to other properties in the cluster. As an alternative

of conflict clause forwarding, decision ordering heuristics [6]

can be used as another learning to improve the SAT searching.

In [7], Strichman presented a BMC optimization based on

decision ordering by exploiting the characteristics of BMC978-3-9810801-7-9/DATE11/ c© 2011 EDAA



formulas. When checking a set of similar properties, Chen

et al. [3] tuned the decision ordering of the current property

based on the decision ordering results of the previously

checked properties. By sharing learnings among properties, the

overall test generation time can be reduced. However, these

learning techniques do not consider how to actively learn from

other simpler properties. Moreover, checking the first property

in such methods is a major bottleneck because there is no

knowledge that can be learned.

To the best of our knowledge, our approach is the first

attempt to use decision ordering based learning in property

decomposition to enable automated test generation.

III. Test Generation using Property Decomposi-
tion and Learning Techniques

This paper focuses on efficient falsification of safety Linear

Temporal Logic (LTL [8]) properties. The basic idea is to uti-

lize the learnings from simple properties for complex property

checking. The following sections describe each step in detail.

A. Learning-Oriented Property Decomposition
To reduce the complexity during the test generation, this

section presents two beneficial decomposition techniques:

spatial and temporal property decompositions.

1) Spatial Property Decomposition: For a complex prop-

erty which involves multiple components of the design, it can

be partitioned into multiple component level sub-formulas.

For example, a complex system level property P can be

broken into 2 sub-properties P1 and P2 with different Cone

of Influence (COI). Assuming that P1 has a smaller COI than

P, it usually needs less time and space than that of checking

the complex property P. If the partial counterexample gen-

erated by P1 can be refined to guide the complex property

falsification, the original property is spatially decomposable.

Definition 1: A false property P in conjunctive form p1 ∧
p2∧ . . .∧ pn or in disjunctive form p1∨ p2∨ . . .∨ pn is spatially
decomposable if all of the following conditions are satisfied.

• If the decomposed properties are in the form p1 ∧ p2 ∧
. . .∧ pn, then at least one property pi (1 ≤ i ≤ n) has

a counterexample. In this case, the bound of P is the

minimum bound of pi which has a counterexample.

• If the decomposed properties are in the form p1 ∨ p2 ∨
. . .∨ pn, then each property pi (1 ≤ i ≤ n) has a coun-

terexample. In this case, the bound of P is the maximum

bound of all decomposed properties.

• The counterexamples generated from properties pi (1 ≤
i≤ n) can guide the test generation for property P.

According to Definition 1, the following rules can be used

for complex property decomposition.

¬X(p∨q)≡ ¬X(p)∧¬X(q)
¬X(p∧q)≡ ¬X(p)∨¬X(q)
¬F(p∨q)≡ ¬F(p)∧¬F(q)

(1)

The property in the form of ¬F(p∧ q) and ¬F(p → q)
cannot be directly decomposed into conjunctive or disjunctive

form. However, by introducing a clock clk for synchronization,

they can be spatially decomposed. It is important to note that

the value of the clk indicates the bound of the false property.

The Equation (2) shows that the counterexample of ¬F(p∧
q∧clk = k) can be refined by the counterexamples of ¬F(p∧
clk = k) and ¬F(q∧ clk = k).

¬F(p∧q∧ clk = k)≡ ¬F(p∧ clk = k)∨¬F(q∧ clk = k)
where ¬F(p∧q∧ clk = k) is false.

(2)

For a property in the form F(p → q), p describes the pre-

condition and q indicates the post-condition. When G(¬p)
holds, F(p→ q) will be vacuously true, and the checking of

¬F(p → q) will report a counterexample without satisfying

the precondition p. This counterexample may not match the

original intention. Equation (3) shows that the properties in the

form of ¬F(p→ q∧ clk = k) can be transformed to ¬F(p∧
q∧ clk = k) for test generation. The spatial decomposition in

Equation (2) and Equation (3) are similar.

¬F(p→ q∧ clk = k)≡ ¬F(p∧q∧ clk = k)
≡ ¬F(p∧ clk = k)∨¬F(q∧ clk = k)

where ¬F(p→ q∧ clk = k) and ¬F(p∧ clk = k) are false.

