
EFFICIENT APPROACHES FOR FUNCTIONAL VALIDATION OF SOC DESIGNS
USING HIGH-LEVEL SPECIFICATIONS

By

MINGSONG CHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2010

1

c© 2010 Mingsong Chen

2

To my parents for their love and encouragement

3

ACKNOWLEDGMENTS

Although four years passed in a twinkling, all the vivid snapshots are deeply engraved

in my memory. I always think that I was lucky to be a Gator in UF, not only because I

witnessed four National Championships, but also I achieved another milestone in my life

here. I need to confess that the journey to get a Ph.D. is challenging. It is impossible to

imagine completing it without the precious advice and help from other people.

First of all, I really appreciate what my supervisor Dr. Prabhat Mishra did for me.

His expertise and insights helped me to quickly capture the research direction and made

this dissertation come true. Throughout my Ph.D. study, he gave me enduring support,

guidance and encouragement which helped me to overcome various problems. There is no

doubt that his attitude on research has deeply affected me and will be helpful in my future

career. Finally I understood why he was always urging me to make progress. His efforts

made my CV looks stronger which is beneficial to me.

I would also like to thank my Ph.D. committee members: Prof. Sartaj Sahni, Porf.

Jih-Kwon Peir, Prof. Tao Li and Prof. Raymond Issa. Their valuable suggestions at

different stages of my research were constructive and thought-provoking. Their criticisms

enhanced the quality of my research. Colleagues and friends are an important part in

my graduate life. I am very grateful for the friendship of all the members in my research

group - Kanad Basu, Hadi Hajimiri, Heon-Mo Koo, Chetan Murthy, Kartik Shrivastava,

Xiaoke Qin and Weixun Wang. I really enjoyed the harmonious atmosphere of our lab and

the experience of collaborating with them.

Last but not least, I sincerely thank my parents, who unconditionally gave me the

love and encouragement. Without their support, I won’t reach this far. I dedicate this

dissertation to them.

This work was partially supported by grants from Intel Corporation and NSF

CAREER award 0746261.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 9

LIST OF FIGURES . 11

ABSTRACT . 13

CHAPTER

1 INTRODUCTION . 14

1.1 SoC Design Flow . 15
1.2 Functional Validation of SoC Designs . 16

1.2.1 Overview of Functional Validation Methods 17
1.2.2 Potential Improvement Opportunities 18
1.2.3 Challenges . 20

1.3 Dissertation Contributions . 21

2 FORMAL MODELING OF SOC SPECIFICATIONS 23

2.1 Specification using SystemC TLMs . 24
2.1.1 Formal Modeling of SystemC TLMs 25
2.1.2 Transformation from SystemC TLM to SMV 27

2.1.2.1 Structure Extraction . 28
2.1.2.2 Behavior Extraction . 30

2.1.3 A Prototype Tool For TLM to SMV Translation 32
2.2 Specification using UML Activity Diagrams 32

2.2.1 Notations . 33
2.2.2 Formal Modeling of UML Activity Diagrams 36
2.2.3 Transformation from UML Activity Diagrams to SMV 40

2.2.3.1 Static Information Extraction 40
2.2.3.2 Dynamic Information Extraction 42

2.2.4 A Prototype Tool For UML to SMV Translation 44
2.3 Case Study . 45

2.3.1 Example 1: A Router . 45
2.3.2 Example 2: A MIPS Processor . 46
2.3.3 Example 3: An Alpha Processor . 47
2.3.4 Example 4: A Control System . 48
2.3.5 Example 5: A Stock Exchange System 48

2.4 Summary . 49

5

3 COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS 50

3.1 Coverage-Driven Property Generation . 51
3.1.1 Fault Models . 52

3.1.1.1 Generic Fault Models for Graph Based Models 52
3.1.1.2 Fault Models for SystemC TLM Specifications 53
3.1.1.3 Fault Models for UML Activity Diagrams 54

3.1.2 Functional Coverage Based on Fault Models 55
3.2 Test Generation using Model Checking Techniques 56

3.2.1 Test Generation using Unbounded Model Checking 56
3.2.1.1 Unbounded Model Checking 56
3.2.1.2 Test Generation Algorithm 57

3.2.2 Test Generation using Bounded Model Checking 57
3.2.2.1 SAT-Based Bounded Model Checking 57
3.2.2.2 Test Generation Algorithm 58
3.2.2.3 Determination of Bound 59

3.3 Case Studies . 60
3.3.1 A Control System . 61
3.3.2 A Stock Exchange System (OSES) 62

3.4 Summary . 63

4 PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION 64

4.1 Related Work . 65
4.2 Background: SAT Solver Implementation 66

4.2.1 DPLL Algorithm . 67
4.2.2 Conflict Clause Based Learning . 67

4.3 Property Clustering . 70
4.3.1 Similarity based on Structural Overlap 72
4.3.2 Similarity based on Textual Overlap 73
4.3.3 Similarity based on Influence . 74
4.3.4 Similarity based on CNF Intersection 76
4.3.5 Determination of Base Property . 76

4.4 Efficient Test Generation using Learning Techniques 77
4.4.1 Conflict Clause Forwarding Techniques 77
4.4.2 Name Substitution for Computation of Intersections 80
4.4.3 Identification and Reuse of Common Conflict Clauses 81

4.5 Case Studies . 83
4.5.1 A VLIW MIPS Processor . 84

4.5.1.1 Structure-based Clustering 84
4.5.1.2 Clustering based on Textual Similarity 87
4.5.1.3 Influence-based Clustering 88
4.5.1.4 Intersection-based Clustering 89
4.5.1.5 Comparison of Clustering Technqiues 91

4.5.2 A Stock Exchange System . 92
4.6 Summary . 95

6

5 DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNING 96

5.1 Related Work . 97
5.2 Decision Ordering Based Learnings . 97

5.2.1 Overview . 98
5.2.2 Bit Value Ordering . 99
5.2.3 Variable Ordering . 101
5.2.4 Conflict Clause based Decision Ordering (Hybrid) 102

5.3 Test Generation using Decision Ordering 103
5.3.1 Test Generation for a Single Property 104

5.3.1.1 Heuristic Implementation 105
5.3.1.2 Test Generation . 106

5.3.2 Test Generation for a Cluster of Similar Properties 107
5.3.2.1 Heuristic Implementation 108
5.3.2.2 Test Generation . 110

5.4 Case Study . 111
5.4.1 Intra-Property Learning . 111
5.4.2 Inter-Property Learning . 115

5.4.2.1 A MIPS Processor . 115
5.4.2.2 A Stock Exchange System 118

5.5 Summary . 119

6 EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES 120

6.1 Learning-Oriented Property Decomposition 122
6.1.1 Potential Learnings for Complex Properties 122
6.1.2 Spatial Property Decomposition . 124
6.1.3 Temporal Property Decomposition 127

6.2 Decision Ordering Based Learning Techniques 130
6.3 Test Generation using Our Methods . 132
6.4 An Illustrative Example . 133

6.4.1 Spatial Decomposition . 133
6.4.2 Temporal Decomposition . 135

6.5 Experiments . 135
6.5.1 A VLIW MIPS Processor . 136
6.5.2 A Stock Exchange System . 138

6.6 Summary . 139

7 REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALENCE140

7.1 Related Work . 142
7.2 A Framework for Checking TLM-to-RTL Functional Equivalence 144

7.2.1 Automatic Transaction Level Validation 144
7.2.1.1 Generation of TLM Assertions 145
7.2.1.2 Generation of TLM Tests 146

7.2.2 Refinement of TLM Assertions and Tests 147

7

7.2.2.1 Symbol Mapping . 148
7.2.2.2 Assertion Refinement Rules 148
7.2.2.3 Test Refinement Rules . 150

7.2.3 A Prototype Tool for TLM-to-RTL Validation Refinement 151
7.2.3.1 TLM2SMV . 152
7.2.3.2 TLM Test Generation . 153
7.2.3.3 TLM2RTL . 153

7.2.4 Assertion-Based Functional Equivalence 154
7.2.4.1 Assertion-Based Functional Coverage 154
7.2.4.2 Assertion Ordering . 155
7.2.4.3 Assertion Based Functional Equivalence 157

7.3 Case Study . 159
7.3.1 A Router Example . 159
7.3.2 A Pipelined Processor Example . 164

7.4 Summary . 165

8 CONCLUSIONS AND FUTURE WORK . 166

8.1 Conclusions . 166
8.2 Future Research Directions . 167

REFERENCES . 169

BIOGRAPHICAL SKETCH . 176

8

LIST OF TABLES

Table page

1-1 A comparison for four optimizations . 20

2-1 Break down of a token in Figure 2-8 . 36

2-2 Condition on the flow edges in Figure 2-8 . 36

3-1 Comparison of two methods . 61

3-2 Implementation level coverage of the control system 61

3-3 Comparison of three methods . 62

3-4 Implementation level coverage of OSES . 63

4-1 Verification results for a structure-based cluster 85

4-2 Structure-based clustering results for MIPS processor 86

4-3 Verification results for a textual cluster . 87

4-4 Textual clustering results for MIPS processor 88

4-5 Verification results for an influence-based cluster 89

4-6 Influence-based clustering results for MIPS processor 90

4-7 Verification results for an intersection-based cluster 91

4-8 Intersection-based clustering results for MIPS processor 91

4-9 Property clustering and verification for MIPS processor 92

4-10 Structure-based clustering results for OSES . 93

4-11 Textual clustering results for OSES . 93

4-12 Influence-based clustering results for OSES . 94

4-13 Intersection-based clustering results for OSES 94

4-14 Property clustering and verification for OSES 94

5-1 Test generation results using intra learnings . 113

5-2 Test generation result for MIPS processor . 117

5-3 Test generation result for stock exchange system 118

6-1 Test generation result for MIPS processor . 136

9

6-2 Test generation result for OSES . 138

7-1 Assertion refinement for the router example . 161

7-2 RTL coverage for the router example . 163

7-3 Assertions refinement for the Alpha AXP processor 164

7-4 RTL coverage for the Alpha AXP processor . 164

10

LIST OF FIGURES

Figure page

1-1 SoC design and validation flow . 15

1-2 Comparison of functional validation between specification and implementation . 18

1-3 Top-down validation of SoC architectures . 21

2-1 Mapping from a SystemC structure to corresponding graph model 26

2-2 An example of data type transformation . 28

2-3 An example of SystemC TLM module . 29

2-4 An example of SMV module . 30

2-5 An example of TLM process . 31

2-6 An example of SMV process . 32

2-7 UML activity nodes . 33

2-8 The UML activity diagram of an ATM . 35

2-9 The generated skeleton after structure extraction 42

2-10 Translation rules for state and data transitions 43

2-11 The TLM structure of the router . 45

2-12 Graph model of a VLIW MIPS processor . 46

2-13 TLM of the Alpha AXP processor . 47

2-14 The activity diagram for a control system . 48

2-15 The activity diagram for a stock exchange system 49

3-1 Test generation using model checking . 50

3-2 Fault model examples . 55

4-1 Our test generation methodology . 64

4-2 Conflict analysis using an implication graph . 68

4-3 An example of name substitution . 81

4-4 An example of conflict clause reuse . 84

5-1 Two examples of SAT search . 99

11

5-2 A scenario where bit-value ordering works . 100

5-3 A scenario where bit value ordering fails . 101

5-4 An example of bit-value and variable ordering 101

5-5 An example of conflict clauses based variable ordering 102

5-6 Learning techniques for a single property . 106

5-7 Statistics for two properties . 108

5-8 Conflict statistics using various intra-property learnings 114

5-9 Implication statistics using various intra-learnings 115

5-10 Conflict statistics for MIPS processor . 116

5-11 Implication statistics for MIPS processor . 118

6-1 Two property decomposition techniques . 120

6-2 Our test generation framework . 121

6-3 The COI of a design block . 123

6-4 A functional scenario with three transactions . 124

6-5 A DAG of event relation . 128

6-6 Learning statistics applied on decision trees . 131

6-7 Event implication graph for property P . 135

6-8 Property checking result for MIPS processor . 137

7-1 Our equivalence checking framework . 144

7-2 The structure of our prototype tool . 152

7-3 An example of assertion equivalence . 159

7-4 The packet format of the router in TLM and RTL 160

7-5 The I/O interface of the router example . 161

7-6 An example of TLM-to-RTL refinement . 162

12

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

EFFICIENT APPROACHES FOR FUNCTIONAL VALIDATION OF SOC DESIGNS
USING HIGH-LEVEL SPECIFICATIONS

By

Mingsong Chen

August 2010

Chair: Prabhat Mishra
Major: Computer Engineering

Increasing complexity coupled with time-to-market pressure create a critical need

to raise the abstraction level for System-on-Chip (SoC) designs. Functional validation

is widely acknowledged as a major bottleneck due to lack of automated techniques and

limited reuse of validation efforts between abstraction levels. Simulation is the most widely

used form of validation using random or constrained-random tests. Directed tests are

very promising for simulation since only fewer directed tests are required compared to

billions of random tests to achieve a coverage goal. Currently, directed test generation is

performed manually which is time-consuming and error-prone. This dissertation presents

a novel top-down methodology for automatically generating directed tests from high-level

specifications and reuse them across different abstraction levels. The objective is to reduce

the overall functional validation effort. My research has four major contributions: i) it

proposes a method that can extract formal models from high-level SoC specifications; ii) it

presents an approach that can automatically derive properties based on fault models; iii) it

proposes efficient clustering, learning and decomposition techniques to reduce the directed

test generation time; and iv) it provides validation refinement approaches to enable reuse

of the system-level validation efforts for low-level implementation validation as well as to

check the consistency between different abstraction layers. Our experimental results using

both software and hardware benchmarks demonstrate that the proposed approaches can

significantly reduce the overall validation effort.

13

CHAPTER 1
INTRODUCTION

Functional validation 1 is widely acknowledged as a major bottleneck in System-on-Chip

(SoC) design methodology – up to 70% of the overall design time and resources are spent

on functional validation. In spite of such extensive efforts, majority of the SoC designs

fail at the very first time (silicon failures) primarily due to functional errors [79]. The

functional validation complexity is expected to increase further due to the combined

effects of increasing design complexity and recent paradigm shift from single processor SoC

designs to heterogeneous multiprocessor architectures [90].

Traditional SoC validation adopts a combination of simulation-based approaches and

formal methods. Random testing is widely used for SoC simulation. In general, random

tests can not guarantee the coverage and it may exercise the same functional scenario for

several times because of randomness. Thus directed tests are a better alternative since

only a small number of tests are required to achieve a functional coverage goal compared

to random or constrained-random tests. However, due to lack of automated tools to

generate directed tests, human intervention is necessary during the test generation. All

these scenarios can lead to time-consuming and error-prone validation. My research

targets to reduce the overall functional validation effort by automating various steps in the

the validation flow as well as by developing efficient learning and reuse techniques.

The rest of the chapter is organized as follows. Section 1.1 presents the SoC design

flow. Section 1.2 surveys the existing SoC functional validation methods. Finally,

Section 1.3 presents the contributions of this dissertation.

1 The term “validation” generally refers to simulation-based approaches, while
“verification” is used for both simulation-based and formal methods. This dissertation
focuses on directed test generation for simulation, so it uses the term validation.

14

1.1 SoC Design Flow

SoC integrates all components of a computer into a single integrated circuit (chip). It

consists of both hardware (such as processor, memory and peripherals) and software (such

as application programs). SoC may perform a variety of computations including digital,

analog and mixed-signal functions. Thus it is widely used in the field of embedded and

hybrid systems.

SoC is becoming increasingly complex since new applications require more features.

As a result, extensive system-level simulations are required to make the right architectural

trade-offs. To efficiently and quickly make the decision on these trade-offs, design

architects increasingly leverage system-level specifications instead of implementations

to perform such analysis.

Specification Validation

Implementation Validation

Specification

C/JAVA

Implementation

(TLM/UML)

Hardware SoftwareHW/SW Partitioning

VHDL/Verilog

Figure 1-1. SoC design and validation flow

Figure 1-1 presents a SoC design and validation flow. Various hardware and software

modeling paradigms are used for SoC specifications. Two of the most widely used

specifications are Transaction Level Modeling (TLM) [16, 78] and Unified Modeling

Language (UML) [69]. They establish a standard to enable fast simulation speed and easy

model interoperability for hardware/software co-design. Generally, TLM is promising for

15

hardware modeling and UML focuses on software modeling. TLM mainly allows modeling

of communication between different hardware components of a system and data processing

in each component. UML can capture both structural and behavioral information of

a software system. Validated specification can be used as a golden reference model for

validation of software and hardware implementations. Although specifications can capture

most important functional scenarios (system behaviors), some implementation details can

be still missing. For example, TLM provides two kinds of modeling styles: loosely-timed

models can be used to model the system behavior with less timing information and

approximately-timed models can enable timing analysis of system behavior. Although

TLM is promising for system-level modeling and simulation, it is still hard to accurately

describe the hardware behavior because it lacks many detailed information such as timing

details. So Register Transfer Level (RTL) is needed to model the implementation-level

behavior after the system-level simulation. In Figure 1-1, the hardware part will be

implemented using a RTL language such as VHDL or Verilog, and the software will be

implemented using a programming language such as C or JAVA. Significant amount of

validation work is needed to check the specified functional scenarios as well as to check the

consistency between the specification and implementation.

1.2 Functional Validation of SoC Designs

Specification validation is extremely important to ensure that the specified design is

correct and can be used as a golden reference model for the implementation. According to

[79], there are two key contributors to the SoC failures (silicon respin): specification errors

and implementation errors. As expected, 82% of the designs with respins resulting from

functional flaws had implementation errors. Interestingly, almost 47% of the designs with

respins resulting from functional flaws had also incorrect or incomplete specifications [79].

Therefore, it is necessary to validate specifications before validating the implementation.

This section first surveys existing functional validation methods, and then describes

several improvement opportunities to reduce the overall functional validation effort.

16

1.2.1 Overview of Functional Validation Methods

Simulation is the most widely used SoC validation method. Compared to random

testing methods which use billions of random and pseudo-random tests in the traditional

design flow, directed tests are very promising in reducing the overall validation effort since

a significantly smaller number of directed tests can achieve the same coverage goal [61].

However, a major problem in current directed test generation approach is that it is mostly

performed by human intervention. Hand-written tests entail laborious and time consuming

effort of verification engineers who have deep knowledge of the design under verification.

Due to the manual development, it is infeasible to generate all directed tests to achieve a

comprehensive coverage goal in a short time. Automatic directed test generation based on

a comprehensive functional coverage metric is an alternative to address this problem.

Model checking [21] is one of the most widely used formal methods for automated test

generation to validate software/hardware designs [5]. In the context of test generation, a

design specification is described using a formal model. The required functional scenarios

are described in the form of temporal logic formulas. When checking a false property

using a model checker, one counterexample is reported to falsify the property. Because

this counterexample is a sequence of variable assignments, it can be used as a directed test

to validate the functional scenario of the specification. However, model checking based

techniques do not scale well for large designs due to the “state space explosion” 2 .

Simulation based methods are fast but cannot guarantee the convergence of functional

coverage. Model checking based methods can automatically generate directed tests but

cannot deal with large designs. Currently, most SoC validation approaches use a hybrid

method which incorporates both techniques. The hybrid method first performs the

2 The number of states generated for verifying a property is huge and can not be
handled due to the memory capacity of computers.

17

random simulation to get as much functional coverage as possible. Then the uncovered

functional scenarios and corner cases are activated using the directed tests.

1.2.2 Potential Improvement Opportunities

Since system-level specification is treated as the golden reference model in the

SoC design flow, a logic error in the system-level specification certainly will cause

the malfunction in the implementation. Because implementations are more complex

than system-level specifications, finding an error in implementations will be more

time-consuming. So it is necessary to guarantee that system-level specification validation

can cover as many functional scenarios as possible. In addition, the differences between

specification and implementation limit the degree of validation reuse. In the absence

of significant reuse of validation efforts between different abstraction levels, the overall

functional validation effort will increase since designers have to verify the specification as

well as its implementation.

V
al

id
at

io
n

C
om

pl
ex

it
y F

unctional Scenarios

F
T

ot
al

b) Functional Scenariosa) Validation Complexity

FImp

TSpec

TImp

FSpec

Figure 1-2. Comparison of functional validation between specification and implementation

Figure 1-2 compares specification and implementation levels. Assume that a

design D has a total FTotal number of functional scenarios that need to be checked.

For specifications, there are FSpec number of functional scenarios that need to be checked,

and each specification level test generation need an average time of TSpec. In addition

to FSpec functional scenarios, there are FImp functional scenarios need to be checked in

implementations, and each implementation test needs an average time of TImp. Figure 1-2

18

a) indicates that when checking a functional scenario, implementation validation is more

difficult than specification validation. Figure 1-2 b)shows that specifications cover majority

of the overall system functional scenarios (e.g., 70%), and implementations inherit all

such scenarios with its own new additional functional scenarios (e.g., 30%) due to the

introduction of implementation details. In this dissertation, the complexity of validating

a functional scenario is equivalent to generating and applying a directed test. So test

generation and corresponding simulation time is used to indicate the functional scenario

validation effort.

In order to achieve a 100% functional coverage as well as to minimize the overall

specification and implementation test generation time, it is necessary to find a method to

optimize the Equation (1–1).

Minimize : FSpec × TSpec + {FSpec + FImp} × TImp

Subject to :

FSpec + FImp = FTotal

TSpec << TImp

FSpec > FImp

(1–1)

For directed test generation, there are four feasible options. Table 1-1 compares these

approaches.

• No optimization: Specification level test generation and implementation level test
generation are independent, and in each level there are no optimizations.

• Specification level optimization: Specification level test generation and
implementation level test generation are independent. The overall specification
test generation time can be reduced by certain optimization methods.

• Reuse between specification and implementation: No optimization for
specification and implementation level test generation, but the specification tests
can be reused for implementation level validation.

• Specification level optimization + reuse between specification and imple-
mentation: Optimizations reduce the overall specification level test generation time,
and the specification level tests can be reused for implementation level validation.

19

Assume that in system validation we can find a specification level test generation

optimization that can produce α times (α > 1) speedup, and we can obtain another β

times (β > 1) speedup due to validation reuse. According to the comparison shown in

Table 1-1, the last option can achieve the best possible performance. The goal of this

dissertation is to develop efficient techniques to reduce the overall validation effort using

the fourth (last) option.

Table 1-1. A comparison for four optimizations

Optimization Time

None FSpec × TSpec + FTotal × TImp

Specification level FSpec × TSpec/α + FTotal × TImp

Reuse FSpec × TSpec + FSpec × TImp/β + FImp × TImp

Specification level + Reuse FSpec × TSpec/α + FSpec × TImp/β + FImp × TImp

1.2.3 Challenges

Each of the components (such as IP cores, processors and memories) in a SoC

design can be verified using existing validation approaches. However, the validation of

the overall system is extremely complex due to exponentially large number of possible

interactions that are extremely hard to model, analyze and validate. Although the

potential improvements proposed in the previous section seems promising, there are four

fundamental problems in automated generation of directed tests for SoC architectures.

The first challenge is to decide specification models for SoC architectures and how

to verify the specification to ensure that it can be used as a golden reference model.

The next challenge is to identify a comprehensive functional coverage metric to enable

coverage-driven generation of properties and associated high-level tests. The third and

most important challenge is how to significantly reduce the test generation complexity

to avoid state space explosion problem. Finally, due to significant differences between

specifications and implementations, a major challenge is how to efficiently reuse the

specification-level properties and tests for validation of SoC implementations.

20

1.3 Dissertation Contributions

My research employs a top-down validation methodology using a combination of

simulation based approaches and formal methods to address the four challenges mentioned

in Section 1.2.3. The objective of my research is to develop tools, techniques and

methodologies to enable automatic generation of directed functional tests to drastically

reduce the overall verification effort as well as to improve the quality of SoC designs.

Property
Generation

Validation
Specification

Properties

TLM Tests

RTL Tests

Coverage Model
(fault models)

SOC Architecture
(System−level Models)

Refinement
Test

Property
Refinement

Generation
Test

Clustering
Property

Clusters

Property

System−level Tests

RTL Assertions

SOC Design
(Implementation)

Figure 1-3. Top-down validation of SoC architectures

Figure 1-3 outlines the proposed validation methodology for SoC architectures using
system-level specification. It consists of four major contributions as follows:

• Formal modeling of SoC designs: Since most existing SoC specifications are
not formal enough to enable automated test generation, this dissertation proposes
an approach for automatic specification analysis. It can extract formal models from
semi-formal hardware and software specifications.

• Coverage-driven property generation: Functional coverage plays an important
role to determine the adequacy of functional validation. This dissertation defines
various fault models for SoC specifications. Based on these fault models, we can
automatically derive properties to validate the specified functional scenarios.

• Efficient directed test generation: To reduce the overall test generation time
for the same design with a large set of properties, this dissertation proposes various
clustering methods which can cluster the similar properties together to share the
learnings during test generation. The proposed framework investigates two kinds
of learnings based on conflict clause forwarding as well as decision ordering. Such
learnings can be used to avoid repeated validation efforts between similar properties.
For complex properties without learning opportunity, this dissertation proposes two
decomposition techniques that can actively achieve the learning to reduce its test
generation time.

• Automated refinement of validation efforts: This dissertation develops a
prototype tool which can automatically convert TLM level tests and properties into

21

RTL tests and assertions to enable implementation level validation. Based on this
validation effort reuse, this dissertation proposes a methodology which can check the
assertion-based functional equivalence between specifications and implementations.

The rest of this dissertation is organized as follows. Chapter 2 describes how to

extract formal models from system level specifications of SoC designs. Chapter 3 describes

how to generate properties based on our proposed fault models. Chapter 4 to 6 discuss

how to efficiently generate tests to enable functional validation. Chapter 4 describes

how to divide the properties into several groups such that each group contains similar

properties that can benefit from each other during test generation. Chapter 5 presents the

decision ordering based learning techniques which can drastically reduce the overall test

generation time. Chapter 6 proposes various decomposition techniques to actively find

the learnings for a complex property. Chapter 7 presents the methodology for automated

property and test refinements. It also describes how to utilize the validation refinement for

functional equivalence checking. Finally, Chapter 8 concludes the dissertation and outlines

several future research directions.

22

CHAPTER 2
FORMAL MODELING OF SOC SPECIFICATIONS

Modeling plays a central role in design automation of SoC architectures. It is

necessary to develop a specification language that can model complex systems at a higher

level of abstraction and also enable automatic analysis and generation of efficient reference

models. The language should be powerful enough to capture high-level description of a

wide variety of SoC architectures as well as should be simple enough to allow correlation

of the information between the specification and the architecture/system manual.

As a system level specification, SystemC TLM [78] establishes a standard to enable

fast simulation speed and easy model interoperability for hardware/software co-design.

It mainly focuses on the communication between different functional components of a

system and data processing in each component. Although UML is being used as a de facto

software modeling tool, UML Profile for SoC [68] is proposed as an extension of UML

2.X to enable SoC hardware modeling. It can be used to capture the system behavior

for both SoC software and hardware components [19, 65, 77]. However, both SystemC

TLM and UML diagrams are not formal enough for automatic test generation using model

checking techniques [5]. Consequently, the ambiguity, incompleteness, and contradiction in

specifications can lead to different interpretations. Therefore it is necessary to formalize

the semantics of SoC specifications.

This chapter introduces two widely used SoC specifications: SystemC TLMs for

hardware modeling, and UML activity diagrams for software modeling. Next, it describes

how to automatically extract the formal models from specifications to enable subsequent

validation steps. The rest of the chapter is organized as follows. Section 2.1 introduces the

formal modeling of SystemC TLMs. Section 2.2 proposes the formal modeling techniques

of UML activity diagrams. Section 2.3 presents the case studies using both SystemC TLM

designs and UML activity diagrams. Finally, Section 2.4 summarizes the chapter.

23

2.1 Specification using SystemC TLMs

As a framework built on C++, SystemC [70] deliberately mimics the hardware

description languages such as VHDL and Verilog. With an event-driven simulation

kernel, SystemC can be used to simulate the behavior of concurrent processes which can

communicate with each other using procedure calls or other mechanisms offered by the

SystemC library. Generally, SystemC is often associated with Transaction-Level Modeling

(TLM) [16, 78], because SystemC TLM provides a wrapper to facilitate the process of

communication modeling. Since SystemC TLM provides a rapid prototyping platform for

the architecture exploration and hardware/software integration [30], it is widely used to

enable early exploration for both hardware and software designs. It can reduce the overall

design and validation effort of complex SoC architectures.

To enable automated analysis, various researchers have tried to extract formal

representations from SystemC TLM specifications. Abdi et al. [2] introduced Model Alge-

bra, a formalism for representing SoC designs at system level. The work by Kroening et

al. [48] formalized the semantics of SystemC by means of labeled Kripke structures. Moy

et al. [64] provided a compiler front-end that can extract architecture and synchronization

information from SystemC TLM designs using HPIOM. Karlsson et al. [41] translated

SystemC models into a Petri-Net based representation PRES+. This model can be used

for model checking of properties expressed in a timed temporal logic. Habibi et al. [34]

proposed a method that adopts the formal model AsmL. A state machine generated from

AsmL can be verified, and then can be translated to both SystemC code and properties

for low level validation. All these modeling techniques focus on the formal modeling of

SystemC specifications. However, none of them investigate the automated test generation

for transaction validation. This section discusses how to extract the formal models from

SystemC TLM specifications to enable automated test generation.

24

2.1.1 Formal Modeling of SystemC TLMs

As a high level specification, SystemC TLM emphasizes the functionality of the data

transfers instead of actual implementation. A SystemC TLM design interconnects a set of

processes communicating with each other using transaction data token (i.e., C++ objects).

The initial process starts a communication, and the target process passively responds

to the communication. Similar to the producer/consumer models, each process does the

following tasks: consuming data, processing data and producing data.

Since SystemC is based on C++, it supports various programming constructs (e.g.,

template, inheritance, etc.). Although the concept of some TLM components (signals,

ports, etc.) is easy, their C++ implementation details are really complex. Therefore,

directly translating their behaviors to enable automated validation is difficult. In our

framework, we abstract such SystemC components and hide the implementation details

using the pre-defined SMV constructs. Furthermore, the underlying complex SystemC

scheduler aggravates the modeling complexity. For SystemC TLM, to mimic the parallel

execution of processes, the SystemC scheduler activates the ready-to-run processes in a

“non-deterministic” way. However, since SMV is parallel in essence, it is not necessary to

model the SystemC scheduler explicitly.

For TLM, two most important factors are the transaction data token and the

transaction flow. So the extracted formal model of TLM specifications should reflect

both information. In our test generation framework, it is required that the extracted

models can not only guide the generation of SMV specification, but also can be used to

automatically derive the properties for TLM test generation. Definition 1 gives the formal

model of SystemC TLM designs.

Definition 1. The formal model of a SystemC TLM design is an eight-tuple (Σ, P, T,

A, E, M, I, F) where
Σ is a set of transaction data tokens.

• P = {p1, p2, . . . , pm} is a set of places.

25

• T = {t1, t2, . . . , tn} is a set of transitions.

• A ⊆ {P × T} ∪ {T × P} is a set of arcs between places and transitions.

• E = {e1, e2, . . . , ek} is a set of arc expressions. The mapping Expression(ai) = ei

(ai ∈ A , 1 ≤ i ≤ k) gives the enable condition ei for ai. A token can pass arc ai only
when ei is true.

• M : 2P×Σ × T → 2P×Σ is a function that describes the internal operations on input
transaction data and output transaction data of a transition.

• I ∈ 2P×Σ specifies the initial state.

• F ⊆ 2P×Σ specifies the final states.

In our framework, we use the graph model as an immediate form to capture the

execution as well as interconnection of processes.

M1

M2

M3

M4

M6

M5

t1

t2

t3

t4

t5

t6

a) Interconnection of modules b) Graph model of the module interconnections

Figure 2-1. Mapping from a SystemC structure to corresponding graph model

Figure 2-1a) shows an interconnection of six modules. Each arrow indicates a

port binding between two modules. Figure 2-1b) shows the graph representation of its

corresponding formal model. In the formal model, each circle is called a place that is used

to indicate the input or output buffer of a module. It can temporarily hold the transaction

data for later processing. The vertical bars are transitions which are used to indicate

modules which contain processes to manipulate input and output transaction data tokens.

The places without incoming arcs are initial places which start a transition. The places

26

without outgoing arcs are target places. A transaction data token flows from the initial

places to the target places and token values may change in transitions when necessary.

The internal logic of a transition determines the flow of the transaction.

2.1.2 Transformation from SystemC TLM to SMV

Model checking techniques are very promising for directed test generation in hardware

and software domains [5, 9, 71]. In our framework, we adopt SMV [56] as the formal

specification to describe both the structure and behavior information of SystemC TLMs

because of the following reasons. First, the underlying semantics of SMV is similar to

the semantics of SystemC scheduler. So we can mimic most TLM’s behaviors using SMV

without modeling complex scheduler behavior. Second, SMV and TLM have the similar

structure hierarchy. Each processing unit encapsulated by a TLM module corresponds to

a SMV module. The interconnections (e.g. channels, ports and sockets) between TLM

modules can be abstracted by using module parameters in SMV. Third, like SystemC,

SMV provides a rich set of programming language constructs such as if-then-else, case-

switch and for loop statements. Fourth, SMV main module connects, similar to SystemC,

each component of the system. Finally, SMV supports various kinds of data types and

data operations. Especially users can define their own data type. All of these SMV

features facilitate the translation from TLMs to SMV specification. It is important to

note that, due to the expressiveness of the SMV language, currently our framework just

supports loosely timed modeling. We are planning to use the timed automata checker

(such as UPPAAL [8]) in our framework to enable the timing verification of transactions.

As an intermediate form for TLM to SMV translation, the graph model provides

both structure and behavior information. Such information need to be collected for a

translation to a SMV representation to enable automated directed test generation. The

structure information includes the data type definition and connectivity between modules.

It corresponds to the description of transaction data token as well as interconnection

of transitions and places in the graph model. The behavior information contains token

27

processing and token routing. In the formal model, it represents the internal processing

of a transition. This section discusses how to extract both structural and behavioral

information and transform it to a SMV specification. We use the example shown in

Section 2.3.1 to illustrate how to extract the formal model from a router example.

2.1.2.1 Structure Extraction

In TLM, the content of a transaction data token indicates the transaction flow and

the output of each component. So it consists of the key part of TLM tests. Generally a

transaction token consists of several attributes with different types. Because data type

determines the size of the specified variable which in turn affects the model checking

performance, it is necessary to figure out the data type of a token. Besides all native C++

types, SystemC defines a set of data type classes within the namespace sc dt to represent

values with application-specific word lengths applicable to digital hardware. SMV also

supports various data types such as array, Boolean, integer, struct and so on. Such data

type definitions facilitate the mapping of data types between SystemC TLM and SMV

specification. During the transformation, the word lengths of user-defined type need to be

considered. Figure 2-2 gives an example of the router packet in the form of SystemC TLM

and SMV respectively. For example, sc uint < 2 > has 2 bits and will be transformed to a

range 0..3 in SMV.

class packet{ typedef packet struct{

public:

sc_uint<2> to_chan; to_chan : 0..3;

sc_uint<6> payload_sz; payload_sz : 0..63;

sc_uint<8> payload[4]; payload : array 3..0 of 0..255;

sc_uint<8> parity; parity : 0..255;

}; }

a)packet in SystemC TLM b) packet in SMV

Figure 2-2. An example of data type transformation

Derived from the base class sc module, TLM modules are the main processing units

for the transaction data. Generally each sc module contains the definitions of processes

whose types are SC METHOD or SC THREAD. Modules communicate with each other

28

by sending and receiving transaction data tokens via output and input ports. SystemC

provides a communication wrapper for the system components (modules). In SystemC,

there exists various binding mechanism (e.g. port to export binding, export to export

binding and port to channel binding) to establish interconnection between modules.

Usually each binding corresponds to a channel such as a first-in-first-out (FIFO) channel

to temporarily hold transaction tokens.

class router : public sc_module{

public:

sc_export<tlm_put_if<packet> > packet_in;

sc_export<tlm_fifo_get_if<packet> > packet_out0;

sc_export<tlm_fifo_get_if<packet> > packet_out1;

sc_export<tlm_fifo_get_if<packet> > packet_out2;

router(sc_module_name module_name);

void route();

private:

tlm_fifo<packet> chan0, chan1, chan2, input_;

packet tmp_packet;

};

Figure 2-3. An example of SystemC TLM module

Figure 2-3 shows the TLM module structure of a router. The class sc export can be

used as a port to communicate with other modules. Because the interface type of port

packet in is tlm put if<packet>, it is an input port. In contrast, packet outx (x=0,1,2)

have the interface tlm fifo get if<packet>, so they are output ports. During the router

communication, each connection between a port and an export uses a FIFO channel to

temporarily hold a packet.

Structurally similar to SystemC TLMs, SMV specification is also modularized

and hierarchically organized. So the extraction of structure information needs to map

the TLM constructs into the right place of the SMV specification. Figure 2-4 shows

the SMV module skeleton corresponding to example in Figure 2-3 after the structure

extraction. In SMV, a module uses the parameters as the input and output ports to both

communicate with other modules and configure the system status defined in the main

module. In the example of Figure 2-4, the SMV module has one input port and three

29

output ports. The type of the input and output ports is packet. All the declarations of

member variables except for the FIFO channels are declared in the SMV specification.

Because a FIFO channel together with its port pairs are abstracted as a SMV parameter,

it is not necessary to create a variable in SMV explicitly. Based on context during the

elaboration, some of the declared variables will be initialized. In SMV specification, each

output ports and local variables need to be initialized. For example, packet out0 is a

parameter which refers to an output port, so it will be initialized with a value “0”. In our

framework, it is required that all such module connections should be defined in the module

sc top.

module router(packet_in, packet_out0, packet_out1, packet_out2){

input packet_in : packet;

output packet_out0, packet_out1, packet_out2: packet;

tmp_packet : packet;

init(packet_out0):=0;

init(packet_out1):=0;

init(packet_out2):=0;

init(tmp_packet):=0;

......

}

Figure 2-4. An example of SMV module

2.1.2.2 Behavior Extraction

TLM behavior describes the run-time information of TLM including transaction

creation, transaction manipulation and module communication. Transaction creation

initializes a transaction by creating a data token (i.e. a C++ object) with proper values.

Transaction execution describes the transaction flow among the modules. A module is

a container which has a cluster of relevant processes. Such processes will handle the

incoming transaction tokens and decide where to send them according to the specified

conditions. Thus different value of a token will lead to different transaction flows. In

our current prototype release, there are two kind of process communication supported in

transaction flows: 1) direct procedure call from one process to another process, and 2)

channel-based events triggered by the procedure call. For example, in the blocking mode,

30

a process can fetch a transaction data token from the specified input port only when the

corresponding channel is not empty. Otherwise, the operation “get” will be blocked until

there is an event triggered by the “put” operation by other processes.

router::router(sc_module_name mname): sc_module(mname){

packet_in(input_); packet_out0(chan0);

packet_out1(chan1); packet_out2(chan2);

SC_METHOD(route);

sensitive << input_.ok_to_get();

dont_initialize();

}

void router::route() {

input_.nb_get(tmp_packet);

if(tmp_packet.to_chan == (sc_uint<2>)0)

chan0.nb_put(tmp_packet);

else if(tmp_packet.to_chan == (sc_uint<2>)1)

chan1.nb_put(tmp_packet);

else chan2.nb_put(tmp_packet);

}

Figure 2-5. An example of TLM process

Figure 2-5 gives the module process route of the router example. The process receives

a packet from the driver via channel input , and then it decides where to send data based

on the packet header information to chan.

TLM modeling provides some synchronization mechanism for the communications

between modules. As shown in Figure 2-5, the router can fetch the data from the FIFO

queue input only when the driver put a package and the FIFO channel event ok to get is

triggered. Thus the synchronization between two modules is implicitly achieved.

SMV supports many constructs similar to the common programming language

such as if-then-else, switch-case and for loop. So these constructs facilitate the behavior

modeling of processes from TLM to SMV specification. Figure 2-6 is the translated SMV

specification of the TLM example presented in Figure 2-5. During the translation from

TLM to SMV, we abstract a channel as an implicit buffer between two ports. So a SMV

module will get the input data from its input ports. There is no mapping of the channel in

transformed SMV specification. For example, the tmp packet is assigned the value of the

packet in instead of the value of input shown in the TLM example in Figure 2-5.

31

module router(packet_in, packet_out0, packet_out1, packet_out2){

......

next(tmp_packet) := packet_in;

if(tmp_packet.to_chan = 0){

next(packet_out0) := tmp_packet;

next(packet_out1) := 0;

next(packet_out2) := 0;

}else if(tmp_packet.to_chan = 1){

next(packet_out0) := 0;

next(packet_out1) := tmp_packet;

next(packet_out2) := 0;

}else{

next(packet_out0) := 0;

next(packet_out1) := 0;

next(packet_out2) := tmp_packet;

}

}

Figure 2-6. An example of SMV process

2.1.3 A Prototype Tool For TLM to SMV Translation

We developed a prototype tool TLM2SMV which can transform SystemC TLM

specifications to corresponding SMV models for automated directed test generation. The

details of the implementation are described in Section 7.2.3.1.

2.2 Specification using UML Activity Diagrams

Formal verification can be used to verify the correctness of specifications, so it can be

used to guarantee the quality of UML models [84]. UML activity diagram adopts Petri-net

semantics which is promising to describe the concurrent behavior [18, 51, 88]. There are

several approaches that use model checking techniques to verify UML activity diagrams.

Eshuis [75] presented a translation procedure from UML activity diagrams to the input

language of NUSMV [20]. However, the translation is used to verify the consistency

between UML activity diagrams and class diagrams. It focuses on checking the consistency

between two different models. Guelfi and Mammar [31] provided a formal definition for

timed activity diagrams. They outlined the translation from the semantic specifications

into PROMELA - an input language of the SPIN model checker. Das et al. [22] proposed

a method to deal with timing verification of UML activity diagrams. All these verification

32

work primarily focus on checking the consistency or correctness of the model itself instead

of generating directed test cases.

In this chapter, we adopt UML 2.1.2 [69] as our specification. To reduce the

complexity of the testing work, we restrict our testing target and investigate a subset

of activity diagrams. The subset mainly contains action nodes, control nodes, object nodes

and control and data flow. Especially for the object node, we assume that it can hold at

most one object at a time and it does not support competition and data store. This section

first gives the notations used in UML activity diagrams. Then it presents the formal

definitions of the UML activity diagrams. Finally, it describes the translation from UML

activity diagrams to SMV formal models.