(3)

In Equations (1) - (3), we presented several kinds of widely

used properties which can be spatially decomposed. In fact, if

a complex property can be decomposed in conjunctive form,

we need to sort the sub-properties according to their bounds,

and check them from the smallest bounds to largest bounds.

The counterexample of first falsified property can be used as

a counterexample for the complex property.

When checking a complex property which can be decom-

posed in disjunctive form, it is not necessary to check all its

sub-properties. If the COI of a sub-property is similar to the

original property, the complexity of such sub-property will

be similar to the complex property. In this case, it is not

economical to use learning. Therefore we need to figure out

sub-properties with smaller COI than the complex property.

According to the commutative law and associative law, for

a complex property, we can classify its atomic sub-properties

into several clusters. For example, in Equation (4), pi and pk
are clustered together, and p j belongs to another cluster.

pi∨ p j ∨ pk = (pi∨ pk)∨ p j (4)

For each cluster, we generate a refined property which repre-

sents all the atomic sub-properties in the cluster to derive the

learning. Based on our experience, the following clustering

rules work well for most of the time: 1) in each cluster, all

the variables in the sub-formulas should come from the same

component (e.g., fetch module in a processor design); 2) in

each cluster, all the sub-formulas should describe the related

functional scenarios (e.g., fetching instructions and/or data in

a processor design).

Algorithm 1 outlines our spatial decomposition method

which can derive a set of refined sub-properties with small

COI for learning. The inputs of the algorithm are a design

model D and a complex property P in disjunctive form. Step

1 initializes the SD props with an empty set. Step 2 tunes

sub-properties’ order according to the commutative law and

clusters sub-properties using the similarity rules. Step 3 selects



the ith cluster. If the COI of such cluster is smaller than
k
n of P′s COI, step 4 will generate a new refined property

newP for the ith cluster. Step 5 adds newP to SD props.

The refined property newP for learning represents a cluster of

sub-properties as shown in step 3. Finally this algorithm will

return a set of refined sub-properties for deriving learnings

(described in Section III-B). Since the COI of a refined

property in SD props is small, its test generation time will

be much smaller than that of the original complex property. It

is important to note that this algorithm may return an empty

set which means that it is not beneficial or not possible to

spatially decompose the complex property.

Algorithm 1: Spatial Decomposition

Input: i) The design model, D
ii) A property P in the form p1∨ p2∨ . . .∨ pn

Output: A set of refined sub-properties for learning, SD props
1. SD props = {};
2. (cluster1, . . . ,clusterm) = clustering(P,modular/ f unctional);
for i is from 1 to m do

3. cluster i = {prop1, . . . , propk};
if COI(clusteri)≤ k

nCOI(P) then
4. generate a refined property newP for the clusteri;
5. SD props = SD props

⋃
newP;

end
end
return SD props;

2) Temporal Property Decomposition: To eclipse the bound

effect, the basic idea of our method is to deduce a long

bound property from a sequence of short bound properties.

For example, P1, P2 and P3 (P3=P) are properties indicating

three different stages of property P. The bound of them are

K1, K2 and K3, respectively, and K1 < K2 < K3. Because

P1’s counterexample is similar to the prefix of the P2’s

counterexample, P1’s counterexample contains rich knowl-

edge that can be used when checking P2. Similarly, during

the property checking, P3 can benefit from P2. Therefore we

can quickly obtain the counterexample (test) for property P.

If the counterexamples of lower bound properties can be used

to reason about P, the property P is temporally decomposable.

Definition 2: A false safety property P is temporally de-
composable if all the following conditions are satisfied.

• P can be divided into false properties p1, p2, . . . and pn
(P = pn) with increasing bounds.

• ¬pi → ¬pi+1 (1 ≤ i ≤ kn− 1), which indicates that the

counterexample generated from properties pi can guide

the test generation for property pi+1.

In temporal decomposition, finding the implication relation

(“→”) between properties is a key process. In our framework,

we construct such implication relations by exploring the order

between events, which are described by properties indicating

different stages of the execution. Generally a system behavior

consists of a sequence of strongly relevant events. For exam-

ple, in Figure 2, there are 9 events. We classify the relation

between these events in two categories. The cause effect
relation (marked by ⇒) defines the relation of continuous

events. For example, if e1 happens, then e2 should happen in

next stage. The happen before relation (marked by ≺) specifies

the relation of conditional events. It indicates which events

may happen before other events under some condition. For

example, e2≺ e3 means e2 may happen before e3.

Event Happen beforeCause effect

e3 e5e4

e1 e2 e7 e8 e9
1

3

1 2

2
2 155

e6

Fig. 2. A DAG of event relation

During test generation, we apply properties in the form

of ¬F(e) to indicate that the event e cannot be activated.

According to definition 2, the “⇒” relation can be used to

derive helpful learnings. For example, in Figure 2, let prop-

erty P1 = ¬F(e1) and property P2 = ¬F(e2). Since e1 ⇒ e2

implies F(e1)→ F(e2), i.e., ¬P1 → ¬P2, it shows that P1’s

counterexample will be helpful for deriving P2’s counterex-

ample. Such information can be used as a learning. The “≺”

relation also can be used to indicate the learning information.

Assuming e2 ≺ e3, the counterexample of ¬F(e2) is shorter

than the counterexample of ¬F(e3). However, counterexample

of ¬F(e2) may have a large overlap of variable assignments

with the counterexample of ¬F(e3). Therefore the learning

from ¬F(e2) can benefit the test generation of ¬F(e3).

When checking a large bound property for a transac-

tion, there may be many events along the path to target

events. Checking all these events to obtain learnings is time-

consuming. For example, assuming that we want to check

the property ¬F(e9), the relation between events is described

using a directed acyclic graph (DAG) shown in Figure 2.

Each node indicates an event, and each directed edge indicates

the relation of “⇒” or “≺”, and each edge is associated

with the delay between events. In this DAG, there are 8

events that happen before e9. However, it is not necessary to

check all of them. Since the branch nodes of a DAG contain

critical variable assignment information, in our method, we

only consider the events which determine the branches along

the path from initial state e1 to the target state e9.

Algorithm 2: Temporal Decomposition

Input: i) An event DAG, D
ii) Initial event src, target event dest

Output: A property sequence T D props
1. path = Dijkstra(D, src, dest) to find the shortest delay path;
2. T D props = (property for src);
for i is from 2 to len (number of events in path) do

3. (ei−1,ei) = (i−1)th edge of path;
if out degree(ei−1) + in degree(ei)> 2 then

4. Append the property for ei to T D events;
end

end
return T D props;

Algorithm 2 describes how to obtain a sequence of prop-

erties based on temporal decomposition. It accepts an event

DAG with the initial and target events as inputs. Step 1



uses Dijkstra’s algorithm [9] to find a shortest path. Step

2 initializes the sequence TD props with a property for the

initial event. Step 3 and 4 select the branch events and append

their corresponding properties to the TD props. Finally the

algorithm reports the property sequence for deriving learnings.

By using this algorithm, (¬F(e1), ¬F(e3), ¬F(e7)) is a prop-

erty sequence from the temporal decomposition in Figure 2.

B. Decision Ordering Based Learning Techniques
SAT based BMC encodes a property checking problem

into a SAT instance (a Boolean formula). A counterexample

of the property is a satisfiable variable assignment for this

formula. Although the variable assignment of counterexamples

derived from the decomposed sub-properties may not satisfy

the SAT instance of the complex property, it has a large

overlap with the complex property on the variable assignment.

Such information can be used as a learning to bias the decision

ordering when checking the complex property.
During the SAT search, decision ordering plays an impor-

tant role to quickly find a satisfiable assignment. Our learning

approach is based on Variable State Independent Decaying

Sum (VSIDS) method [12]. A major difference is that our

method incorporates the statistics of decomposed properties.