2.2.1 Notations

UML activity diagram is used to coordinate the execution of actions. An action takes

a set of inputs and converts them into corresponding outputs. An activity (behavior)

consists of a set of actions and flow edges. The actions are connected by object flow edges

to show how object tokens flow through and connected by control flow edges to indicate

the execution order.

...

...

Decision/Merge Fork Join

Activity FinalFlow FinalInitial

Control Nodes:

Label Object Node:Action Node: Label

Figure 2-7. UML activity nodes

UML activity diagrams adopt the semantics like Petri-net [72]. It is a type of directed

graphical representation. Tokens which indicate control or data values flow along the edges

from the source node to the sink nodes driven by the actions and conditions. An activity

33

diagram has two kinds of modeling elements: activity nodes and activity edges. More

specially, there are three kinds of nodes in activity diagrams:

• Action Node: Action nodes consume all input data/control tokens when they are

ready, generate new tokens and send them to output activity edges.

• Object Node: Object nodes provide and accept data tokens, and may act as

buffers, collecting data tokens as they wait to move downstream.

• Control Node: Control nodes route tokens through the graph. The control nodes

include constructs to choose between alternative flows (decision / merge), to split or

merge the flow for concurrent processing (fork / join).

Figure 2-7 shows the basic constructs of activity nodes. An action node is denoted

by round cornered boxes. It represents an execution of operations on input tokens, and

generated new tokens will be delivered to an outgoing edges. An object node denoted

using rectangle boxes is used to temporarily hold the data tokens waiting to be processed

or delivered. For simplicity, we assume that object nodes do not support competition

and data store for test case generation. A flow in an activity starts from the initial node.

When a token arrives at a flow final node, it will be destroyed. The flow final node has

no outgoing edges, so there is no downstream effect. When no tokens exist in an activity

diagram, the activity will be terminated. The activity final nodes are similar to flow final

nodes, except that when a token reaches one activity final node, the entire flow will be

terminated. Decision nodes and merge nodes use the same shape of diamond. Decision

nodes choose one of the outgoing flows according to the value of Boolean expressions

labeled on the outgoing edge. Merge nodes select only one of incoming flows to deliver to

the next activity node. Forks or joins are shown by multiple arrows leaving or entering the

synchronization bar, respectively, to describe the concurrent behavior of a system. When

a token arrives at a fork node, it will be duplicated across the outgoing edges. Join nodes

synchronize multiple flows. The tokens must be available on every incoming edge in order

to be passed to outgoing edges.

34

Activity nodes are connected by activity edges along which tokens may flow under

some condition. Activity edges include control and data flow edges as follows:

• Control Flow Edge: Control flow edges indicate the execution sequence of actions.

• Object Flow Edge: Object flow edges indicate the relation of data token

transmissions. It provides the inputs to actions.

In our method, we simplify the syntax and semantics of UML activity diagrams. We

combine the control and data token together as a new kind of token which contains both

control and data information. Such token can flow through activity edges. In other words,

we do not distinguish control flow edges and object flow edges in our framework.

[incorrect]

[resolved]
Ask for amount

Prepare to
print receipt

end

start

a

c

syn_2

syn_1

g

content

t1

t2
t3

t4

t9

t11

t10

t6

[amount available]t7

t8 [amount not available]

Generate receipt
e

d f

b

t5

[correct]

[not resolved]

Finish transaction
and print receipt

Verify access code

Dispense cash

Handle incorrect
access code

Figure 2-8. The UML activity diagram of an ATM

Figure 2-8 shows an example which uses most of the elements shown in Figure 2-7.

It describes the functionality of withdrawing money from an Automated Teller Machine

35

(ATM) [26]. A user needs to enter the access code first. In case of failure, the user can

input the access code again. The operation will abort if access code is wrong in both

cases. If the input access code is right, the user can enter the amount of money he wants

to withdraw. At the same time, the printer will be ready to print a receipt. Once the

ATM decides whether there is enough money the user can withdraw, it provides the cash

and generates the information for this transaction. Finally, the printer prints the receipt

and the transaction is complete.

The token for this example contains the ATM transaction information such as the

input access code and input cash amount, the context information such as the available

cash amount and correct access code. In general, a token reflects all the data information

required for this activity. Table 2-1 shows the composition of a token of the ATM activity

diagram. It consists of 5 variables which will be used to make the decisions illustrated in

Table 2-2.

Table 2-1. Break down of a token in Figure 2-8

Variable Type Description
access code string user’s access code
access code input string user access code input
access code resolve string user access code input correction
amount input integer user cash amount input
amount available integer cash amount available

Table 2-2. Condition on the flow edges in Figure 2-8

Activity Edge Condition Description
t2 incorrect access code! = access code input
t3 correct access code = access code input
t4 resolved access code = access code resolve
t5 not resolved access code! = access code resolve
t7 amount available amount input <= amount available
t8 amount not available amount input > amount available

2.2.2 Formal Modeling of UML Activity Diagrams

Without formalism, it is hard to describe and model the activity diagrams accurately.

UML activity diagram itself is a semi-formal specification that cannot be directly mapped

36

to a model checker input (e.g., SMV models). We use Petri-net as an intermediate formal

model between activity diagrams and SMV model, because the Petri-net formalism can

capture the major functional scenarios as well as guide the translation.

Definition 2 describes the relation between the activity nodes and flow edges with a

Petri-net semantics. It does not model the full features of activity diagrams and formally

depicts the static abstracted structure of activity diagrams which can be used to describe

the scenarios that need to be tested.

Definition 2. An activity diagram is a directed graph described using eight-tuple (A, T, F,

C, V, A, aI , aF) where

• A = {a1, a2, . . . , am} is a set of action nodes.

• T = {t1, t2, . . . , tn} is a set of completion transitions.

• F ⊆ {A× T} ∪ {T × A} is a set of flow edges between activity nodes and completion

transitions.

• C = {c1, c2, . . . , cn} is a finite set of guard conditions. Here, ci (1 ≤ i ≤ n) is a

predicate (expression) based on the input variables. There is a mapping from fi ∈ F

to ci, referred as Cond(fi) = ci.

• Let V be the set of all possible assignments for input variables V1, V2, . . . , Vk where k

is a positive integer.

• M : A × V → V is a mapping that describes the value change of the input variables

inside an activity node.

• aI ∈ A is the initial node, and aF ∈ A is the final node. There is only one completion

transition t ∈ T and c ∈ C such that (aI , t) ∈ F , and for any t′ ∈ T , (t′, aI) /∈ F and

(aF , t
′) /∈ F .

In our formalization, a node can be an action node, an initial node or a final node.

We use the completion transition and flow edge to model the behavior of the control

nodes. In the graph, the nodes are connected by flow edges associated with a completion

transition. Because activity diagrams allow tokens to exist in the flows concurrently,

37

the completion transition can be used to synchronize the token flows. If a completion

transition has multiple incoming flow edges, it will do the join operation. If there are

multiple outgoing flow edges, then it will do the fork operation. For each flow edge, there

may be a condition which can guide the token traverse. The graph has one initial node

that indicates the start of control and data flows. Activity diagrams have two kinds of

final nodes: flow final nodes and activity final nodes. We combine them together and use a

join operation to get a new activity final node. So in the definition there is only one final

node.

When analyzing dynamic behaviors of an activity diagram, we need to use the states

(a set of actions executing concurrently) to model the status of a system. Current state

(denoted by CS) of an activity diagram indicates the actions which are being activated.

Definition 3. Let D be an activity diagram. The current state CS of D is a subset of A.

For any transition t ∈ T ,

• •t denotes the preset of t, then •t = { a | (a, t) ∈ F}.

• t• denotes the postset of t, then t• = {a | (t, a) ∈ F}.

• enabled(CS) denotes the set of completion transitions that are associated with the

outgoing flow edges of CS, then enabled(CS) = { t | •t ⊆ CS }.

• firable(CS) denotes the set of transitions that can be fired from CS , then firable(CS)={ t | t ∈

enabled(CS)
∧

•t are all completed
∧

∃ n ∈ A. Cond((t, n)) is satisfied
∧

(CS − •t) ∩ t• = ∅}. After some t is fired, the new current state CS ′ = fire(CS, t) =

(CS − •t) ∪ t•.

The current state of an activity diagram indicates which activity nodes are holding

the tokens. For example, when {d, f} is the current state of the activity diagram in

Figure 2-8, two tokens are in the activity nodes d and f individually. At this time, only

the transition associated with t9 is firable. If it is fired, then the next state is {e, f}.

Because of the inherent concurrency, several transitions can be fired at the same time.

For an activity diagram, all the firable transitions in a state form a concurrent transition.

38

Definition 4. Let D be an activity diagram. For a state CS of D, a concurrent transition

τ is a set of completion transitions t1, t2, ..., tn ∈ firable(CS) where

1. ∀ i, j(1 ≤ i < j ≤ n), •ti ∩
•tj = ∅;

2. ∀ t ∈ (enabled(CS) − {t1, t2, ..., tn}), there exists i (1 ≤ i ≤ n) such that •t ∩ •ti 6= ∅.

After firing τ from state CS, the current state CS ′ = fire(CS, τ) =
⋃

n
i=1(fire(CS, ti)) =

⋃

n
i=1((CS − •ti)

⋃

t•i).

An instance of dynamic behavior of an activity diagram can be represented by a

sequence of states and concurrent transitions. We call it a path of the activity diagram.

Because a path may have cycles, during the model checking, it is hard to determine the

cycle numbers, so we neglect the cycles on a path. We call such a path as key path.

Definition 5. A path ρ of the activity diagram D is a sequence of states and concurrent

transitions, let

ρ = s0
τ0−→ s1

τ1−→ . . .
τn−1

−−→ sn

where s0 = {aI}, sn = {aF}, and si+1 = fire(si, τi) for any i (0 ≤ i < n). ρ is a key path

if there is no state repetition in ρ, i.e. ∀i, j (0 < i < j ≤ n), si

⋂

sj = ∅.

There are five key paths in Figure 2-8:

• ρ1={start}
{t1}
−−−→{a}

{t2}
−−−→{b}

{t5}
−−−→{end}

• ρ2={start}
{t1}
−−−→ {a}

{t3}
−−−→ {c}

{t6}
−−−→ {dummy, f}

{t7}
−−−→ {d, f}

{t9}
−−−→ {e, f}

{t10}
−−−→ {g}

{t11}
−−−→ {end},

• ρ3={start}
{t1}
−−−→ {a}

{t3}
−−−→ {c}

{t6}
−−−→ {dummy, f}

{t8}
−−−→ {e, f}

{t10}
−−−→ {g}

{t11}
−−−→ {end},

• ρ4={start}
{t1}
−−−→ {a}

{t2}
−−−→ {b}

{t4}
−−−→ {c}

{t6}
−−−→ {dummy, f}

{t7}
−−−→ {d, f}

{t9}
−−−→ {e, f}

{t10}
−−−→ {g}

{t11}
−−−→

{end},

• ρ5={start}
{t1}
−−−→ {a}

{t2}
−−−→ {b}

{t4}
−−−→ {c}

{t6}
−−−→ {dummy, f}

{t8}
−−−→ {e, f}

{t10}
−−−→ {g}

{t11}
−−−→ {end}.

We insert a dummy node here because we assume that outgoing edges of the fork

node must connect to an activity rather than a selection node. For a key path, when firing

transitions, we need to consider guard conditions. For clarity, in Figure 2-8, we did not

label the condition guards for each transition.

39

Definition 6. Let D be an activity diagram. An interaction of the activity diagram is a

set of activity nodes (actions) that can be activated simultaneously. A “k-interaction” is a

set that contains k activity nodes.

In order to detect whether a concurrent state of an activity diagram is reachable

or can be activated, we use the term interaction 1 to describe the scenario that a set

of actions can be activated simultaneously. For example, in the Figure 2-8, {d, f} is an

example of “2-interaction” in the ATM.

2.2.3 Transformation from UML Activity Diagrams to SMV

Our technique can extract both the control and data flows by parsing a UML activity

diagram. The translation consists of two parts: static information extraction and dynamic

information extraction. Static information extraction analyzes the structure of an activity

diagram and then generates a skeleton of the SMV input. The dynamic information

extraction analyzes the dynamic behavior of the system by focusing on control and data

flow analysis (i.e. the state change of activities, data manipulation in activities and the

condition of the transitions).

2.2.3.1 Static Information Extraction

This step collects both the input data manipulated by the activities and the

predicates used as guard conditions of the transitions. For example in Figure 2-8, there

are five input data variables that determine the data and control flows: access code,

access code input, access code resolve, amount input, and amount available. Because there

may be a number of possible values for a variable, during model checking it will cause the

state space explosion. In our approach, we adopt the model checker SMV which does not

support complex data types (e.g., float, double and etc.). For each variable, it is required

1 Unlike the interaction in UML Interaction overview diagram, the interaction here
means that several actions are actived at the same time.

40

that the value range should be specified explicitly. To avoid state space explosion, we use

the following methods to reduce the complexity of data types:

• Scaling: Scaling is used to proportionally reduce the value range of a variable.

• Reduction: Reduction is used to reduce the cardinality of possible values for a

variable.

Since it is hard to implement the above techniques automatically, before the SMV

translation, the variable type information is tuned manually for activity diagrams.

In our translation, we assign each activity with a state variable which has three

possible state values: unvisited (0), visiting (1) and visited (2). Unvisited indicates that

no token has passed through this activity node. V isiting indicates currently the activity

is holding one or more tokens. visited indicates that some token has passed through

this activity node and currently there is no token in this activity node. The extraction

procedure instantiates the activity state variables and assigns suitable values to them.

During initialization, the initial activity node is assigned visiting that means there is a

token ready at the initial state. Other nodes are initialized to unvisited. Also, we assign

each flow edge a state variable which has two possible values: fired (1) and unfired (0).

Fired means some tokens have flowed from the incoming activity nodes to its outgoing

activity nodes. Unfired means no token has passed through this activity edge. Initially

we set them with value 0.

Figure 2-9 shows the generated skeleton of Figure 2-8 in SMV format [20, 56]. There

are 3 modules in this skeleton. The module state defines the token information (described

in Table 2-1) as well as the state variable for activity nodes and flow edges. For example,

verify access code is a state variable for an action with three states. Initially it is

assigned the state unvisited (0). Module ATM gives a static skeleton without dynamic

behavior information. In this phase, we just collect variables without any processing. The

missing state transition details will be described in Section 2.2.3.2. The module main

creates the module instances and elaborates them together. For example, st is an instance

41

of state module and atm is an instance of ATM module. We bind the st and atm together,

because atm will handle the state changes of variables in st.

MODULE state

VAR

access_code: { A1, B1, C1 };

access_code_input: { A1, B1, C1, D1 };

start: 0..2;

syn_1: 0..2;

verify_access_code: 0..2;

t2_cond: 0..1;

t3_cond: 0..1;

......

ASSIGN

init(start):=1;

init(syn_1):=0;

init(verify_access_code):=0;

......

MODULE ATM(st)

ASSIGN

next(st.start):=

next(st.t2_cond):=

......

next(st.prepare_print_receipt):=

......

next(st.dispense_cash):=

next(st.t7_cond):=

......

MODULE main() {

st: state; atm: ATM(st);

p_print: prepare_print(st);

check: check_amount(st);

}

Figure 2-9. The generated skeleton after structure extraction

2.2.3.2 Dynamic Information Extraction

After static information extraction, we need to extract both data manipulations and

transitions of state variables, because they will determine the data and control flows.

In our method, we define a set of rules that specify the state transition for each

activity node and the value changes of each data. Figure 2-10 shows the details of

the rules. In these rules, we use the preset and postset notations. In these rules, the

assignment and constraint to a set means the assignment and constraint to each element

42

Rule 1: If n is an initial node
init(n) := 1;
next(n) := 2;

Rule 2: If n is a final node, and there are k incoming transitions t1, t2...tk.
init(n) := 0;
next(n) := case

((•t1 = 1 & cond(t1)) | (•t2 = 1 & cond(t2))|
... | (•tk = 1 & cond(tk))) : 2;

1 : n;
esac;

Rule 3: If n is an activity node (not join or fork), and there are k incoming
transitions t1, t2...tk.
init(n) := 0;
next(n) := case

n = 1 : 2;
(•t1 = 1 & cond(t1)) | (•t2 = 1 & cond(t2)) |

... | (•tk = 1 & cond(tk))) : 1;
1 : n;

esac;

Rule 4: If n is a fork node, and the corresponding transition is t.
init(n) := 0;
next(n) := case

n = 1 & t• > 0 : 2;
•t = 1 : 1;
1 : n;

esac;

Rule 5: If n is a join node of transition t, and a1, a2...ak are k elements of •t.
init(n) := 0;
next(n) := case

n = 1 : 2;
n = 0 & (a1 + a2 + ... + ak = 2 ∗ k) : 1;
n = 2 & (a1 + a2 + ... + ak < 2 ∗ k) : 0;
1 : n;

esac;

Rule 6: If t is a transition which corresponds to the flow edges.
init(t) := 0;
next(t) := case

! cond(t) & •t = 1 : 0;
cond(t) & •t = 1 : 1;
1 : t;

esac;Dynamic Information

Rule 7: If v is a variable whose new value is changed by expression expi in
the activity acti (1 ≤ i ≤ n).
next(v) := case

act1 = 1 : exp1;
act2 = 1 : exp2;
.
actn = 1 : expn;
1 : v;

esac;

Figure 2-10. Translation rules for state and data transitions

43

in the set. For example, if •t = {a1, a2, . . . ak}, then •t = 1 means a1 = 1 &a2 =

1 & . . . &ak = 1 and cond(t) means cond((a1, t)) &cond((a2, t)) & . . . &cond((ak, t)).

Rule 1 specifies the translation rule for the initial node. The token will be first put

at the initial state and the node is marked as visited in the next step. Rule 2 specifies

the translation rule for the final node. At first, the state is unvisited, when one of the

incoming edges is activated, its state will become visited. Rule 3 defines the state changes

of an activity. Initially, the state of an activity is unvisited. If the incoming edge is

activated, the state will become visiting in the next step. If the current state is visiting,

the state will change to visited in the next step. Rule 4 presents the state transition of

the fork nodes. When the incoming edge is activated, the fork node will maintain the

visiting status until all the outgoing edges are visiting or visited. Rule 5 gives the state

transition of join nodes. The join node is used to synchronize the token flows. When all

the incoming flows are ready, the transition corresponding to the join node can be fired. In

this rule, if we want to fire the transition, we need to wait until all the activity nodes in

the preset of the transition are visited. Rule 6 shows how to manipulate the state change

of the transition when it is fired. Rule 7 presents the translation for value change of the

variables. If an activity performs some operation on the variable, we can modify the value

of the variable only when the activity state is visiting.

2.2.4 A Prototype Tool For UML to SMV Translation

Based on the framework proposed in Section 2.2.3, we developed a prototype tool

which can automate the process of test case generation. The tool takes three inputs: type

definition of the data which is used in the activity diagram, the context information which

set the parameters for the execution of an activity diagram (e.g. when to trigger the initial

node and so on), and UML activity diagrams. The UML activity diagrams are stored in

the format of XML Metadata Interchange (XMI) files. The tool can parse the XMI files to

get the static and dynamic information for formal model translation. Combined with the

44

context information and data type information, a formal model can be generated using the

proposed mapping rules.

2.3 Case Study

This section presents five representative high-level specifications for SoC designs.

First, it describes three TLM specifications: router, MIPS processor and Alpha AXP

processor. Next, it presents two UML activity diagrams: a control system and a online

stock exchange system (OSES).

2.3.1 Example 1: A Router

Figure 2-11 shows the TLM structure of a router design. The router consists of five

modules: one master, one router and three slaves. The SystemC program consists of 4

classes (one class for packet definition, one class for the driver, one class for the router and

one class for the slave), 8 functions, and 143 lines of code. The main function of the router

is to analyze and distribute the packets received from the master to target slaves.

get_data

get_data

get_data

Master

put_data
FIFO

FIFO

FIFO

FIFO

Slave 0

Slave 2

route

Router

Slave 1

Figure 2-11. The TLM structure of the router

At the beginning of a transaction, the master module creates a packet. Then, the

driver sends the packet to the router for package distribution. The router has one input

port and three output ports. Each port is connected to a FIFO buffer (channel) which

temporarily stores packets. The router has one process route which is implemented as a

SC METHOD. The route first collects a packet from the channel connected to the driver,

decodes the header of the packet to get the target address of a slave, and then sends the

45

packet to the channel connected to the target slave. Finally, the slave modules read the

packets when data is available in the respective FIFOs. The transaction data (i.e. packet)

flows from the master to its target slave via the router. The flow is controlled by the

address to chan in the packet header. By using our proposed approach in Section 2.1.2,

the automatically generated SMV model contains four modules and 145 lines of code.

Instruction Flow
Data Transfer

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

Decode

IALU

MUL7

DIV

RegFile

Memory

Figure 2-12. Graph model of a VLIW MIPS processor

2.3.2 Example 2: A MIPS Processor

Figure 2-12 shows a simplified version of a single-issue MIPS [35] architecture. It

has five pipeline stages: fetch, decode, execute, memory (MEM), and writeback. The

execute stage has four parallel execution paths: integer ALU, 7 stage multiplier (MUL1

- MUL7), four stage floating-point adder (FADD1 - FADD4), and multi-cycle divider

(DIV). The oval boxes represent units and dashed boxes represent storages. The solid lines

46

represent instruction-transfer paths and dotted lines represent data-transfer paths. After

TLM-to-SMV transformation, the SMV model has 1134 lines of code.

2.3.3 Example 3: An Alpha Processor

Figure 2-13 shows a simplified TLM specification structure of the Alpha AXP

processor. It consists of five stages: Fetch (IF), Decode (ID), Execute (EX), Memory

(MEM) and Writeback (WB). IF module fetches instructions from the instruction memory.

ID module decodes instructions and fetches the operand data if necessary. EX module

does ALU operations as well as asserts whether the conditional or unconditional branch

happens. Memory module reads and writes data from (to) the data memory. Writeback

module stores the result in specified registers. The communication between two modules

uses the port binding associated with a blocking FIFO channel with only one slot. For

example, there is a binding from the port of IF module to the export of ID module, and

the export of ID module binds to a blocking FIFO channel for holding an incoming

instruction. So each time, the IF module can only issue one instruction to ID module;

otherwise it will be blocked. The whole TLM design contains 6 classes, 11 functions and

797 lines of code. After the TLM-to-SMV transformation, the generated SMV model has 6

modules and 821 lines of code.

EX MEM WBIF

Branch DataMem

ID

RegFile

Figure 2-13. TLM of the Alpha AXP processor

47

2.3.4 Example 4: A Control System

As shown in Figure 2-14, the UML activity diagram representation of the control

system consists of 17 activities, 23 transitions and 6 key paths. It has a global integer

variable i which determines token flows. The generated SMV files have 365 lines of code.

a

c

k l

m

o

n

g:i=i+5

p:i=i−10

d

bh

e f

i j

q

i>=50i<50

i<20 i>=20

i<80 i>=80

i<80

i<60 i>=60

i>=10 i>=80i<10

Figure 2-14. The activity diagram for a control system

2.3.5 Example 5: A Stock Exchange System

The purpose of the on-line stock exchange system (OSES) is to process three

scenarios: accept, check and execute the customer’s orders (market order and limit

order). The system uses the UML activity diagram as its behavior specification. Figure

2-15 shows the specification of the stock system. It has 27 activities, 29 transitions and 18

key paths. The generated SMV model has 756 lines of code.

48

StockBroker

VerigyOrderForm

DisplayOrderErrorInfo
getNewOrder

trade_FAILURE

tradeMarkderOrderSale tradeMarketOrderBuy

tradeLimitOrderSale tradeLimitOrderBuy

getOrderResult

updateOrderDB_FAILURE

updateOrderDB_SUCESS

updateStockDB_SUCESS

t10

t8 t9

t0

t2

t1

t4

t5 t6

t23

t29

t15

t16

t11 t12

t18

t14t13

t17

t7

checkLimitOrderPrice

t3

t22

trade_NOMATCH updateOrderDB_NOMATCH

t27
t26

t28

t24

t21

t20

t19

t25

trade_PARTEXE

updateStrockHolderDB_SUCESS

addOrderFormList

endOrderProcess

updateOrderHashMap
updateStockHolderDB_PARTEXE

updateStrockDB_PARTEXE

updateOrderDB_PARTEXE

trade_SUCESS

settleTrade

Figure 2-15. The activity diagram for a stock exchange system

2.4 Summary

This chapter introduced two high level design specifications for SoC designs:

SystemC TLM to model the hardware bahavior and UML activity diagrams to describe

the concurrent software behavior. The main contribution of this chapter is to devise

mechanisms to extract both static and dynamic information from specifications and

then convert them to formal SMV models to enable automatic analysis and directed test

generation.

49

CHAPTER 3
COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS

Figure 3-1 presents our methodology for specification driven test generation using

model checking techniques. First, a design is described using a specification language that

can capture both structure and behavior of SoC systems. Next, the design specification is

translated to a formal model (described in Chapter 2), and the properties in the form of

CTL or LTL formulas are generated based on the functional fault models (see Section 3.1).

Finally, the properties are applied on the formal model using a model checker to generate

required tests (counterexamples). The model checker exhaustively searches all reachable

states of the model to check if any state violates the property. If it finds a violation, it will

produce a counterexample. The counterexample contains a sequence of input assignments

from an initial state to a state where the specified property fails. If we assume that

the design is correct and the property is a false property, the model checker will always

generate a valid counterexample unless it encounters state space explosion problem. The

generated tests can be used for validating both specifications and implementations.

Fault
Models

Test cases

Formal Model
Properties

Model Checker

Counterexamples

Validation Validation
Specification Implementation

SoC Specification

(SMV)

Figure 3-1. Test generation using model checking

There are three major challenges in implementing this test generation methodology in

practice: i) automatic extraction of formal models from SoC specifications, ii) development

50

of efficient functional fault models and associated coverage-driven property generation, and

iii) how to address state space explosion problem. We have discussed the formal model

generation in Chapter 2. Chapter 4 to 6 will present novel approaches for addressing

state space explosion problem. In the following sections, we will focus on the automatic

generation of properties and corresponding directed tests. The rest of this chapter is

organized as follows. Section 3.1 presents the property generation using various fault

models. Section 3.2 describes the test generation methods using both unbounded model

checking and bounded model checking. Section 3.3 demonstrates two case studies based on

UML activity diagrams. Finally, Section 3.4 summarizes the chapter.

3.1 Coverage-Driven Property Generation

For model checking based testing, a test is derived from the counterexample of

a false safety property. A safety property in the temporal logic form ∼F(p) asserts

that a specified scenario can not happen (i.e., property p can not be true). Otherwise,

a counterexample which explains the reason of the error will be reported by a model

checker. In other words, such counterexample can then be used as a test to validate the

specified scenario. In our method, the quality of the generated tests is determined by the

corresponding properties. During the property generation, it is required to guarantee that

the generated properties can sufficiently validate the system.

The coverage metrics [32] play an important role in testing to indicate the testing

adequacy. Test generation using model checking techniques requires that the automatically

generated properties can cover as many desired scenarios in the design as possible. In our

approach, properties are derived from a fault model which represents a complete set of

specific errors. Each fault in the fault model indicates a potential “design error” which

can be described by a temporal logic property. The test generated from such a property

can be applied on the design to check the specific scenario (negation of the fault). For

example, when validating a desired scenario described by a LTL formula p, we use the

negation ∼p as a fault. By checking the property ∼ F (p), we can derive a test to check

51

the scenario where property p holds. Since in this dissertation we focus on only safety

property generation for above fault models, majority of the properties will be in the form

of ∼ F (p) or G(∼ p). However, other forms of safety properties are also possible and

allowed in our framework.

3.1.1 Fault Models

Fault model [28] plays an important role in directed test generation. Each fault model

represents a kind of “false functional scenarios”. The efficiency of directed tests is directly

related to the generated properties which in turn are related to the associated fault model.

The following three subsections present the generic fault models for graph model as well

as its two variants: fault models for SystemC TLM designs and fault models for UML

activity diagrams. It is important to note that these fault models are by no means the

“golden” model rather it is a representative model which can be refined or modified for

improved verification methodology.

3.1.1.1 Generic Fault Models for Graph Based Models

For a simple graph model, there is only node and edge information. By investigating

the status of the nodes and edges we can infer various system behaviors. There are four

widely used fault models for graph models as follows.

• Node Fault: Each node is faulty. For example, a node cannot be activated.

• Edge Fault: Each edge is faulty. For example, the respective nodes cannot be
activated in that order.

• Path Fault: Each execution path is faulty. For example, the associated nodes and
edges are either faulty or their behavior cannot be composed correctly to activate the
path.

• Interaction Fault: Each interaction is faulty. For example, an interaction involving
a set of nodes cannot be activated simultaneously.

We generate one property for each fault in a fault model. So the transformation from

the fault model to the properties in the form of temporal logic is a one-to-one mapping.

52

Because a fault is already a negation of the system required behavior, it can be directly

used to derive a property for test generation.

Let’s consider Figure 2-12 in Chapter 2 as an example of a graph model. The

following example shows four properties (one for each fault type) for the graph model.

Property 1: The node Fetch cannot be activated.

LTL formula: ~ F (fetch_active = 1)

Property 2: The edge between node MUL4 and MUL5 cannot be activated.

LTL formula: ~ F(mul4_active = 1 -> X(mul5_active = 1))

Property 3: The path of FADD cannot be activated.

LTL formula: ~F (fetch_active = 1 & decode_active = 1 & fadd1_active = 1

& fadd2_active = 1 & fadd3_active = 1 & fadd4_active = 1 & mem_active = 1

& writeback_active = 1)

Property 4: DIV, FADD4 and MUL7 cannot be activated at the same time.

LTL formula: ~ F(div_active = 1 & fadd4_active = 1 & mul7_active = 1)

Depending on the design, the generated properties may lead to redundant tests.

Therefore, property compaction can be employed to reduce the number of properties

without affecting the coverage goal [45].

3.1.1.2 Fault Models for SystemC TLM Specifications

In TLM, transaction data, transaction flow and events are three most important

factors. They reflect both the structure and behavior information of system level hardware

designs. In addition to the fault models presented in Section 3.1.1.1, in our framework we

have defined another three fault models based on transactions as follows.

• Transaction data fault model investigates the content of the variables relevant to
the transaction. For each variable, it is assumed that a specific value can/cannot be
assigned in some scenario.

• Transaction flow fault model investigates the controls along the path where the
transaction flows. For each branch condition along the transaction path, it is assumed
that it can/cannot be activated in some scenario.

• Transaction event fault model investigates the event occurrence within a
transaction. For each event, it is assumed that it can/cannot be activated.

53

Transaction data fault model deals with the possible value assignment for each part

of the transaction data. However, during property generation, due to the large size of

value space, trying all possible values of a data is time-consuming and impractical. By

checking each bit of a variable (data bit fault) separately, the data content coverage can

be partially guaranteed. Transaction flow fault model deals with the controls along with

the transaction flow. To ensure transaction flow coverage, one can cover branch conditions

which exist in if-then-else and switch-case statements. The goal is to check all possible

transaction flows. Transaction event indicates the execution stage of a transaction or the

interaction between processes. The activation and the order of transaction events is an

important issue. Section 7.2.1.1 gives an example for each type of TLM transaction faults.

3.1.1.3 Fault Models for UML Activity Diagrams

In traditional software testing, the definition of testing adequacy is given in [32]

as a measurement function. The case of UML activity diagrams is different because it

is in the form of model instead of code. Especially the coverage of activity diagram is

more complex because of the concurrency. We create four fault models for UML activity

diagrams (AD) which are similar to the generic fault models presented in Section 3.1.1.1

as follows.

• Activity Fault Model. For each activity of AD, the model assumes that such
activity is not reachable.

• Transition Fault Model. For each transition of AD, the model assumes that such
transition can not be fired.

• Key Path Fault Model. For each key path of AD, there is no corresponding
executable path.

• Interaction Fault Model. For each interaction of AD, the activities associated with
the interaction cannot be activated at the same time.

From these four different models, we can generate various properties to validate

activity diagrams. The activity fault model can be used to check the reachability of each

activity. So it can be used to check whether there exists infinite loops in the system. The

54

transition fault model can be used to check the execution order of the activities. It can

also be used to check whether the condition guard of the transition can be satisfied. We

also need to check all the dynamic behaviors of the system, so key path fault model is

preferable in this case. The interaction fault model can be used to check whether several

activities can be activated simultaneously. In general, if all the interactions have only one

activity, the interaction fault model is the same as the activity fault model.

The following example shows four properties (one for each fault type) for the UML

activity diagram shown in Figure 2-8.

Property 1:The activity dispense_cash is not reachable.

LTL formula: ~ F (st.dispense_cash = 2)

Property 2:The transition with condition [amount available] can not be fired.

LTL formula: ~ F(st.t7_cond = 1)

Property 3:The key path 4 can not be covered.

LTL formula: ~F (st.start = 2 & st.verify_access_code=2 & st.handle_access_code = 2

& st.ask_for_amount = 2 & st.prepare_print_receipt = 2 & st.dispense_cash = 2

& st.generate_receipt_content=2 & st.finish_transaction_print_receipt = 2

& st.end = 2 & st.t2_cond=1 & st.t4_cond=1 & st.t7_cond=1)

Property 4:The activities dispense_cash and prepare_to_print_receipt can not

be activated simultaneously.

LTL formula: ~ F(st.dispense_cash = 1 & st.prepare_to_print_receipt =1)

Figure 3-2. Fault model examples

3.1.2 Functional Coverage Based on Fault Models

The functional coverage of a system level design is defined based on the overall faults

of a fault model and the faults activated by the derived tests.

Definition 7. For a design D, we are given its fault model F and a test suite T . F is a

complete set of same type faults. Each fault indicates the negation of a required functional

behavior of D. T is a set of directed tests which is derived from F . By applying T on D,

the functional coverage DF using T can be calculated as:

DF =
of exercised F type functional scenarios

|F |

55

3.2 Test Generation using Model Checking Techniques

Model checking [21, 56] is a formal method that can enumerate all the possible state

to check whether a finite state system M satisfies a property p in the form of temporal

logic (e.g. LTL or CTL [21]), i.e., M |= p. When the property fails at some state, it will

report a counterexample to falsify the specified property p. Let’s consider a test generation

example for a pipelined processor. To activate a fault in the stall functionality of a decode

unit (i.e., the decode unit can never be stalled), the system will generate the property

“∼ F(dec stall = 1)”. Taking the property and the processor model as inputs, the model

checker will generate a counterexample to stall the decode unit which can be used as a

test to activate the stall functionality of the decode unit. The counterexample contains a

sequence of instructions from an initial state to a state where the property fails. In this

section, we briefly introduce two kinds of test generation methods based on different model

checking techniques.

3.2.1 Test Generation using Unbounded Model Checking

This section introduces the preliminary knowledge of the unbounded model checking

and gives a general algorithm for test generation.

3.2.1.1 Unbounded Model Checking

Symbolic Model Verifier (SMV [21]) is a widely used model checker. By taking model

of the design and temporal logic properties as inputs, SMV can determine whether the

design satisfies the property. During the verification, SMV abstracts the given model into

a formal Kripke structure which consists of a set of states, a set of transitions between

states, and a function that labels each state with a set of properties that are true in

this state. Then SMV does the state space search on this Kripke structure. The model

checking algorithm stops because: i) it encounters a false state for the property, then

the counterexample which leads to this state will be generated, or ii) all the states have

been explored and no error is detected. Generally, the implementation of the state search

56

adopts the data structure based on BDDs. However, they are not scalable to handle large

practical systems in practice.

3.2.1.2 Test Generation Algorithm

Algorithm 1 outlines the general test generation approach using unbounded model

checking (UBMC) [47, 59, 60]. The algorithm takes a SMV model M and a set of false

properties P (based on coverage) as inputs and generates a test suite extracted from

counterexamples. For each property Pi, one test is generated. The algorithm iterates

until all the properties are checked. For each iteration, one property is handled and the

corresponding test will be generated. In this dissertation, we focus on the generation of

safety properties which assert that the specified scenarios cannot happen.

Algorithm 1: Test Generation using UBMC

Input: i) SMV Model, M , and ii) A set of false properties P

Output: Testsuite

TestSuite = φ;

for each property Pi in the set P do

testi = ModelChecking(Pi, M);

TestSuite = TestSuite ∪ testi;

end

return TestSuite;

3.2.2 Test Generation using Bounded Model Checking

This section introduces the preliminary knowledge of the SAT-based Bounded Model

Checking (BMC). It also describes how to pre-determine the bounds of properties. Finally

a BMC based test generation algorithm is presented.

3.2.2.1 SAT-Based Bounded Model Checking

For complex designs and properties, BDDs based methods usually cause the state

space explosion problem. As an alternative, Boolean satisfiability (SAT) based approaches

have emerged, especially for the bounded model checking (BMC). SAT-based BMC

[11] is a promising method which can prove whether there is a counterexample for the

57

property within a given bound. Given a model M , a safety property p, and a bound

k, SAT-based BMC will unfold the model k times and encode it using the the Boolean

formula Equation (3–1).

BMC(M, p, k) = I(s0) ∧
k−1
∧

i=0

T (si, si+1) ∧
k

∨

i=0

¬p(si) (3–1)

Here, I(s0) means the initial state of the system, T (si, si+1) describes the state

transition from state si to state si+1, and p(si) tests whether property p holds on state si.

Then this formula will be transformed to a Conjunctive Normal Form (CNF) and checked

by a SAT solver. If there is a satisfiable assignment, the property is false and a satisfiable

variable assignment will be reported, i.e., M |=/k p. Otherwise, it implies that the property

is true within the specified time steps. In other words, there is no counterexample with

length k for this property, written M |=k p. Test generation using BMC is similar to

model checking based approach except that it needs to determine the bound for each

property. SAT-based BMC takes model M , negated property pi, and boundi as inputs and

generates a counterexample (test).

3.2.2.2 Test Generation Algorithm

Algorithm 2 describes the widely used test generation procedure using BMC [46, 62].

This algorithm takes the model M generated from a design model and properties as inputs

and generates test suite extracted from the counterexamples. For each property Pi, one

test is generated. The algorithm iterates until all the properties are covered. In each

iteration, the bound ki of each property Pi is decided. SAT-based BMC takes model M ,

negated property Pi, and bound ki as inputs and generates a counterexample (test).

During the test case generation, bound determination plays an important role. If it

can be known a priori, SAT-based BMC can be more effective than BDD based model

checking techniques. However, any incorrect bound determination will increase test case

generation time as well as memory requirement. Therefore, the techniques of deciding

property bounds determine the efficiency of test case generation using SAT-based BMC. In

58

our method, because the property is derived from models, the bound can be derived from

the structure of the models.

Algorithm 2: Test Generation using BMC

Input: i) Design Model, M and ii) A set of false properties P (based on fault models)

Output: Testsuite

TestSuite = φ;

for each property Pi in the set P do

boundi = DetermineBound(M , Pi);

testi = BoundedModelChecking(Pi, M , boundi);

TestSuite = TestSuite ∪ testi;

end

return TestSuite;

3.2.2.3 Determination of Bound

Biere et al. [10] described several ways to determine the bound. If M |=/k p for all k

within the bound, then M |=/ p. However there is no deterministic way of computing the

bound of the system. In fact, determining the minimal bound for a property is as hard as

the model checking itself. So bounded model checking is promising only when the bound

can be pre-determined and is shallow.

According to the definition of the diameter in [10], the bound for each node error

instance is decided by the temporal distance between the root node and the node under

verification. For example, in UML activity diagrams, the bound for the key path error is

determined by the activities and transitions along the path. In Figure 2-8, the length of

the key path ρ4 = {start}
{t1}
−−→ {a}

{t2}
−−→ {b}

{t4}
−−→ {c}

{t6}
−−→ {dummy, f}

{t7}
−−→ {d, f}

{t9}
−−→

{e, f}
{t10}
−−−→ {g}

{t11}
−−−→ {end} is 9. The property derived for this key path is shown in the

Figure 3-2. In our translation rules, an activity state transition needs one step delay. Fork

node needs one step delay, and join node needs two steps delay. One step delay at the

start node is also required. The bound size will be 9 + 1 + 2 + 1 = 13. The bound of the

activity error or transition error is determined by the delay of activities and transitions

59

on a valid shortest path from the start node to the activity or transition which need to be

verified in the UML activity diagram. For example, when we want to check the activity

error model instance “prepare to print receipt can not be activated”, the system will

generate the property ∼ F (st.prepare print receipt = 2). The shortest path from start

to such an activity is ρ = {start}
{t1}
−−→ {a}

{t3}
−−→ {c}

{t6}
−−→ {dummy, f}. In a similar way,

the bound for this property is 4+1+1=6. Sometimes in the system, there is a counter that

acts like a clock which counts the execution steps. Such variable in a property will affect

the bound of the property. For example, because of the introduction of a counter, the

property ∼ F (clk = 10 & st.prepare print receipt = 2) has a bound of 10 instead of 6.

Different properties based on different fault models have different methods to compute

the bounds. Assume that there is no counter variables, the determination of the bound of

a graph based model can use the following rules:

• Node or edge based faults. Extract all the paths without loops from the initial

node to the target node or edge. Calculate the bound for each extracted path and

choose the shortest one as the property bound.

• Path based faults. Calculate the bounds for the path based on the delay of nodes

and edges on the path.

• Interaction faults. Calculate the bound for each element (node or edge) in the

interaction. Choose the largest bound as the property bound.

If a property contains a counter variable. Then bound of the property is the larger

one of the counter value and the bound calculated using the above rules. Therefore, the

complexity of bound determination is polynomial to the nodes in the graph-based models.

In general, it is more efficient to use BMC for shallow counterexamples when the bound

can be pre-determined.

3.3 Case Studies

In this section, we demonstrate two case studies for UML activity diagrams: a control

system and a on-line stock exchange system. We do not give the case study for TLM

60

designs since Section 7.3 will give the details of automated directed test generation for

TLM designs. We compared our model checking based approach with the random test

based method [51], which is the best known result in the category of test generation for

UML activity diagrams. The experimental results indicate that our method can drastically

reduce the overall validation effort by producing fewer tests. Furthermore, for UML

activity diagrams, the generated high-level test can be directly applied on the low-level

implementations (e.g. Java code). Therefore it can be used to check the consistency

between UML activity diagrams and its low-level implementations. We used Cadence SMV

model checker [56] in our study. All the experiments were conducted using 2.0 GHz Intel

Core2 Duo CPU with 1 GB RAM.

3.3.1 A Control System

The first case study is a small control system. This case study is based on the

example presented in Section 2.3.4.