Since different sub-properties have different bounds, we con-

sider such information in our heuristics.
Let bounds be an array which stores the bound of k sub-

properties. Because in spatial method the decomposed sub-

properties can be independent, the learning between sub-

properties is not significant. So we set bound[i] = 1(1≤ i≤ k).
However for temporal decomposition, the vstat information

of lower bound properties can further benefit the larger

bound property checking. Moreover, the larger bound sub-

property is closer to the final properties than smaller bound

sub-properties. Therefore, for temporal decomposition based

method, the sub-properties are sorted according to the increas-

ing bound, and bound[i] indicates the bound of ith property.

Let vstat[sz][2] (sz is the maximum Boolean variable index

during the complex property checking) be a 2-dimensional

array to record the statistics of variable assignments. Initially,

vstat[i][0] = vstat[i][1] = 0 (0 < i≤ sz). vstat will be updated

after checking each sub-property. When checking the sub-

property p j, if a variable vi is evaluated and its value in

the counterexample is 0 (false), vstat[i][0] will be increased

by bounds[ j]; otherwise if vi = 1 (true), vstat[i][1] will be

increased by bounds[ j].
Assuming li is a literal of the variable vi (vi has two literals,

vi and v′i), we use score(li) to indicate its decision ordering.

Initially, score(li) is equal to the literal count of li. However, at

the beginning of SAT searching and periodic score decaying,

the literal score will be recalculated. Let

bias =
MAX(vstat(vi),vstat(v′i))+1

MIN(vstat(vi),vstat(v′i))+1

indicate the variable assignment variance. And let

score(li) =

⎧
⎪⎨

⎪⎩

max(vi)∗bias (vstat[i][1]> vstat[i][0]&li = vi)

or(vstat[i][1]< vstat[i][0]&li = v′i)
score(li) otherwise

The new literal score will be updated using the above formula

where max(vi) = MAX(score(vi),score(v′i))+1.
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Fig. 3. Learning statistics applied on decision trees

Figure 3 shows an example of temporal decomposition

using our heuristic. The complex property P is decomposed

into three properties p1, p2 and p3(= P) with bound 1, 2

and 3 respectively and we assume that we always check the

variables in the order of a, b, c. Initially, when checking p1,

there is no learning information. However, after checking p1,

we can predict the decision ordering for p2 based on the

collected vstat information from p1. Also we can predict the

decision ordering of p3(= P) from the vstat of p1 and p2.

When checking P, the content of vstat indicates that variables

a is more likely to be 0, b and c are more likely to be 1.

C. Test Generation using Our Method

In this paper, we assume that the bound of complex property

and decomposed properties can be pre-determined. Determi-

nation of bound is hard in general. However, for directed test

generation, the bound can be determined by exploiting the

structure of the design. An example of bound determination

is presented in Section III-D.

Algorithm 3 describes our test generation methodology. The

inputs of the algorithm are a formal model of the design, a set

of decomposed properties props and their satisfiable bounds

bounds, and the complex property P with its satisfiable bound

boundp. Step 1 generates CNF files in the DIMACS format

[10] for each decomposed property in props. Step 2 sorts

the CNFs by their DIMACS file size. Step 3 initializes vstat
which is used to keep statistics of the variable assignments

for decomposed sub-properties. Then for each decomposed

sub-property, we collect its counterexample assignments from

step 4 to step 5. For each iteration, we need to update

vstat statistics. In step 6 and step 7, the complex property

P is checked using the decision ordering derived from the

decomposed sub-properties. Finally, the algorithm reports a

test for the complex property P.



Algorithm 3: Our Test Generation Method

Input: i) Formal model of the design, D
ii) Decomposed properties props and satisfiable bounds
iii) The property P and satisfiable bound boundp

Output: A test testP for P
1. CNFs = BMC(D, props,bounds);
2. (CNF1, . . . ,CNFn) = sort CNFs using increasing file size;
3. Initialize vstat;
for i is from 1 to the n do

4. testi = SAT(CNFi, vstat);
5. U pdate(vstat, testi,bounds[i]);

end
6. Generate CNF = BMC(D, P, boundP);
7. testP = SAT(CNF , vstat);
return testP;

D. An Illustrative Example

This section presents an example of how to apply decom-

position methods on the graph model of a MIPS processor

[5]. It consists of five pipeline stages: fetch, decode, execute,

memory and writeback. It has four pipeline paths in the

execute stage: ALU for integer ALU operation, FADD for

floating-point addition operation, MUL for multiply operation

and DIV for divide operation. Assume that we want to

check a complex scenario that the units MUL5 and FADD3

will be active at the same time. We generate the property

P =!F(MUL5 active = 1 & FADD3 active = 1) which is a

negation of the desired behavior. The remainder of this section

describes how to generate a test using spatial and temporal

decomposition methods respectively.