Table 3-1. Comparison of two methods

Coverage (%) Time
Method activity transition path (second)
random 30 90 85 50 1.33
random 50 95 93 67 2.35
random 100 100 100 83 5.13
random 150 100 100 100 8.83
Our Approach (UMC) 100 100 100 0.91

Table 3-1 shows the comparison between our approach and the random test based

method [51]. For generating tests with highest coverage, the random method requires 8.83

seconds to run 150 random tests, however our approach using unbounded model checking

method (UMC) just needs 0.91 seconds. In this case study, UMC approach improves the

test generation time by an order of magnitude.

Table 3-2. Implementation level coverage of the control system

Package Class Method Block Line
100% 100% 90% 88% 93%

61

We applied the generated tests to the Java implementation of the control system.

Table 3-2 shows the coverage of the Java code. The generated tests obtained 100%

package as well as class coverage. However, the method, block and line coverage are

around 90%. Our analysis showed that the Java implementation have many “try”

and “catch” blocks to handle exceptions whereas the specification does not have any

information on the exception scenarios. As a result, the generated tests did not activate

any of the exception blocks which resulted in low coverage of methods, blocks as well as

lines. Clearly, this is an issue of incomplete specification. Based on this observation, we

added exception information at the specification level and generated tests which led to the

required coverage in all the categories of the implementation.

3.3.2 A Stock Exchange System (OSES)

The stock exchange system is based on the example presented in Section 2.3.5. It uses

the UML activity diagram as its behavior specification. The system is implemented in

JAVA and consists of 7 packages, 39 classes, 372 methods and 2510 lines.

Table 3-3. Comparison of three methods

Coverage (%) Time
Method activity transition path (minute)

random 800 96 83 89 19.06
random 1000 96 86 94 24.26
random 1500 100 100 100 30.25

Our Approach (UMC) 100 100 100 3.47

Our Approach (BMC) 100 100 100 0.15

In Table 3-3, the first three rows depict the results by using 800, 1000, 1500 random

tests respectively. The result by our method is shown in the last two rows. In the case of

random 800, two key paths are missing due to the randomness. So the coverage metrics

are not 100%. If we increase the number of the random tests to 1000, one key path is still

missing. Based on our observation, in the random method, it is hard to determine what

is an appropriate upper bound for the number of required random tests. As a result, it

is hard to obtain 100% specification coverage using the random tests. The result of the

UMC shows that we can get an order of magnitude improvement compared to the random

62

method. Because the bounds of the properties of OSES system are shallow and can be

pre-determined, we applied SAT-based BMC in this situation. The result shows that BMC

method can be an order of magnitude faster than UMC method. Clearly, BMC approach

reduces the validation effort by two hundred times compared to the best known result [51]

in this category.

Table 3-4. Implementation level coverage of OSES

Package Class Method Block Line
100% 100% 58% 55% 51%

Table 3-4 presents the coverage of the implementation by applying the generated

tests. The coverage of method, block and line are not sufficient because the activity

diagram does not consider all the scenarios of the system, such as the registration of the

customers and so on. In this case, we needed to add the missing details in the specification

to obtain the required coverage.

3.4 Summary

In this chapter, we presented a framework to automatically generate directed tests

from SoC specifications. Our experimental results demonstrated that the generated tests

can produce the required functional coverage and also can make a significant reduction

in validation effort for specifications as well as implementations. Model checking based

test generation is promising for automated test generation but it can lead to state space

explosion in the presence of complex designs and properties. So in the following chapters,

we will present various optimization techniques to reduce the overall test generation

complexity.

63

CHAPTER 4
PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION

Although model checking techniques are promising for automated directed test

generation, it is costly for complicated designs due to the state space explosion problem.

Especially for a complex design, there will be a large number of properties to be validated.

When validating a specific system component, it is common that several properties have a

large overlap on sub-functionalities. Validating the properties individually will be a waste

of time due to the repeated validation efforts on the same functional scenarios. Potentially

these redundancy can be avoided and consequently the overall test generation time can be

significantly reduced.

Fault
Models

Properties

Test casesValidation

Specification
Validation

Implementation

Property
Generation

Test
Generation

Clustering
Property

Counterexamples

Formal Model

(Graph Model)
Design Specification

Figure 4-1. Our test generation methodology

64

The target of property clustering is to reduce the overall test generation time

by exploiting the similarities among properties. Figure 4-1 shows the test generation

framework using our property clustering approach. The proposed methodology has three

important steps: coverage-driven property generation, clustering of similar properties,

and test generation using learning techniques. It is important to note that each of these

three steps can be independent. For example, our method uses the coverage of our fault

models to derive properties. The other two steps will produce beneficial results even

if other fault models are used to generate properties. Designers can even add various

properties manually to the set of generated properties without affecting the usefulness of

our approach.

This chapter makes two primary contributions: i) it proposes novel methods to

cluster similar properties; and ii) it utilizes the conflict clause based learning to reduce

the overall test generation time for a cluster of similar properties. The rest of this chapter

is organized as follows. Section 4.1 presents related work on efficient model checking

techniques. Section 4.2 introduces the implementation details of state-of-the-art SAT

solvers. Section 4.3 proposes our property clustering approaches. Section 4.4 presents

how to efficiently generate tests using property clustering and conflict clause forwarding

technques. Section 4.5 demonstrates case studies on both hardware and software designs.

Finally, Section 4.6 summarizes the chapter.

4.1 Related Work

Due to the scalability issues of conventional Binary Decision Diagram (BDD) based

methods, SAT-based BMC is proposed as a complementary solution for large designs.

Many studies in both software and hardware domains [4] show that BMC has better

capacity and productivity over unbounded model checking for real designs. Currently,

various techniques based on conflict clause forwarding and variable ordering [63] are

proposed to further improve the efficiency of BMC based test generation.

65

As a promising learning based approach, incremental SAT [40, 67, 89, 92] tries to

leverage the similarity between the elements of a sequence of SAT instances – most do so

by re-utilizing learned knowledge based on conflict clauses. When many closely related

instances need to be solved, caching solutions [43] and incremental translation [7] can also

be effective. If a SAT instance is obtained from another by augmenting some clauses (as

in [38]), all conflict clauses of the first can be forwarded to the second. Therefore, when

clauses are only added through a sequence of instances, there is no need to screen conflict

clauses to determine which ones can be forwarded. This, on the other hand, is necessary

when arbitrary clauses are both added or deleted to create a new instance. A common

approach for such a general case is to have incremental SAT solvers keep track of whether

a conflict clause depends on some removed clauses. Majority of the existing approaches

exploit incremental satisfiability to improve the test generation time involving only one

property with different bounds. There are very few approaches such as [17] where both

static and dynamic learning are used across test generation instances for path-delay fault

model by dynamically excluding the untestable path during test generation. Since the

learning is employed across all test scenarios without efficient clustering methods, the

improvement in test generation time is small (6% on average) and has a wide variation

(-7% to 27%) on different ISCAS circuits.

To the best of our knowledge, our approach is the first attempt to cluster similar test

generation instances involving multiple properties and utilize shared knowledge across

similar instances in the context of directed test generation.

4.2 Background: SAT Solver Implementation

This section introduces the preliminary knowledge of SAT solver implementation. In

the context of directed test generation, we describe how SAT-based BMC can be used to

improve test generation time by employing learning techniques.

66

4.2.1 DPLL Algorithm

Most modern SAT solvers such as GRASP [39] and Chaff [63] adopts the Davis-

Putnam-Logemann-Loveland (DPLL) algorithm [52, 53].

Algorithm 3: DPLL search procedure of zChaff

while TRUE do

run periodic functions();

if decide next branch() then

while deduce() == CONFLICT do

blevel = analyze conflicts();

if blevel < 0 then

return UNSAT;

end

end

else

return SAT;

end

end

Algorithm 3 shows the DPLL implementation in zChaff. It contains three parts:

• Periodic function updates the SAT configuration triggered by some specified events,
such as updating the scores of literals after a certain number of backtracks.

• Boolean Constraint Propagation (BCP) is implemented in deduce. It figures out all
possible implications by previous decision assignment.

• Conflict analysis does a proper backtrack when encountering a conflict. It analyzes
the reason for the conflict and make it as a conflict clause to avoid the same conflict
in future processing.

Studies in [63] show that modern SAT solvers spend approximately 80% of time to

carry out BCP. In addition, during the conflict analysis, long distance backtracks will

increase the burden of SAT solvers.

4.2.2 Conflict Clause Based Learning

As shown in Algorithm 3, SAT solvers use the conflict analysis technique to trace the

reason for a conflict. The conflict analysis contains two part: conflict-driven back-tracking

67

and conflict-driven learning. Conflict-driven backtracking enables the non-chronological

backtracking up to the closest decision which caused the conflict. Conflict-driven learning

learns some knowledge and save them in conflict clauses and adds them to the original

clauses, in order to avoid the same conflict in the future. Both techniques can drastically

boost the performance of the SAT solvers.

The kernel of the conflict analysis technique is the implication graph [39, 91]. The

graph keeps the current state and the implication history of the search during the SAT

solving by recording the dependence of the variable assignments. The implication graph is

a directed acyclic graph where each vertex represents an assignment to a variable and each

edge implies that all the in-edges implicate the assignment of the vertex.

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

ImplicateCutConflicting VertexImplication VertexDecision Vertex

Clauses:

Conflict Clauses:

Conflict Reason:

(X8, X8’)

C4: X3’ + X4’

C6: X1’ + X5 + X6 + X7’

x4 @ 4

x1 @ 3

x2 @ 4

x8 @ 4

x7 @ 2

CUT 1

x6’ @ 1

x5’ @ 4

x3’ @ 4

x8’ @ 4

C3: X1’ + X4 + X5

C5: X2’ + X3 + X8

C1: X2 + X4’ + X6

C2: X3 + X7’ + X8’

Figure 4-2. Conflict analysis using an implication graph

Figure 4-2 shows a small example of conflict analysis using an implication graph. As

shown at the left of the figure, there are five original clauses C1-C5. The right part is

a scenario of implication graph for C1-C5. In this example, x4@4 means variable x4 is

assigned value 1 at decision level 4. The node has a corresponding clause (x1’+x4+x5),

we call it the antecedent clause of x4, i.e., the assignments x1 = 1 and x5 = 0 imply

68

x4 = 1. Only the implication vertex (non-decision vertex) has an antecedent clause. A

conflict happens when there are two nodes in the implication graph that have different

value assignments for the same variable. For example, the implications in the graph lead

to the ambiguous assignment to variable X8 (X8 = 0 and X8 = 1). When encountering a

conflict, conflict analysis will trace back along the implication relations to find the reason

for the conflict and encode the reason using a conflict clause. A conflict clause can be

found by a bipartition of the implication graph. The side containing the conflicting vertex

called conflict side, and the other side is called reason side which can be used to form the

conflict clause. In Figure 4-2, CUT1 is a cut that divides the implication graph into two

parts. The conflict analysis stops at CUT1. The left part of CUT1 in the implication

graph is the reason side, and the right part is the conflict side. From the reason side, we

can get the conflict cluase C6=(X1 + X5’ +X6’ +X7). That means, the assignment of

variables X1 = 1, X5 = 0, X6 = 0 and X7 = 1 will always lead to a conflict because of

the clauses C1-C5. Lemma 1 indicates that the generated conflict clauses during the SAT

search can be added to original clause set as an assignment constraint. Therefore we can

add the clause C6 to the original clause set to avoid the same conflict in the future.

Lemma 1. Given a set of CNF clauses S1 and ψ is a conflict clause derived during the

conflict analysis, then S1 is satisfiable iff S1
∧

ψ is satisfiable.

Proof. Because S1
∧

ψ is a super set of S1, so if S1
∧

ψ is satisfiable then S1 is satisfiable.

According to the definition of the conflict clause, the assignments that make the clause

ψ false will make the clause set S1 false. If S1 is satisfiable, then there exists a variable

assignment that makes S1 true. This assignment should make ψ true. So the assignments

will make S1
∧

ψ true.

For two SAT instances, if one instance is a subset of the other SAT instance,

according to Theorem 1, the conflict clauses generated from the smaller SAT instance

can be forwarded to the larger SAT instance. In other words, the local learning can be

69

forwarded as a knowledge for global searching. Usually the average cost of locally learned

conflict clauses is much cheaper than the globally learned conflict clauses.

Theorem 1. Given two CNF clause sets S1 and S2, where S1 ⊆ S2, and ψ is a conflict

clause derived from the clauses in S1, written S1 ⊢ ψ, then S2 is satisfiable iff S2
∧

ψ is

satisfiable.

Proof. Since S2
∧

ψ is a super set of S2, if S2
∧

ψ is satisfiable then S2 is satisfiable.

Because S1 ⊢ ψ and S1 ⊆ S2, then ψ is also a conflict clause of S2. According to Lemma

1, S2 is satisfiable iff S2
∧

ψ is satisfiable.

According to the Equation (3–1), similar properties share a large part of the

CNF clauses. Regardless of the cone of influence, the equation shares the system part

(transition relation T (si, si+1)) and the part of property testing (i.e., p(si)). Sharing a

large part of CNF clauses indicates that when checking the first property, the learned

knowledge (conflict clauses) can be forwarded to the second property without affecting the

truth assignment of the CNF clauses of the second property.

Theorem 2. Assume that we have two sets of CNF clauses S1 and S2, and let ω =

S1
⋂

S2 be the common clauses shared by both S1 and S2. ψ is a conflict clause derived

only by the clauses in ω, written ω ⊢ ψ. Then S2 is satisfiable iff S2
∧

ψ is satisfiable.

Proof. Because S2
∧

ψ is a super set of S2, so S2
∧

ψ is satisfiable then S2 is satisfiable.

Because ω ⊢ ψ and ω ⊆ S2, then S2 ⊢ ψ. According to Lemma 1, S2 is satisfiable iff

S2
∧

ψ is satisfiable.

4.3 Property Clustering

Given a set of properties, a clustering method determines how to divide the properties

into several groups such that each group contains similar properties that can benefit from

each other during test generation. The similarity can be structural or behavioral but the

assumption is that there is a significant overlap between the counterexample generation

traces involving a set of similar properties.

70

Algorithm 4: Property Clustering
Input: i) A set of properties, P

ii) Similarity strategy CS, and threshold Wth

Output: Clusters consisting of similar properties

PropertyClusters = φ;

1. Construct a graph, G where each node is a property;

for each pair of nodes (ni, nj) in G do

Weight wj
i = ComputeSimilarity CS(ni, nj);

if(wi ≥ Wth) Create an edge between ni and nj with weight wj
i ;

end

2. k = 1; /* first cluster */ while G is not empty do

Basek = Node with highest overall edge weight;

Clusterk = all the nodes connected to Basek;

G = G - Clusterk;

PropertyClusters = PropertyClusters ∪ Clusterk;

k = k + 1;

end

return PropertyClusters;

Algorithm 4 outlines the major steps in property clustering. The first step constructs

a property graph1 where the properties are nodes and edges represent similarity. An edge

is added between two properties (nodes) when they are similar. Each edge ej includes

weight information (wj, 0 ≤ w ≤ 1) to quantify the similarity. An edge with weight 0

or 1 is not possible since an weight of 0 means no similarity, and an weight of 1 implies

same (identical) property. To compute the weight information for each edge we propose

four methods – structural, textual, influence and CNF intersection based similarity. Each

method will use a similarity threshold for clustering. In other words, there will be no edge

1 In this chapter, we use three different types of graphs for three different purposes.
The graph model of the design (or design graph in short) is used to model the design. The
implication graph is used to store the dependence of variable assignments that is used for
conflict analysis. The property graph models the similarity between properties and used for
clustering.

71

between two properties when the weight value is below certain threshold. The second step

determines the clusters based on the base property. The base property is the property

(node) with highest weight (summation of weights of all edges connected to that node).

The cluster is formed by adding all the adjacent nodes with the base property. All the

nodes selected for a cluster are deleted from the property graph for the next iteration. The

remainder of this section describes four different ways of computing similarity between

properties.

4.3.1 Similarity based on Structural Overlap

A simple and natural way to cluster properties is to exploit the structural information

of the design model and its properties. The intuition is that two similar properties will

share similar variable assignments (global and local variables2) in the counterexamples.

In fact, a conflict clause is a constraint on the assignment of the variables. Therefore,

properties with similar structural information will share a lot of conflict clauses.

As mentioned earlier, in the context of directed test generation, properties are

generated based on functional coverage of the design. These properties try to cover

different parts of the design (e.g., all computation nodes, various interactions, etc.).

Therefore, we can cluster the properties that try to cover a specific functionality or

interactions. For example, in an SoC environment, the properties can be clustered based

on whether they are related to verifying the processor, coprocessor, FPGA, memory, bus

synchronization, or controllers. Each cluster can be further refined based on structural

details of each component. For example, the processor related properties can be further

divided based on which execution path they activate such as ALU pipeline, load-store

pipeline etc.

2 In a graph model, a local variable is defined locally in a node whereas the scope of a
global variable is valid across nodes.

72

In the pipelined processor example in Figure 2-12, there are four execution pipelines:

IALU , MUL, FADD and DIV . The corresponding paths are as follows.

• ρ1 = FET → DEC → IALU → MEM → WB

• ρ2 = FET → DEC → MUL1 · · · → MUL7 → MEM → WB

• ρ3 = FET → DEC → FADD1 · · · → FADD4 → MEM → WB

• ρ4 = FET → DEC → DIV → MEM → WB

Consider two properties p1 =∼ F (fadd3 active = 1) and property p2 =∼

F (fadd4 active = 1). They share the same path ρ3, and the bound of p1 is just one

smaller than p2. So we can cluster them together. Also for the interaction property

p3 =∼ F (fadd4 active = 1 & mul3 active = 1) and p4 =∼ F (fadd3 active =

1 & mul4 active = 1), the two interactions are related to the same set of paths ρ2 and ρ3

and have similar bounds. Therefore, clustering them together is a good choice.

4.3.2 Similarity based on Textual Overlap

Another simple way to quantify similarity is to measure the textual differences

between two properties. For example, the similarity between ∼ F (a & b & c) and

∼ F (b & c & d) is 67% since they share a common sub-expression consisting of two

variables b and c.

In this section, we focus on bounded model checking of invariants (safety properties)

such as the property in the form ∼ F(p). Informally, BMC(M, p, k) is true means from

cycle 0 to cycle k, the property will be false. So the invariant cannot always be true and

one counter example will be reported. Because the part I(s0) ∧
∧k−1

i=0 T (si, si+1) comes

from the design, so for different properties this part is same. The part
∨k

i=0 ¬p(si) usually

determines the difference among the properties.

The negative format of each literal in the conflict clause is a false assignment for the

logic formula BMC(M, p, k). In fact, the conflict clause can be regarded as a constraint

for the variable assignment. Let P and Q be two properties of the model, the properties

P , P ∧Q and P ∨Q can be expanded as follows:

73

• BMC1(M,P, k) = I(s0) ∧
∧k−1

i=0 T (si, si+1) ∧
∨k

i=0 ¬P (si)

• BMC2(M,P ∧Q, k) = I(s0) ∧
∧k−1

i=0 T (si, si+1) ∧
∨k

i=0 ¬(P ∧Q)(si)

= I(s0) ∧
∧k−1

i=0 T (si, si+1) ∧
∨k

i=0(¬P (si) ∨ ¬Q(si))

• BMC3(M,P ∨Q, k) = I(s0) ∧
∧k−1

i=0 T (si, si+1) ∧
∨k

i=0(¬P (si) ∧ ¬Q(si))

In the expanded CNFs above, we assume that the same variable in respective

expansion has the same meaning. Let A be a partial assignment of the CNF variables

that can make the whole CNF false, then A |=/ BMC1 implies A |=/ BMC3, A |=/ BMC2

implies A |=/ BMC1, and A |=/ BMC2 implies A |=/ BMC3. In other words, the conflict

clauses of BMC1 can be forwarded to BMC3, and conflict clause of BMC2 can be

forwarded to both BMC1 and BMC3.

In most existing BMC tools, the variables in the generated CNF file do not have

specific meaning. The conflict clauses of the stronger property cannot be directly

forwarded to some weaker properties. For example, some conflict clauses of property

P ∧ Q cannot be forwarded to check property P ∨ Q. However, when properties have

the relation of implication, and their textual similarity is high, clustering them together

will have a positive effect. If two properties are in the same format and have a significant

(more than 50%) textual overlap, the two properties can benefit from each other.

Textual clustering is very fast but it may not be very accurate. For example, the

properties ∼ F (a) and ∼ F (c) have no overlap, however, it is possible that both variables

are very closely related in the design model (such as activates the same path), and

therefore they are good candidate for clustering. Unfortunately, in the absence of such

structural information, pure textual clustering may not generate significant savings in test

generation time. Textual clustering is beneficial when information regarding the design or

original fault model are not available and/or when there are too many properties.

4.3.3 Similarity based on Influence

An assignment to a global variable determines the state transition of various

components in the design (graph) model. For example, in the MIPS model, when the

74

instruction buffer contains only division instruction, only the components in DIV path

will be activated. However, it is time consuming to analyze all the global and local

variables of the model since it need to consider the state transition of each component.

Based on the graph model structure, we can determine various cause-effect relations.

For example, the state change of MUL6 will be one clock cycle later than MUL5. That

means the execution of MUL5 has an influence on the execution of MUL6. The influence

nodes indirectly reflect the assignment of the global variables, since the assignment of

global variables is relevant to the variable assignment in the counterexample.