1) Spatial Decomposition: In the MIPS design, each func-

tional unit has a delay of one clock cycle. To trigger the

functional unit MUL5, we need at least 7 clock cycles (there

are 7 units along the path Fectch → Decode → . . .→ MUL5).

Similarly, to trigger the functional unit FADD3, we need at

least 5 clock cycles, plus one clock cycle for initialization, we

need a total 8 clock cycles for triggering this interaction. Thus

the bound of this property is 8. According to Equation (2) and

Algorithm 1, property P can be spatially decomposed into two

sub-properties as follows, assuming the COI of P1 and P2 are

both smaller than half of COI of P.

/* Modified original complex property P’ */
P’: !F(MUL5_active=1 & FADD3_active=1 & clk=8)
/* Spatially decomposed properties */
P1: !F(MUL5_active=1 & clk=8)
P2: !F(FADD3_active=1 & clk=8)

When checking P1 and P2 individually, we can get the

following two counterexamples.

Counterexamples for P1 and P2
Cycles P1’s Inst. P2’s Inst.

1 NOP NOP
2 MUL R2, R2, R0 NOP
3 NOP NOP
4 NOP FADD R1, R1, R0

However, according to Algorithm 3, the test generation for P2

is under the guidance of P1’s result. Thus, the counterexample

of P2 guided by P1 contains P1’s partial behavior (see clock

cycle 2 below). So the score of literals which have repetitive

occurrences is enhanced.

Counterexample for P2 guided by P1
Cycles P2’s Inst. after learning

1 NOP
2 MUL R2, R2, R0
3 NOP
4 FADD R1, R1, R0

The statistics saved in vstat indicates an assignment which has

a large overlap of the assignments with the counterexample

that can activate property P. Thus it can be used as the decision

ordering learning to guide the property checking of P.

2) Temporal Decomposition: Temporal decomposition re-

quires figuring out event relation first. Since we want to

check property !F(MUL5 active = 1 & FADD3 active = 1),
the target event is MUL5 active = 1 & FADD3 active = 1.

Figure 4 shows the event implications. There are 7 events in

this graph, and e7 is the target event.

DIV
MUL3

MUL3
IALU

e4e2

e3

e5

e1 e6

FETCH
MUL1 MUL2

DECODE
MUL3

FADD1
MUL4

FADD2
MUL5
FADD3

e7
1 1

1

11

1

1

1 1

Fig. 4. Event implication graph for property P

Assuming e1 is the initial event, from e1 to e7, there is

only one path e1 → e2 → e4 → e6 → e7. Along this path there

is a branch node e2. According to the Algorithm 2, we need

to check two events e1 and e4 using following properties. By

using our learning technique, during the test generation, P e4
can benefit from P e1, and P can benefit from P e4. i

/* Spatially decomposed properties*/
P_e1: !F(FETCH_active=1 & MUL1_active=1)
P_e4: !F(MUL3_active=1 & FADD1_active=1)

IV. Experiments
For test generation, we used NuSMV [11] to derive the

CNF clauses (in DIMACS format) and integrated our proposed

methods in the state-of-the-art SAT solver zChaff [10] . The

experimental results are obtained on a Linux PC using 2.0GHz

Core 2 Duo CPU with 1 GB RAM.

A. A VLIW MIPS Processor
This section presents the experimental results using the

same design illustrated in Section III-D. For the MIPS design,

we are focusing on the test generation of interaction faults. We

generated the properties in the form of !F(p1&p2& . . .&pn)
which indicate whether n pipelined components pi (1≤ i≤ n)

can be activated at the same time. For example, the property

!F(MUL6 active = 1&FADD3 active = 1&DIV active = 1)
asserts that there is no instruction sequence which can activate

the components MUL6, FADD3 and DIV at the same time.