Prior to clustering, we need to figure out the influence node set for each node in the

graph model. We can compute the influence node set for each node using Depth First

Search (DFS) algorithm. If there is a path starting from the start node to the current

node, then all the nodes on this path are influence nodes for the current node. DFS can

explore all the paths (except the paths with loops) from the start node to the current

node. For example the influence node sets for MUL2, FADD3 and WB are as follows:

• Influence(MUL2) = {FET, DEC, MUL1, MUL2}

• Influence(FADD3) = {FET, DEC, FADD1, FADD2, FADD3}

• Influence(WB) = {n| n is a node in the MIPS graph model.}

A property corresponds to several nodes (modules) in the graph model. So the

influence node set of a property is the union of the influence of all relevant nodes. When

comparing the similarity of two properties, we need to compute the intersection of

influence sets. For example, the influence set of property ∼ F (mul2 active = 1 &

fadd3 active = 1) is S1= {FET , DEC, MUL1, MUL2, FADD1, FADD2, FADD3}

and the influence set for ∼ F (mul3 active = 1 & fadd3 active =1) is S2= {FET ,

DEC, MUL1, MUL2, MUL3, FADD1, FADD2, FADD3}. The two sets share a large

intersection. For set S1, the similarity with S2 is 7/7 = 100%. For set S2 the similarity

with S1 is 7/8 = 87.5%. Based on our experience, when the overlap of influence sets are

75

larger than 70%, forwarding conflict clauses is beneficial. In this example, S1 and S2 can

be clustered together.

4.3.4 Similarity based on CNF Intersection

One obvious, but costly, way to determine property similarity for clustering is to

compute intersections of CNF clauses between properties. We can cluster properties that

have a relatively large number of clauses in the intersection. Based on our experience,

a threshold of 0.9 is beneficial. In other words, when two properties share at least 90%

common clauses, it is beneficial to forward conflict clauses between two instances.

This method is very time consuming because it requires O(n2) intersections for

n properties. When n is large, this method is not feasible, because the calculation of

intersection of irrelevant properties may waste more time than actual SAT solution time.

Moreover, in certain scenarios, forwarding conflict clauses may not improve the overall

test generation time for a cluster, since it may change variable ordering and searching

heuristics. CNF based clustering is a good choice when the number of properties is small

or when other methods fail to find beneficial clusters.

4.3.5 Determination of Base Property

Determination of base property in a cluster is crucial for test generation using

learning techniques. The base property is solved first and its conflict clauses are shared by

the remaining properties in the cluster. Although, any property in the cluster can be used

as the base property for that cluster, our studies have shown that certain properties serve

better as base property and thereby generate better overall savings for the cluster. We

need to consider two important factors while choosing a base property for a cluster. First,

the base property should be able to generate a large number of conflict clauses. In other

words, a weak base property may find the satisfiable assignment quickly without making

mistakes (generating conflict clauses). In this scenario, the remaining properties have

nothing to learn from the base property. Moreover, the SAT checking time for the base

property should be relatively small. This will ensure that the overall gain is maximized

76

by reducing the solution time of the properties which takes longer time to solve. None

of these requirements can be determined without actually solving them. Based on our

experience, we have observed that the following heuristics works well most of the time.

• Choose a property that has significant variable and/or sub-expression overlap with
other properties in the cluster.

• If bound for each property is known, choose the property whose bound is closest to
the remaining properties.

• Compute intersection of every pair of properties in the cluster, and choose the one
that shares the most with the remaining properties.

4.4 Efficient Test Generation using Learning Techniques

Incremental SAT-based BMC [54] is very promising to reduce the test generation

complexity. However, existing approaches are restricted for a test generation scenario

consisting of one design and only one property (with varying bounds). Many properties

generated from the design specification share a lot of similar information. If the shared

information can be exploited and re-utilized across the similar properties, many repeated

verification efforts can be avoided. In other words, the knowledge learned during the

execution of one property can benefit other similar properties. Therefore, knowledge

sharing can reduce complexity and improve the overall verification effort. Although each

test generation instance requires a different property, several properties related to testing

specific functionalities are similar or have a significant overlap. Reuse of learned knowledge

(e.g., constraints) derived from such overlap can avoid the repeated state space search. In

this section, we discuss two kinds of learning techniques which can drastically reduce the

overall test generation time in a cluster of similar properties.

4.4.1 Conflict Clause Forwarding Techniques

The basic idea is to learn from solving one property and share learning (through

conflict clauses) for solving the similar properties in the cluster. While solving the

first property (base property), the SAT solver may have taken many wrong decisions

(lead to conflicts) and therefore needs long time to find a counterexample. Forwarding

77

conflict clauses ensures that these wrong decisions are avoided while solving the similar

properties. An important question is whether all the wrong decisions of the first property

are relevant to all the other properties in the clusters? Since the properties are similar but

not the same, some of the decisions are not relevant. In our approach, we determine the

common CNF clauses by computing the intersection of clauses and use this intersection

information to exactly identify the conflict clauses that are relevant to solving the

respective properties.

Algorithm 5: Test Generation using Learning Techniques
Input: i) Design model D and ii) Clusters of similar properties

Output: Tests

for each cluster, i, of properties do

Generate CNF for the base property P i
1
, CNF i

1
;

for j is from 2 to the sizei of cluster i do

/* P i
j is the jth property in the ith cluster */;

1. Generate CNF, CNF i
j = BMC(D, P i

j , boundi
j);

2. Perform name substitution on CNF i
j ;

3. INT i
j = ComputeIntersection(CNF i

1, CNF i
j);

4. Mark the clauses of CNF i
1 using INT i

j ;

end

/* Generate a counterexample and record conflict clauses */;

5. (ConflictClausesi, testi
1
) = SAT(CNF i

1
);

Tests = {testi
1
};

for j is from 2 to the sizei of cluster i do

/* Find relevant ones for P i
j from conflict clauses */;

6. CCi
j = Filter (ConflictClausesi, j);

end

for j is from 2 to the sizei of cluster i do

7. testij = SAT(CNF i
j

⋃

CCi
j);

Tests = Tests ∪ testij ;

end

end

return Tests;

78

Algorithm 5 describes our test generation methodology. It accepts a list of clusters

where each cluster consists of a set of similar properties. Since one property is used to

generate a test, the number of input properties is exactly the same as the number of

output tests. The first step generates the CNF clauses for all the properties in each cluster

using the design and respective bounds. The second step performs name substitution to

maximize knowledge sharing. The third step computes the intersection of CNF clauses

between the base property and all the remaining properties in the cluster. The first three

steps can be omitted, if CNF intersection based clustering is employed. The fourth step

marks the clauses in the base property to indicate whether a particular clause is also

in the clause set of another property in the cluster. The next step uses a SAT solver to

generate the conflict clauses and the counterexample for the base property. Based on the

intersection information with the base property, the set of conflict clauses is filtered to

identify the relevant ones for solving the remaining properties in step 6. The final step

uses the relevant conflict clauses to solve the remaining properties using our approach.

The algorithm reports all the generated counterexamples.

We use a simple example to illustrate how Algorithm 5 works. Let us assume that

we are generating tests using n properties for a design. The input is a list of m (m ≤

n) clusters based on property similarities. Each cluster can have different number of

properties. In the worst case, each cluster can have only one property which will be

verified normally. However, this scenario is rare in practice since a typical design uses

thousands of properties for directed test generation and majority of them share significant

parts of the design functionality. For ease of illustration, let us assume that there is a

cluster with three similar properties, {P1, P2, P3}. Let us further assume that the second

step selects P1 as the base property. The fourth step computes intersection of CNF clauses

of P1 with P2, and P1 with P3. This information is used to filter conflict clauses (generated

while solving P1) relevant for P2 and P3 in step 6. The last step adds the relevant conflict

clauses while solving the respective properties to reduce the test generation time.

79

The following subsections describe two important techniques in our approach, name

substitution for computation of intersections, and identification of relevant conflict clauses.

4.4.2 Name Substitution for Computation of Intersections

Name substitution is an important preprocessing step in Algorithm 4. Currently, few

BMC tools support the name mapping from the variables of the CNF clauses and the

names in the model of the unrolled design. As a result, the variables of the CNF clauses

of two different properties may not have any name correspondence. In other words, the

same variable in two properties may have different name in their respective CNF clauses.

Therefore, without name substitution (mapping), it will miss the overlap information.

As a result, the computed intersection will be small and will adversely affect the sharing

of learned conflict clauses. We observed that the improvement in test generation time

without using name substitution is negligibly small due to very small number of clauses

being forwarded as a result of small number of clauses in the intersection. Since the

properties are similar and the design is exactly the same, the size of the intersection is

very large when our name substitution method is employed.

Our framework uses zChaff SAT solver [74] which accepts the input in the DIMACS

format. The generated DIMACS file for each property provides the name mapping from

the CNF variable to the unrolled design. For example, “c 8 = V1 var[6]” shows that

the variable 8 is used in the CNF file to refer to the 7th bit of variable var in the design

specification at time step 1. This can also be written as, 8 => var[6] 1.

Given two DIMACS files f1 and f2 for two properties P1 and P2 respectively, the

name substitution is a procedure that changes the names of clause variables of f2 using

the name mapping defined in f1. Figure 4-3 shows an example for name substitution.

Before the name substitution, the intersection (f1 ∩ f2) is empty. However, after name

substitution, there are two common clauses in the intersection (f1 ∩ f2′). The complexity

of both name substitution and computation of intersection is linear (using hash table)

to the size of the DIMACS file of the properties. Therefore, the time required for name

80

substitution and intersection computation is negligible compared to the SAT solving time

for complex properties.

It is important to note that the same variable at different time steps can be assigned

a different number. Therefore, the name mapping (substitution) method needs to consider

the same variable at different time steps in the CNF clauses of the same property as well

as in the CNF clauses for the different properties in the same cluster. Moreover, the name

mapping routine needs to remap some of the variables in the CNF clauses. For example in

Figure 4-3, when the variable 4 in file f2 is replaced with the variable 1 (in f2′), the name

mapping routine needs to remap the original variable 1 in file f2′ to a different variable.

c 2 => b_1
c 1 => a_1

c 3 => a_2

p cnf 3 3
−1 2 0

DIMACS f1 DIMACS f2

1 4 0

DIMACS f2’

c 2 => b_1
c 3 => a_2

p cnf 6 4p cnf 6 4

c 1 => a_1

c 6 => a_2
c 5 => b_1

......
c 4 => a_1

......

5 −4 0
5 6 0 3 2 0

 1 3 0
2 −3 0 5 −6 0

4 1 0

2 −1 0
2 3 0

Figure 4-3. An example of name substitution

4.4.3 Identification and Reuse of Common Conflict Clauses

Our implementation of relevant conflict clause determination is motivated by the work

of [67] which proved that for two sets of CNF clauses C1 and C2, and their intersection ϕ,

use of conflict clauses generated from ϕ when checking C1 will not affect the satisfiability

of the CNF clauses C2

⋃

ϕ. Therefore, the conflict clauses generated from the intersection

when checking the base property can be shared by other properties in the cluster.

Strichman [67] suggested an isolation procedure that can isolate the conflict clauses

which are deduced solely from the intersection of two CNF clause sets. We have modified

the isolation procedure to improve the efficiency of test generation for a cluster of

properties. We have modified zChaff [74] SAT solver and used it in our framework.

The zChaff provides utilities for implementing incremental satisfiability. For each clause,

81

it uses 32 bits to store a group id to identify the group where this clause belongs. Use of

group id allows us to generate the conflict clauses for different properties when checking

the base property. If the ith bit of the clause’s group id is 1, it implies that the clause is

shared by the CNF clauses of property Pi. If the clause of the base property is not shared

by any property, the field will be 0.

Assume that there are k + 1 properties in a cluster with Ci as the set of CNF clauses

for the property Pi. Moreover, assume that P0 is the base property. In other words, there

are k + 1 sets of clauses with C0 as the base set, and C1, C2, ..., Ck are k similar sets with

C0. We use the following steps to calculate the conflict clauses for C1, C2, ..., Ck when

solving C0.

• During preprocessing, for each clause cl in C1, if this clause also exists in Ci (2 ≤ i ≤
k), then mark the ith bit of cl’s group id as 1.

• When one conflict clause is encountered during the checking of the base property,
collect all the group ids of the clauses in the conflict side. The group id of the conflict
clause is logical “AND” of all these group ids.

• For each conflict clause, if the ith bit of the group id is 1, then this conflict clause can
be shared by Ci.

In our approach, each conflict side clause has a group id which is marked during the

preprocessing step or marked during the conflict analysis if it is a conflict clause. The

procedure of group id determination of a conflict clause is described in Algorithm 6.

This algorithm traces back from the conflicting assignment to a cut such as first

Unique Implication Point (UIP) [91] in zChaff. The conflict side will contain all the

implications of the variable assignments of the reason side. For UIP, they are implication

variable assignments in the same decision level as the conflicting variable assignment which

led to the conflict. The group id of the conflict clause is the logical “AND” value of all the

group ids of the conflict side clauses. This algorithm can guarantee that if the ith bit of

the group id of the conflict clause is 1, then this conflict clause can be forwarded to the ith

CNF clause set.

82

Algorithm 6: Determination of conflict clause and its group ID
Input: i) Conflicting node N

Output: Conflict clause with its group id

V isited = { N};

ConflictAssign = {};

groupId = group id of N ′s antecedent clause;

while the set V isited is not empty do

1. v = RemoveOneElement(V isited);

2. clause = AntecedentOf(v);

groupID = groupID “AND” group id of clause;

if v is on the conflict side then

3. Put all the nodes of clause in implication graph except v to the set V isited;

else

4. ConflictAssign = ConflictAssign ∪ {v};

end

end

5. ConflictClause = Logical disjunction of negated assignments of all elements in

ConflictAssign;

return ConflictClause and groupId;

Figure 4-4 illustrates how this computation is done. The implication graph belongs

to a base property of a cluster. Each clause in this graph is marked with the group id

information. Here we use four bits to express the group id. For example, the group id of

clause (x3′ + x4′) is “1010”. It means that this clause exists both in CNF clause set 2 and

CNF clause set 4. The group id of the conflict clause is the logical “AND” of all conflict

side clauses, and the result is 0010. That means, this conflict clause can be forwarded to

clause set C2. Therefore, the use of this conflict clause in solving P2 will reduce the SAT

solving (test generation) time.

4.5 Case Studies

We have applied our test generation methodology for validation of various software

and hardware designs. In this section, we present two case studies: the VLIW implementation

of the MIPS architecture, and a stock exchange system. Both experiments were performed

83

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

−x5 @ 4

x1 @ 3

x4 @ 4

−x6 @ 1

x2 @ 4

x8 @ 4

−x8 @ 4

x7 @ 2

−x3 @ 4

CUT 1
(X1’ + x5 + x6 + x7’)

Conflict Clause

Conflict Side Clauses

(x1’ + x4 +x5)

(x3’ + x4’)

(x2 + x4’ +x6)

(x3 + x7’ +x8’)

(x2’ + x3 + x8)

ImplicateCutConflicting VertexImplication VertexDecision Vertex

Clauses
4 3 2 1

 0 1 1 1

1 0 1 0

1 1 1 1

1 0 1 0

1 1 1 0

Group id

Figure 4-4. An example of conflict clause reuse

on a Linux PC using 2.0GHz Core 2 Duo CPU with 1 GB RAM. In our experiments, we

used the NuSMV [27] as our BMC tool to generate the CNF clauses (in the DIMACS

format) for the design and properties. We developed the tool PropertyCluster which

accepts the graph model, the coverage criteria and the clustering strategies as inputs.

This tool generates the required properties (using different coverage criteria presented in

Section 3.1) and clusters them using the clustering strategies proposed in Section 4.3. We

also modified zChaff [74] to integrate our techniques including name substitution, clause

intersection, and constraint sharing based test generation described in Section 4.4.1.

4.5.1 A VLIW MIPS Processor

We applied our methodology on the single-issue MIPS presented in Section 2.3.2. The

PropertyCluster generated 171 properties using the node coverage, 2-interaction coverage,

and the path coverage criteria. In this section we first present results for each clustering

technique, and then present a summary to compare the clustering techniques.

4.5.1.1 Structure-based Clustering

The graph model of MIPS processor has four parallel pipeline paths. Each of them

shares four units (fetch, decode, memory and writeback), and differs only in the execution

units. The structural similarity is established based on the path that a set of properties

84

activates. For example, the following 7 properties is grouped in a cluster because all of

them refer to the division path.

• p13 =∼ F (fet active! = 1&div active! = 1)

• p28 =∼ F (dec active! = 1&div active! = 1)

• p133 =∼ F (div active! = 1&mem active! = 1)

• p134 =∼ F (div active! = 1&wb active! = 1)

• p150 =∼ F (div active! = 1))

• p165 =∼ F (fet active! = 1&dec active! = 1&div active! = 1)

• p170 =∼ F (fet active! = 1&dec active! = 1&div active! = 1&mem active! =
1&wb active! = 1)

Table 4-1 presents the verification details for the above cluster. This cluster has 7

properties where p13 is the base property. The second column shows the property type

(node coverage, edge coverage, interaction coverage etc.). The third column indicates the

bound for that property. The fourth column shows the number of CNF clauses (size) for

that property. The fifth column presents the number of conflict clauses forwarded from the

base property. The next column presents the test generation time (original, in seconds)

using unmodified zChaff. The seventh column presents the test geneation time using our

approach. The new time is larger for the base property since it includes the intersection

calculation time with other properties in the cluster. The speedup is computed using the

formula (Original Time / New Time). The overall speedup for this cluster is 4.18x.

Table 4-1. Verification results for a structure-based cluster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p13 Inter. 8 461122 - 15.61 21.99 0.71
p28 Edge 7 395566 32576 8.31 0.16 51.94
p133 Edge 7 395564 32576 11.99 0.18 66.60
p134 Inter. 7 395564 32576 9.07 0.19 47.74
p150 Node 6 330002 21748 4.70 0.16 29.38
p165 Path 8 461132 35121 22.87 0.27 84.70
p170 Path 8 461142 35121 24.45 0.26 94.04
Avg. - 7.29 414299 - 13.86 3.32 4.18

85

Table 4-2. Structure-based clustering results for MIPS processor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 10 1.21 68.26 32.01 5.91 1.78
2 8 1.84 83.26 37.43 6.02 1.88
3 17 15.90 193.21 2.49 15.44 6.18
4 17 18.31 173.20 3.81 14.47 5.23
5 7 15.61 81.40 1.22 6.38 4.18
6 7 2.03 120.38 40.05 5.71 2.56
7 4 2.15 15.94 5.79 2.62 1.71
8 1 8.56 8.56 8.56 0.00 1.00
9 17 30.92 582.80 59.44 17.57 5.69
10 17 2.30 149.75 50.74 12.83 2.31
11 7 10.54 140.31 30.77 6.78 3.14
12 17 9.40 669.83 164.34 17.39 3.55
13 11 21.21 365.79 44.1 12.26 4.99
14 4 10.62 46.58 3.84 3.54 3.18
15 14 15.84 142.78 4.00 11.47 5.07
16 13 2.65 263.93 149.19 11.92 1.63

Avg. 10.69 10.57 194.12 39.86 9.39 3.42

Table 4-2 provides the overall verification details of the clusters generated using the

structural similarity. The total 171 properties are grouped into 16 clusters shown in the

first column. The example presented in Table 4-1 is the expansion of the fifth cluster in

Table 4-2 (row 5). The second column presents the size of that cluster in terms of number

of properties. The base time is the execution time of the base property. The original

time is the running time of the remaining properties (except the base property) without

using any knowledge sharing techniques. Since intersection calculation is necessary before

executing the base property, we show the improved time (our approach) in two parts: new

verification time, and overhead (intersection calculation time). The last column shows

the speedup using the formula (Base time + Original time) / (Base time + Improved

time). In this table, we can see that the overhead has a linear relation with the number of

properties in the cluster. Using structural clustering, we can achieve a speedup of 3.42x 3 .

3 Clustering time using structural similarity is negligible and not shown in the table.

86

4.5.1.2 Clustering based on Textual Similarity

Since the properties are generated based on fault models, they use similar format and

therefore helpful for clustering based on textual similarity. In this case, we assume that

50% is a reasonable threshold for textual similarity. For example, the following properties

are textually similar. In this case, p49 is the base property, and other 6 properties has 50%

similarity with it. So they can be clustered together.

• p49 =∼ F (m1 active! = 1&m6 active! = 1)

• p50 =∼ F (m1 active! = 1&m7 active! = 1)

• p61 =∼ F (m2 active! = 1&m6 active! = 1)

• p72 =∼ F (m3 active! = 1&m6 active! = 1)

• p82 =∼ F (m4 active! = 1&m6 active! = 1)

• p91 =∼ F (m5 active! = 1&m6 active! = 1)

• p100 =∼ F (m6 active! = 1&m7 active! = 1)

Table 4-3. Verification results for a textual cluster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p49 Inter. 10 592239 - 59.54 68.81 0.87
p50 Inter. 11 657806 78826 81.09 5.88 51.94
p61 Inter. 10 592239 78826 60.72 0.31 195.87
p72 Inter. 10 592239 78826 62.37 0.31 201.19
p82 Inter. 10 592239 78826 61.91 0.31 199.71
p91 Edge 10 592239 78826 67.96 0.31 219.23
p100 Edge 11 657806 78826 84.17 6.08 13.84
Avg. - 10.29 610972 - 68.25 11.72 5.82

Table 4-3 shows the verification details for a cluster consisting of above 7 properties.

The numbers in the table are in the same format as Table 4-1. Due to knowledge sharing,

the speedup for this cluster is 5.82x.

Table 4-4 shows the test generation details for all 32 clusters using textual similarity.

Table 4-3 is the expansion of the 22nd cluster of Table 4-4 (row 22). In this case, our

approach is able to obtain the overall speedup of 3.72.