We generated 20 properties based on various interaction

faults. Since it is hard to figure out the temporal relation

between events, 6 properties of them cannot be handled by

temporal decomposition. Table I shows the test generation

results using our spatial decomposition approach for such



properties. The first column indicates the selected properties.

The second column gives the test generation time using

zChaff. The third and fourth columns present the number

of sub-property clusters and the number of refined sub-

properties for deriving learnings. The last two columns show

test generation time using our spatial decomposition method

(including the overhead of sub-property checking) and its

improvement over the method using zChaff. Compared to

the method without any learnings (column 2), our spatial

decomposition based learning method can drastically reduce

the test generation time.

TABLE I. Decomposition Result for MIPS Processor
Property zChaff Clus. Ref. Spatial Speedup
(Tests) [10] (sec) # # (sec) zChaff vs Spa.

p1 127.52 3 2 49.41 2.58
p2 49.24 3 2 15.73 3.13
p3 9.18 2 1 4.99 1.84
p4 13.78 2 1 7.28 1.89
p5 31.63 3 2 12.74 2.48
p6 120.72 3 2 54.21 2.23

For the remaining 14 properties, we applied both spatial

and temporal decomposition individually. Figure 5 illustrates

the performance improvement over the method using zChaff.

It shows that the temporal method can drastically reduce test

generation time (2-4 times). Although spatial decomposition

outperforms temporal decomposition in this case study, com-

paring with the method using zChaff, temporal decomposition

can still have significant improvement (2.5 times).
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Fig. 5. Test Generation result for MIPS processor

B. A Stock Exchange System
The on-line stock exchange system (OSES) is a software

which mainly deals with stock order transactions. The spec-

ification of OSES is described by a UML activity diagram

which contains 27 activities and 29 transitions. We extract the

formal model from the UML specification and transform it to

a NuSMV description. We generate 18 complex properties

to check various stock transactions. Each transaction is a

sequence of activities (events). The test generation for a trans-

action using only one complex property is time consuming. So

we temporally decomposed the transaction into several stages

which specify the branch activities along the path, and for

each stage we create a sub-property.

Among the 18 complex properties, ten of them are time-

consuming (more than 10 seconds without using our method).

Table II shows the test generation results for these ten

properties using temporal decomposition. The first column

indicates the property. The second column indicates the test

generation time using zChaff without any decomposition and

learning techniques. The third column presents the bound

of the complex property. The fourth column indicates the

number of temporal sub-properties decomposed along the

stock transaction flow. The last two columns indicate the

test generation time (using temporal decomposition) and its

speedup over zChaff. In this case study, our approach can

produce around 3-60 times improvement compared to the

method using zChaff.

TABLE II. Decomposition Result for OSES
Prop. zChaff Bound Dec. Temporal Speedup

(Tests) [10] (sec) # (sec) zChaff vs Temp.

p1 25.99 8 3 0.78 33.32
p2 48.99 10 4 2.69 18.21
p3 39.67 11 5 3.45 11.50
p4 247.26 11 5 22.46 11.01
p5 160.73 11 5 15.68 10.25
p6 97.54 11 4 1.56 62.53
p7 31.39 10 4 12.31 2.55
p8 161.74 11 4 12.62 12.82
p9 142.91 10 4 17.57 8.13
p10 33.77 10 4 1.76 19.19

V. Conclusions
To address the test generation complexity of complex

properties using SAT-based BMC, this paper presented a

novel method which combines property decomposition and

decision ordering based learning techniques. By decomposing

a complex property spatially and temporally, we can get a

set of sub-properties whose counterexamples can be used

to predict the decision ordering for the complex property.

Because of the learning from the simple sub-properties, the

overall test generation effort can be reduced. The case studies

demonstrated the effectiveness of our method using both hard-

ware and software designs that generated significant savings

(2-60 times) in overall test generation time.
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