87

Table 4-4. Textual clustering results for MIPS processor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 1 0.11 0.11 0.11 0 1.00
2 1 0.12 0.12 0.12 0 1.00
3 1 0.35 0.35 0.35 0 1.00
4 1 0.35 0.35 0.35 0 1.00
5 3 1.28 4.62 2.57 1.53 1.10
6 5 2.75 15.63 6.02 3.34 1.52
7 8 5.56 72.61 15.23 6.55 2.86
8 11 11.30 183.44 26.31 10.57 4.04
9 11 17.72 249.19 40.57 12.03 3.80
10 10 30.58 456.97 48.44 12.38 5.33
11 1 0.30 0.30 0.30 0 .00 1.00
12 3 1.28 4.65 2.00 1.57 1.22
13 5 2.69 17.78 7.82 3.40 1.47
14 8 5.00 77.04 21.91 6.62 2.45
15 11 4.7 100.19 34.17 9.16 2.18
16 3 1.55 4.77 1.22 1.62 1.44
17 5 2.73 18.17 4.28 3.42 2.00
18 2 1.21 1.84 1.42 0.97 0.85
19 17 15.67 269.53 6.18 16.45 7.39
20 13 7.74 127.90 4.49 11.24 5.78
21 4 2.04 7.78 1.13 2.38 1.77
22 7 59.54 418.22 13.22 9.27 5.82
23 7 10.34 69.91 9.16 5.82 3.17
24 3 29.07 61.34 0.32 3.39 2.76
25 4 95.77 288.45 0.61 5.66 3.77
26 6 21.63 104.19 0.85 5.98 4.42
27 4 4.02 29.97 4.24 3.05 3.00
28 2 10.46 10.50 0.15 1.72 1.70
29 5 18.64 81.71 0.83 5.08 4.09
30 5 21.07 78.80 6.61 5.22 3.04
31 3 22.25 44.91 0.46 3.05 2.61
32 1 28.78 28.78 28.78 0 1.00

Avg. 5.34 13.64 88.44 9.07 4.74 3.72

4.5.1.3 Influence-based Clustering

The following 7 properties are grouped using influence-based clustering with p111

as the base property. We set the threshold of the similarity as 70%. For instance, the

influence nodes of p111 are {FET , DEC, MUL1, MUL2, MUL3, MUL4, MUL5,

MUL6, MUL7, FADD1, FADD2, FADD3, FADD4}, and the influence of p108 is {

FET , DEC, MUL1, MUL2, MUL3, MUL4, MUL5, MUL6, MUL7, FADD1}. The

similarity between p108 and p111 is 10/13 = 77%.

• p111 =∼ F (m7 active! = 1&f4 active! = 1)

88

• p104 =∼ F (m6 active! = 1&f4 active! = 1)

• p110 =∼ F (m7 active! = 1&f3 active! = 1)

• p103 =∼ F (m6 active! = 1&f3 active! = 1)

• p109 =∼ F (m7 active! = 1&f2 active! = 1)

• p102 =∼ F (m6 active! = 1&f2 active! = 1)

• p108 =∼ F (m7 active! = 1&f1 active! = 1)

Table 4-5 shows the verification results for an influence-based cluster consisting of the

above 7 properties. In this case, the overall speedup using our approach is 4.52x.

Table 4-5. Verification results for an influence-based cluster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p111 Inter. 10 592239 - 54.80 63.40 0.87
p104 Inter. 9 526687 66773 25.98 0.22 118.09
p110 Inter. 10 592239 70975 54.26 0.25 217.04
p103 Inter. 9 526687 66773 25.83 0.22 117.41
p109 Inter. 10 592239 70975 49.16 0.25 196.64
p102 Inter. 9 526687 66773 33.27 0.22 151.23
p108 Inter. 10 592239 70975 49.74 0.26 191.31
Avg. - 9.57 564145 - 41.86 9.26 4.52

Table 4-6 shows the verification results using influence-based clustering for all 27

clusters. The details of the first cluster (row 1) is shown in Table 4-5. The overall speedup

using our approach is 4.30x.

4.5.1.4 Intersection-based Clustering

Intersection-based clustering is intuitive and easier to implement since it does not

require any prior knowledge about the structure of the graph model or the format of

the properties. It only uses the mapping of the variables for name substitution and the

intersection between the CNFs. Due to use of data structure hashmap, the intersection

time is linear to the size of the CNF file. The following properties are grouped as a cluster

using a threshold for the intersection as 90%.

• p50 =∼ F (m1 active! = 1&m7 active! = 1)

• p62 =∼ F (m2 active! = 1&m7 active! = 1)

89

Table 4-6. Influence-based clustering results for MIPS processor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 7 54.80 238.24 1.42 8.60 4.52
2 15 55.31 874.07 38.38 19.18 8.23
3 6 0.07 72.30 83.01 5.18 0.82
4 11 21.22 173.93 4.81 10.44 5.35
5 17 25.94 570.77 48.36 19.22 6.38
6 7 10.49 62.39 4.89 5.92 3.42
7 14 8.98 188.18 22.39 12.64 4.48
8 6 9.41 19.76 0.86 4.45 1.98
9 17 11.76 192.75 20.44 14.62 4.37
10 7 4.06 44.33 10.76 5.29 2.41
11 8 4.39 49.22 7.26 5.91 3.05
12 4 24.29 49.00 0.90 3.92 2.52
13 6 15.54 73.46 0.72 5.74 4.05
14 5 2.19 8.99 2.25 2.86 1.53
15 6 2.18 12.60 1.42 3.44 2.10
16 7 12.98 84.54 8.65 6.45 3.47
17 6 19.49 63.14 1.01 5.59 3.17
18 2 4.58 1.83 0.11 1.27 1.08
19 1 2.31 2.31 2.31 0.00 1.00
20 9 10.57 107.50 16.85 8.14 3.32
21 2 1.54 0.35 0.08 0.74 0.80
22 3 18.24 26.83 0.43 2.90 2.09
23 1 0.35 0.35 0.35 0.00 1.00
24 1 0.30 0.30 0.30 0.00 1.00
25 1 1.21 1.21 1.21 0.00 1.00
26 1 0.12 0.12 0.12 0.00 1.00
27 1 0.12 0.12 0.12 0.00 1.00

Avg. 6.33 11.94 108.1 10.35 5.65 4.30

• p73 =∼ F (m3 active! = 1&m7 active! = 1)

• p83 =∼ F (m4 active! = 1&m7 active! = 1)

• p92 =∼ F (m5 active! = 1&m7 active! = 1)

• p100 =∼ F (m6 active! = 1&m7 active! = 1)

Table 4-7 presents the verification details for the above cluster using p50 as the base

property. The speedup for this cluster is 5.96x.

Table 4-8 presents the intersection clustering verification for all the 171 properties.

The details of the 9th cluster are shown in Table 4-7. The overall speedup using our

approach is 5.90x.

90

Table 4-7. Verification results for an intersection-based cluster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p50 Inter. 11 657806 - 80.91 89.41 0.90
p62 Inter. 11 657806 91548 95.87 0.58 165.29
p73 Inter. 11 657806 91548 95.75 0.46 208.15
p83 Inter. 11 657806 91548 96.29 0.59 163.20
p92 Inter. 11 657806 91548 96.83 0.59 164.12
p100 Inter. 11 657806 91548 83.99 0.59 142.36
Avg. - 11 657806 - 91.61 15.37 5.96

Table 4-8. Intersection-based clustering results for MIPS processor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 4 1.22 4.08 0.27 1.75 1.64
2 13 1.82 28.44 1.31 7.48 2.85
3 17 15.68 266.61 2.76 16.99 7.97
4 17 7.72 147.75 1.80 14.51 6.47
5 17 3.65 66.50 2.00 11.96 3.98
6 14 26.19 383.10 2.28 15.91 9.22
7 13 60.61 691.41 2.68 16.58 9.42
8 17 8.51 172.23 3.10 14.20 7.00
9 6 80.91 468.73 2.81 8.50 5.96
10 17 20.57 323.98 2.73 16.71 8.61
11 12 13.01 120.28 2.17 10.26 5.25
12 4 4.74 15.29 0.41 2.88 2.49
13 2 0.11 0.11 0.04 0.30 0.49
14 3 0.35 0.65 0.16 0.89 0.71
15 13 18.91 249.84 2.40 13.29 7.77
16 1 30.63 30.63 30.63 0 1
17 1 29.54 29.54 29.54 0 1

Avg. 10 19.07 176.42 5.12 8.95 5.90

4.5.1.5 Comparison of Clustering Technqiues

Table 4-9 compares the four clustering technqiues. The first row shows our proposed

clustering methods. The second row indicates the number of clusters using the respective

clustering methods, and the third row shows the corresponding clustering time (in

seconds). The fourth row presents the test generation time for the base property. Similar

to the previous tables, the original time refers to traditional (no clustering) verification

time for all the properties excluding the base property. The sixth row presents the

verification time for all the properties except the base property using the respective

clustering method. The speedup is computed using the formula (Base time + Original

time) / (Clustering time + Base time + Improved time). For the first three clustering

91

methods, the clustering is very fast and the associated cost (time) is negligible. However,

for the intersection-based clustering, the intersection time is longer compared to other

three methods and is not negligible. Therefore, for intersection-based clustering, we

provide speedup values for both scenarios – without considering clustering time (the first

number) as well as with clustering time (the number in parenthesis).

Table 4-9. Property clustering and verification for MIPS processor

Methods Structure T extual Influence Intersection
Cluster No. 16 32 27 17
Clust. Time 0.24 0.06 0.22 187.90
Base Time 169.09 436.60 322.44 324.18
Orig. Time 3105.98 2830.13 2918.56 2999.16
Impr. Time 788.09 442.53 431.92 239.28
Speedup 3.42 3.72 4.33 5.90 (4.42)

It is important to note that intersection-based clustering is most beneficial for

reducing overall test generation time. However, the clustering overhead is much more than

other strategies. When a large number of complex properties are involved, the intersection

overhead may become prohibitively large. In such cases, influence-based clustering is most

beneficial. Interestingly, textual clustering consumes least amount of clustering time but

generates better results than structure based clustering. When detailed information about

the design is not available, textual clustering is most beneficial.

4.5.2 A Stock Exchange System

This section presents the test generation results of the on-line stock exchange system

(OSES) (described in Section 2.3.5). The specification is used to generate 51 properties

based on the fault model. We applied the clustering methods discussed in Section 4.3 on

all the properties to generate the tests.

Table 4-10 presents the test generation results using structure-based clustering for all

the 51 properties. The overall speedup using our approach is 2.26x.

Table 4-11 presents the test generation results using textual clustering for all the 51

properties. The overall speedup using our approach is 2.33x.

92

Table 4-10. Structure-based clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 2 4.48 3.72 0.63 0.97 1.35
2 4 6.14 45.5 13.13 1.92 2.44
3 2 1.76 2.03 0.60 0.97 1.14
4 4 59.56 160.99 15.16 1.90 2.88
5 2 9.34 11.09 19.58 0.98 0.68
6 4 10.74 123.79 5.97 1.95 7.21
7 2 0.40 0.32 0.25 0.97 0.44
8 4 96.44 150.45 31.11 1.91 1.91
9 2 6.62 7.40 0.71 1.13 1.66
10 4 10.08 82.61 48.02 2.26 1.54
11 2 3.36 4.69 1.22 1.13 1.41
12 4 101.16 154.62 38.48 2.22 1.80
13 2 29.55 36.5 2.90 1.14 1.97
14 4 106.51 168.30 2.24 2.24 1.95
15 2 0.21 0.20 19.34 1.14 0.02
16 4 95.91 588.49 120.00 2.26 3.14
17 2 18.91 15.53 1.16 0.82 1.65
18 1 0.88 0.88 0.88 0.00 1.00

Avg. 2.83 31.23 86.51 19.51 1.44 2.26

Table 4-11. Textual clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 1 0.68 0.68 0.68 0.00 1.00
2 2 15.55 18.86 7.73 0.81 1.43
3 9 4.33 196.59 60.88 4.26 2.89
4 8 60.25 135.37 36.83 3.80 1.94
5 1 33.57 33.57 33.57 0.00 1.00
6 6 11.62 246.23 2.05 2.86 15.60
7 9 6.44 469.61 130.68 5.01 3.35
8 8 10.61 155.82 95.90 4.50 1.50
9 7 0.21 760.38 390.69 3.91 1.93

Avg. 5.67 15.87 224.12 84.33 2.79 2.33

Table 4-12 presents the test generation results using influence-based clustering for all

the 51 properties. The overall speedup using our approach is 2.44x.

Table 4-13 presents the test generation results using intersection-based clustering for

all the 51 properties. The overall speedup using our approach is 2.84x without considering

clustering overhead. If clustering overhead is considered the overall speedup is 2.69x.

Table 4-14 summarizes the results using four clustering methods where 2–3 times

improvement is achieved. It is important to note that the results for OSES are consistent

with the results for MIPS in Table 4-9. As Table 4-14 shows, intersection-based clustering

93

Table 4-12. Influence-based clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 5 22.97 147.84 50.48 2.75 2.24
2 8 10.10 369.97 120.27 4.40 2.82
3 3 36.62 59.65 38.78 1.69 1.26
4 5 10.66 135.98 11.37 2.37 6.01
5 4 0.32 4.00 3.28 1.90 0.78
6 1 93.48 93.48 93.48 0 1.00
7 7 28.89 629.39 132.41 3.89 3.98
8 2 12.87 9.85 0.37 0.98 1.58
9 6 14.23 302.63 115.31 2.83 2.40
10 7 34.66 261.80 69.81 3.34 2.75
11 2 15.87 18.98 7.63 0.81 1.43
12 1 0.75 0.75 0.75 0 1.00

Avg. 4.25 23.12 169.50 53.65 2.08 2.44

Table 4-13. Intersection-based clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 7 4.84 53.91 16.64 3.31 2.37
2 3 10.93 94.79 6.2 1.46 5.69
3 2 7.13 56.72 5.81 0.98 4.59
4 2 35.32 68.96 24.97 0.98 1.70
5 3 5.06 20.60 22.56 1.45 0.88
6 7 84.18 243.60 22.78 3.30 2.97
7 8 6.54 393.75 147.45 4.53 2.53
8 6 3.37 98.46 42.39 3.32 2.07
9 3 29.45 68.71 19.07 1.74 1.95
10 3 107.27 457.52 39.59 1.69 3.80
11 4 0.20 247.46 62.83 2.24 3.79
12 2 18.74 15.35 1.17 0.82 1.64
13 1 0.7 0.7 0.7 0 1.00

Avg. 3.92 24.13 140.04 31.70 1.99 2.84

is most beneficial for reducing overall test generation time. However, when clustering

overhead is prohibitively large, influence-based clustering is beneficial. Similarly, when

detailed information about the design is not available, textual clustering is the best choice.

Table 4-14. Property clustering and verification for OSES

Methods Structure T extual Influence Intersection
Cluster No. 18 9 12 13
Clust. Time 0.05 0.01 0.05 42.77
Base Time 562.05 142.81 277.42 313.73
Orig. Time 1557.11 2017.11 2034.05 1820.53
Impr. Time 377.15 784.16 668.72 437.98
Speedup 2.26 2.33 2.44 2.84 (2.69)

94

On two case studies (MIPS and OSES) our approach demonstrated 3–5 times

improvement in overall test generation time using efficient integration of property

clustering and conflict clause forwarding based learning techniques.

4.6 Summary

Directed test vectors can reduce overall validation effort since fewer tests can obtain

the same coverage goal compared to the random tests. The applicability of the existing

approaches for directed test generation is limited due to capacity restrictions of the

automated tools. This chapter addressed the test generation complexity by clustering

similar properties and exploiting the commonalities between them. To enable knowledge

sharing across multiple properties, we have developed a number of conceptually simple,

but extremely effective, techniques including name substitution and selective forwarding

of learned conflict clauses. Our experimental results using both hardware and software

designs demonstrated an average of four times speedup in directed test generation time.

95

CHAPTER 5
DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNING

The primary goal of efficient test generation is how to quickly get satisfiable

assignments for SAT instances. Various heuristic methods and tools [39, 63] are proposed

to improve the SAT searching time. Decision ordering [55] plays an important role during

the search because different decision ordering implies different decision tree as well as

different search path which strongly affect the search time. Existing decision ordering

methods focus on exploiting the useful information of general SAT problem with a

single SAT instance. Most of them are based on the statistics of SAT instances without

considering any other learning information. For test generation, a design may have various

properties and generally model checking techniques will check each of them individually.

For a given design, similar properties describe correlated functional scenarios. Therefore

the respective counterexamples are expected to have a significant overlap which can be

used for sharing learning. Furthermore, even for a single SAT instance, the result of the

local search can also benefit the global search. The method proposed in this chapter

exploits the learning from decision ordering in the context of test generation involving one

or more properties of a design. This chapter makes three contributions: i) investigates the

decision ordering based learning for a single SAT instance; ii) applies the decision ordering

based learning between similar SAT instances; and iii) exploits the relation between the

decision ordering and conflict clause forwarding based methods.

The rest of the chapter is organized as follows. Section 5.1 presents related work on

decision ordering based heuristics. Section 5.2 describes our learning techniques based on

decision ordering. Section 5.3 proposes the test generation methodology using efficient

decision ordering techniques. Section 5.4 presents the experimental results. Finally,

Section 5.5 summarizes the chapter.

96

5.1 Related Work

Different variable ordering will lead to different search trees, therefore branching

heuristics can improve the SAT searching performance significantly [55]. As a popular

SAT solver, zChaff uses the Variable State Independent Decaying Sum (VSIDS) heuristic

[63]. This heuristic contains two parts: i) the static part collects the statistics of the

Conjunctive Normal Form (CNF) literals prior to SAT solving and sets the initial decision

ordering, and ii) during the SAT solving, the dynamic part periodically updates the

priority based on conflict clauses. Although the above general-purpose heuristics are

promising for propositional formulas, they neglect some unique information of BMC.

In [81], Strichman exploited the characteristics of the BMC formulas for a variety of

optimizations including decision ordering. When the bound is unknown, SAT-based BMC

needs to increase the unrolling depth one-by-one until finding a counterexample. Wang et

al. [87] analyzed the correlation among different SAT instances of a property. They used

the unsatisfiable core of previously checked SAT instances to guide the variable ordering

for the current SAT instance.

To the best of our knowledge, all the existing approaches exploit variable ordering to

improve the SAT solving time involving only one property (one SAT instance or several

correlated SAT instances with different bounds). Our approach is the first attempt to use

both decision ordering and conflict clauses to reduce the BMC based test generation time

for a single SAT instance as well as for a cluster of similar SAT instances. The comparison

between various learning techniques is provided in Section 5.4.

5.2 Decision Ordering Based Learnings

Decision ordering plays an important role during the SAT search. It indicates which

variable will be selected first and which value (true or false) will be first assigned to

this variable. Similar to BDD based methods [15], variable ordering determines the

performance of the SAT solving time. In the VSDIS heuristics implementation of zChaff,

each literal l is associated with a zchaff score(l) which is used for decision ordering at

97

decide next branch() (see Algorithm 3 in Chapter 4). Initially the score is equal to the

literal count in corresponding CNF file. During the SAT solving, the score will be updated

in periodic function after a certain numbers of backtracks. The calculation of the new

literal score is as follows:

chaff score(l) = chaff score(l)/2 + lits in new confs(l) (5–1)

where lits in new confs(l) is the number of newly added conflict clauses which contain

literal l since last update.

Similar properties usually have similar counterexamples which indicates that they

may have similar Boolean constraints during the test generation. Consequently the

generated SAT instances should have a large overlap in CNF clauses and can be clustered

to share the learning. This section presents our decision ordering heuristic which will be

incorporated in the test generation approaches in Section 5.3.

5.2.1 Overview

As discussed in Section 4.2.1, the most time consuming parts are BCP and long

distance backtracking. They are indicated by implication number and conflict clause

number which represent the successful decision ratio and backtrack number respectively.

Ideally, a search method can get a satisfiable assignment by making the assignment for

each variable only once. However, generally it is impossible to achieve such scenario. For

a cluster of similar properties and pre-determined bounds, the objective of our method

is to reduce the number of implications and conflict clauses of unchecked properties by

incorporating the learned decision ordering knowledge from previously checked properties.

Assuming that we have two similar properties, both properties will have a large

overlap on CNF clauses and counterexample assignments. Figure 5-1 shows the partial

views of search trees and search paths of the two properties. The search paths are formed

according to the decision ordering (shown on top of the search trees). For each variable

v in the ordering, there are two literals (v means v=1 and v’ means v=0). As shown in

98

Figure 5-1a, there are 6 conflicts encountered. The search stops after finding a satisfiable

assignment a = 1, b = 0, c = 0, d = 1 in this scenario. In Figure 5-1b, the search will be

successful only when a = 0, b = 0, c = 0, d = 1 after encountering 14 conflicts. Therefore

the search of the second example will be more time-consuming because of more backtracks.

1 0 01

1 0 1 0

1 001

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

b

Ordering: a, a’, b, b’, c, c’, d, d’ Ordering: a, a’, b, b’, c, c’, d, d’

Search Path Variables: a, b, c, dX: Conflict

b) Partial view of the second examplea) Partial view of the first example

: Success

XX X X X X

0 0 0 000 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

X X X X X X X X X X X X X X

a

b

c c c c

d d d d d d d d d d d d d d d d

a

b b

c c c c

Figure 5-1. Two examples of SAT search

Because of the large overlap in the assignment of counterexamples, the result of

previously checked properties can be used as a learning for unchecked properties. For

example, in Figure 5-1, the result of first example strongly indicates the assignment of the

second example because of the satisfiable assignment intersection b = 0, c = 0, d = 1.

If the second example uses the decision ordering based on the variable assignments in

the first example, the searching time of the second example can be drastically reduced as

shown in Figure 5-4.

5.2.2 Bit Value Ordering

Similar properties generally have a large intersection on both corresponding CNF

clauses and counterexample assignments. This indicates that the satisfiable assignment of

checked SAT instances contain rich decision ordering knowledge for unchecked satisfiable

SAT instance. In SAT search, incorrect value selection for each variable will cause conflicts

which will result in backtracks to remove the reason of the conflicts. A good decision

99

ordering can mostly avoid such faulty assignments. Unlike pruning the search tree using

conflict clause forwarding [58], bit value ordering changes the search path. By setting the

bit priority (choose 0 or 1 first) for each variable using the knowledge of previous property

checking, the length of the search path can be reduced.

1

1

1 1 0 1

a
0

0

1 00

1

1

1 1 0 1

b b

0

0

1 00

Ordering: a, a’, b, b’, c, c’, d, d’

a=1, b=0, c=0, d=1

01

0 0

01

Learned assignment:

Ordering: a, a’, b’, b, c’, c, d, d’

a) Without bit−value ordering b) With bit−value ordering

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0000000000000000000

X X X X X XX X X XX X X X X X X X X X X X

c c c c

bb

d d d d d d d d

a

d

c c c c

d d d d dd d

Figure 5-2. A scenario where bit-value ordering works

Figure 5-2 shows an example where bit-value ordering works. As shown in Figure 5-1a,

we can get a satisfiable assignment a = 1, b = 0, c = 0 and d = 1. This assignment can

be used to change the bit-value ordering of the second example. That means, when node

b is encountered, the search chooses b = 0 first in its search path. The same rule also

applies on other nodes. Applying such heuristic in Figure 5-2b, there are only 8 conflicts

encountered compared to 14 conflicts in Figure 5-2a. In addition, the search path is also

shortened. Therefore, the searching time is reduced.

It is important to note that the bit-value ordering itself is not always helpful for

the SAT searching. For example in Figure 5-3, a = 1, b = 1, c = 0, d = 1 is the only

satisfiable assignment in the given scenario. The searching in Figure 5-3a without bit value

ordering is faster than the searching in Figure 5-3b because of less conflicts. If the learning

assignment in Figure 5-3 was a=0, b=1, c=0 and d=1, the searching performance will

be much worse than the search in Figure 5-3b. Clearly, in the search tree, the high level

100

1

1

1 1 0 1

a
0

0

1 00

1

1

1 1 0 1

b b

0

0

1 00

Ordering: a, a’, b, b’, c, c’, d, d’

a=1, b=0, c=0, d=1

01

0 0

01

Learned assignment:

Ordering: a, a’, b’, b, c’, c, d, d’

a) Without bit−value ordering b) With bit−value ordering

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0000000000000000000

X X X XX X X

c c c c

bb

d d d d d d d d

a

d

c c c c

d d d d dd d

Figure 5-3. A scenario where bit value ordering fails

variables (e.g., node a) strongly affect the performance of the searching if they are not

consistent with learned bit-value ordering.

5.2.3 Variable Ordering

Although bit-value ordering is promising in general, there are still a lot of conflicts

encountered during the search. According to the example shown in Figure 5-3, if high level

nodes (e.g., node a) make the wrong decision, the search path will be lengthened due to

the long distance backtrack. To reduce the searching time, it is necessary to restrict the

conflict detection and reasoning in a small area.

1

1

1 1 0 1

a
0

0

1 00

1

1

1 1 0 1

c c

0

0

1 00

Ordering: a, a’, b, b’, c, c’, d, d’

a=1, b=0, c=0, d=1

01

0 0

01

Learned assignment:

Ordering: b, b’, c’, c, a, a’, d, d’

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0000000000000000000

X X X X XX X X X X X X X X

c c c c

bb

d d d d d d d d

b

d

a a a

d d d d dd d

a

X X

a) Without any learning b) With bit−value and variable ordering

Figure 5-4. An example of bit-value and variable ordering

101

Efficient combination of variable ordering and bit-value ordering is very promising. As

shown in Figure 5-4b, the search time is better than that in Figure 5-4a due to a shorter

search path and less conflicts. The reason of this improvement is that we enhance the

priority of variables b and c. Since a is the variable with different values between the two

satisfiable assignments shown in Figure 5-1, lowering down the priority of such variables

(ones with different values between two CNFs) can efficiently avoid the long distance

backtrack. Generally, before SAT solving, it is hard to figure out the difference between

two satisfiable CNF variable assignments. However, based on the value assignment

statistics of the checked properties, the variable ordering can be constructed. For a

variable with the lower assignment value variation, which indicates high chance of same

value, we will enhance its priority by increasing the score of its two literals.

1

1

1 0 1

0

0

1 00

01

1 1 1 1 00000

a

c c c

d d dd d

X X

b b

1

1

1

1 1 0 1

a
0

0

1 00

01

0

1 1 1 1 1 1 1 1 00000000000

X X X X XX X X

c c c c

bb

d d d d d d d d

a=1, b=0, c=0, d=1Learned assignment:

Ordering: a, a’, b’, b, c’, c, d, d’ Ordering: a, a’, b’, b, c’, c, d, d’

b) Bit−value ordering + Conflict Clausesa) With bit−value ordering

Figure 5-5. An example of conflict clauses based variable ordering

5.2.4 Conflict Clause based Decision Ordering (Hybrid)

Conflict clause is promising to avoid repeated conflicts during the SAT searching.

Therefore it can be used as a learning during the test generation (described in Chapter 4).

In essence, conflict clause forwarding can be used to prune the decision tree and can be

utilized as a complementary approach for the decision ordering techniques proposed in

Section 5.2.2 and Section 5.2.3. For two similar SAT instances, if the conflict clauses of the

102

checked SAT instance can be forwarded to the unchecked one, it will reduce the conflicts,

thus further shorten the search path.

Figure 5-5a shows application of bit-value ordering on the example shown in

Figure 5-1b. There are 8 conflicts during the SAT search in this case. Let’s assume

the conflict clauses generated from Figure 5-1a can be forwarded to the CNF clauses of

Figure 5-1b. The generated 6 conflict clauses are as follows:

(a′ ∨ b′ ∨ c′ ∨ d′)

(a′ ∨ b′ ∨ c′ ∨ d)

(a′ ∨ b′ ∨ c ∨ d′)

(a′ ∨ b′ ∨ c ∨ d)

⇒ (a′ ∨ b′)

(a′ ∨ b ∨ c′ ∨ d′)

(a′ ∨ b ∨ c′ ∨ d)

⇒ (a′ ∨ b ∨ c′)

(5–2)

Equation 5–2 shows the resolution of the forwarded conflict clauses. Based on

the result, we can prune the search tree as shown in Figure 5-5b. It indicates that

there are only 2 conflicts by applying the bit value ordering on the pruned search tree.

Therefore the test generation time can be significantly reduced. For the example shown

in Figure 5-4b, the conflict clause forwarding is not beneficial since the search does not

traverse the pruned part of the decision tree. Generally, the conflict clause forwarding can

further improve the performance of the decision ordering based methods.

5.3 Test Generation using Decision Ordering

For model checking based test generation, each property is a negation of a desired

system behavior. Consequently each property can produce a counterexample. Since

our method adopts SAT-based BMC, we assume that the bound can be pre-determined

and the generated SAT instances are satisfiable. The goal of the test generation for

the property with a known bound is to figure out a satisfiable assignment for this SAT

instance.

103

To reduce the overall test generation effort, this section utilizes the heuristics

proposed in Section 5.2 as a learning. Section 5.3.1 applies the learning based on the

decision ordering for test generation of a single property. In Section 5.3.2, we present an

algorithm which shares learning from the decision ordering among a cluster of similar

properties.

5.3.1 Test Generation for a Single Property

When checking a base property using property clustering techniques, or when

checking only a single property, current methods solve the SAT instance alone since there

is no source of learning. Therefore it is time-consuming and it can be a major bottleneck

of the clustering based test generation.

During test generation, if the bound of a property is increased by one, the complexity

will be drastically increased. Based on the observation of [81], the reason of time-consuming

search is due to the long distance backtracking. Since large set of clauses that belong to

different distant cycles are being satisfied independently (locally), [81] found that there are

three typical scenarios which can cause the conflicts:

• Distant cycles are being satisfied independently until they collide each other with
assignment conflict.

• Some cycle assignment collides with the constraints imposed by the initial state.

• Some cycle assignment collides with the constraints imposed by the negation of the
specified property.

The resolution of such conflicts needs to cancel large number of variable assignment

between the conflicting cycles. Especially for the SAT instance with large bound, the cost

of non-chronological backtracking is still huge since large bound indicates huge number of

clauses and variables.

To alleviate long distance backtrackings during test generation, learning is required to

guide the SAT search. Conflict clause is a promising learning that can prune the decision

tree. However, in a SAT instance with large bound, the cost of deriving a conflict clause is

104

costly due to large interleaving of irrelevant variables during the SAT search. Furthermore,

large set of CNF clauses is likely to generate a large number of conflict clauses which

can affect the search performance. Therefore if we can get conflict clauses from a smaller

SAT instance, then the average cost of conflict clause generation will be reduced. As an

alternative, decision ordering can be used as learning. Since the SAT instance is assumed

to be satisfiable, each segment1 of the CNF clauses should be satisfiable. The searching

time for a segment is much shorter than the original SAT instance. Although a segment

can not reflect the global view of the system, if the satisfiable assignment of the segment is

consistent to the partial variable assignment of the original SAT instance, it will be helpful

to reduce the overall test generation time of the original SAT instance.

5.3.1.1 Heuristic Implementation

The basic idea of our heuristic for test generation involving a single property is

to use the learnings from a small part of the SAT instance to guide the search of the

whole SAT instance. By dividing the SAT instance into two segments, we can get the

first segment which contains the initial state constraints and the second segment which

contains property constraints. After checking any one of them, we can get the partial

variable assignments which can be used as decision ordering learning, and we can get the

conflict clauses which can be forwarded to the original property according to Theorem 2 in

Chapter 4.

Figure 5-6 demonstrates an example of using such learnings. In Figure 5-6b, we first

check one part of the SAT instance and get the corresponding learnings. Then during the

checking of whole SAT instance, under the guidance of the learned knowledge, the overall

search path is shortened compared to Figure 5-6a.

1 A CNF SAT instance can be viewed as a union of a set of segments where each
segment consists of a set of CNF clauses.

105

1st search

2nd search

1st search traceSearch trace 2nd search trace

a) A search without any learnings b) A search with two kinds of learnings

Figure 5-6. Learning techniques for a single property

Our decision ordering heuristics implementation uses an array var[sz] (sz is the

largest variable number for CNFs) to indicate the satisfiable assignment result of the

first search. Each element of the array var[i] (0 < i ≤ sz) has three values: 1 means

that the ith variable is assigned with 1; 0 means that the ith variable is assigned with

0; and -1 implies that the variable is not assigned during the first search. So during the

second search, the literal score is calculated using the following formula where max(vi) =

MAX(chaff score(vi), chaff score(vi′))+1.

score(li) =

max(vi) (var[i] == 1 & li = vi)

or(var[i] == 0 & li = v′i)

chaff score(vi) otherwise

(5–3)

5.3.1.2 Test Generation

Algorithm 7 describes our test generation procedure for a single property using

learnings from some part of the SAT instance corresponding to the original property. Step

1 initializes all the elements of var with -1. Step 2 generates the CNF clauses for the

property p. After dividing the CNF into two parts in step 3, step 4 solves the clauses in

any one part and derives the learning in the form of decision ordering and conflict clauses.

Step 5 updates the var. Finally, step 6 uses the learning to guide the test generation of

the original property.

106

Algorithm 7: Test Generation for a Single Property

Input: i) Formal model of the design, D

ii) Property p with bound b

Output: A test t for p with generated conflict clauses

1. Initialize var;

2. CNF = BMC(D, p, b);

3. Divide CNF into CNF1 and CNF2;

4. (assign, conf clauses1)=SAT(CNF1 or CNF2, var, NULL);

5. Update var using assign;

6. (t, conf clauses2) = SAT(CNF , var, conf clauses1);

return (t, conf clauses1 + conf clauses2);

It is important to note that our heuristic for a single property is based on the

assumption that the decision ordering knowledge learned from the first search has a large

overlap with a satisfiable assignment of the second search. Although the forwarded conflict

clauses can prune the decision space, it is still possible that the first search may mislead

the second search which will aggravate the overall searching time. Since we halve the

SAT instance and each part can be checked individually, for test generation, we use the

following three strategies in parallel:

• Directly solve the original SAT instance.

• Solve the first part and use the learnings to solve the original instance.

• Solve the second part and use the learnings to solve the original instance.

Once one of the above methods finds a satisfiable assignment, the remaining two

processes will be terminated. Therefore, we can guarantee the worst case of the test

generation time is the same as directly solving the original SAT instance.

5.3.2 Test Generation for a Cluster of Similar Properties

For similar properties, there exists a large overlap between corresponding counterexamples.

Therefore the satisfiable assignments of checked properties can be used as a learning for

107

other properties in the cluster. Some of the derived conflict clauses can also be forwarded

as learning. This sub-section will discuss how to extract the bit-value ordering and

variable ordering based learnings from the checked properties in details. Also we will

describe an algorithm to utilize the learning based on decision ordering for test generation

of a cluster of similar properties.

5.3.2.1 Heuristic Implementation

In our heuristic implementation, we predict the decision ordering based on the

statistics collected from the checked properties. Let varStat[sz][2] (sz is the largest

variable number for CNFs) be a 2-dimensional array to keep the count of variable

assignments. Initially, varStat[i][0] = varStat[i][1] = 0 (0 < i ≤ sz). varStat will

be updated after checking each property. Assuming we are now checking property pj, if

the value of variable vi in the assignment of the pj is 0, then varStat[i][0] will be increased

by one; otherwise, varStat[i][1] will be increased by one. This updated information of

varStat will be utilized when checking property pj+1.

d

b d

0 1

varStat

[1] v’

[0] v

a

varStat

[0] v

[1] v’

......

......

......1100

1 0 0

cb

......

......1200

2

a c

0

varStat

[0] v

[1] v’

a

0

b c d

0 0

00 0 0

p1: a=0, b=0, c=1, d=1

......

......

1

2

......

predict ordering for p3

p2: a=0, b=0, c=1, d=0

score(a’)

score(c)
score(b) score(b’)

score(c’)

score(a)

a = 0, b = 0, c = 1, d = ?

Learning from p1 + p2

Learning from p1Initial values

Figure 5-7. Statistics for two properties

For example, if we have three properties p1, p2 and p3, the statistics after checking p1

and p2 are shown in Figure 5-7. When checking p3, we can predict its decision ordering

based on the collected information saved in varStat. The content of varStat indicates

108

that variables a and b are more likely to be 0, c is more likely to be 1 and d can be

assigned any value. Furthermore, varStat implies that the assignments for variable a, b

and c are more consistent than the assignment for variable d. Thus the score of variable

a, b and c will be increased. In other words, they will be searched first as described in

Section 5.2.3.

Assuming li is a literal of vi, we use the following equation to predict the bit value

assignment of vi when checking pj+1.

potential(li) =

1 (varStat[i][1] > varStat[i][0]&li = vi)

or(varStat[i][1] < varStat[i][0]&li = v′i)

0 otherwise

(5–4)

Here, potential(li) = 0 means that value of li is more likely to be 0 in the satisfiable

assignment of pj+1. For example, in Figure 5-7, potential(a) = 0 which means that a is

more likely to be assigned with 0. Let

ratio(i) =
max(varStat[i][0], varStat[i][1]) + 1

min(varStat[i][0], varStat[i][1]) + 1
(5–5)

indicates the assignment variance of variable vi. The larger ratioi means that the value

assignments for variable vi are more consistent. So it can be used for variable ordering. e

Our decision ordering heuristic is based on VSIDS. The only difference is that our

method incorporates the statistics of previously checked properties. For each literal li, we

use score(li) to describe its priority. Initially, score(li) is equal to the literal count of li.

At the beginning of search as well as periodically decaying time, the literal score will be

recalculated using the following equation where max(vi)=MAX(score(vi), score(vi’))+1.

score(li) =

max(vi) ∗ ratio(i) pontential(li) = 1

score(li) ∗ ratio(i) otherwise

(5–6)

109

5.3.2.2 Test Generation

Algorithm 8: Test Generation for A Property Cluster

Input: i) Formal model of the design, D

ii) Property cluster, P , with satisfiable bounds

Output: Test-suite

1. Initialize varStat;

2. Select the base property p1 and generate CNF, CNF1;

for i is from 2 to the size of cluster P do

3. Generate CNF, CNFi = BMC(D, pi, boundi);

4. INTi = ComputerIntersection(CNF1, CNFi);

5. Mark the clause of CNF1 using INTi;

end

6. (test1, conf clause) = Algorithm7(D, p1, bound1);

Test-suite = {test1} ;

for i is from 2 to the size of cluster P do

7. Update varStat using testi−1;

/*Figure out the learned conflict clauses from p1*/;

8. CCi = Filter(conf clause, i) ;

9. (testi,) = SAT(CNFi, vatStat, CCi);

Test-suite = Test-suite ∪ testi;

end

return Test-suite;

Algorithm 8 describes our test generation methodology. The inputs of the algorithm

are a formal model of the design and a cluster of similar properties. The first step

initializes varStat which is used to keep statistics of the variable assignments. Step 2

generates the CNF clauses for the base property p1. Step 3 generates the CNF clauses for

other properties. After figuring out the intersection between the base property with other

properties in step 4, step 5 marks the clauses of base property (the marking is used for

conflict clause identification in step 8). Step 6 solves the base property using Algorithm 7,

110

and generates a test as well as the conf clause which can be used as learnings for the

test generation of the remaining properties in the cluster using steps 7-9. After solving

each property, we need to update the varStat in step 7. Step 8 finds the proper conflict

clauses which can be forwarded to the current property. Step 9 solves the current property

using the learnings based on conflict clauses and decision ordering. Finally, the algorithm

reports all the generated counterexamples (tests). It is important to note that this

algorithm combines both the conflict clause and decision ordering based learnings. If

only decision ordering learning is used, steps 4, 5, 8 should be omitted. Similarly, if only

conflict clause forwarding is applied, then step 7 should be omitted.

5.4 Case Study

This section presents case studies for efficient test generation using our decision

ordering as well as conflict clause based heuristics. Section 5.4.1 presents the case studies

using intra-property learnings for checking individual SAT instances. The benchmarks

collected are all pre-generated satisfiable SAT instances. By using inter-property learning

for a cluster of similar SAT instances, Section 5.4.2 presents two case studies: a VLIW

implementation of the MIPS architecture (described in Section 2.3.2) and the stock

exchange system (described in Section 2.3.5). We used NuSMV [27] to generate the CNF

clauses (in DIMACS format). We modified the SAT solver zChaff [74] to incorporate

our proposed decision ordering heuristic on top of VSDIS. The experimental results are

obtained on a Linux PC using 2.4GHz Core 2 Duo CPU with 2 GB RAM.

5.4.1 Intra-Property Learning

The benchmarks are collected from [83] and [85]. In [83], there are 13 SAT instances

given in the benchmark set which are all taken from real industrial hardware designs

(contribution of IBM research and Galileo). We chose four complex instances from them,

because most SAT instances provided in [83] take short time during falsification. Apart

from these four benchmarks, we also chose the benchmarks of two complex designs from

111

[85] as follows. Since we are focusing on test generation, the collected SAT instances are

all satisfiable.

• VLIW-SAT-4.0, buggy VLIW processors with instruction queues and 9-stage
pipelines; the processors support advanced loads, predicated execution, branch
prediction, and exceptions.

• PIPE-SAT-1.1, buggy variants of the pipe benchmarks as presented in [86].

For the intra-property learning, we divide each SAT instance into two segments

with the same number of clauses. Table 5-1 shows the test generation details using

various intra-property learning techniques. The first column shows the names of the SAT

instances. The second and third columns indicate the CNF size information including

the variable number and clause number. The fourth column indicates the checking time

by directly using zChaff without any other learning information. The fifth column shows

the checking time using intra-property learning based on conflict clause forwarding,

and the sixth column shows the test generation time using our decision ordering based

heuristics. The seventh column presents the result which incorporates both conflict clause

forwarding and decision ordering techniques as described in Section 5.2.4. Since we run

different methods on different computers with the same settings, when one machine gets

the satisfiable assignment, all the remaining SAT searches on the other machines will be

terminated. Therefore the SAT searching time is the minimum searching time among

these techniques. Based on such minimum time, the last column indicates the maximum

speedup using the following formula:

speedup =
MIN(zChaff, Conflict Clause, Decision Ordering, Hybrid)

zChaff
(5–7)

where zChaff , Conflict Clause, Decision Ordering and Hybrid indicate the results of

columns 4-7 in Table 5-1, respectively.

It is important to note that the execution time in columns 5-7 which adopt the

intra-property learning techniques includes the learning time from divided/segmented

112

Table 5-1. Test generation results using intra learnings

SAT CNF Size zChaff [74] Conflit Clause Decision Ordering Hybrid Max
Instance #Variable #Clause Time(s) Time(s) Time(s) Time(s) Speedup

bmc-galileo-8 58074 294821 0.99 0.43 0.74 0.41 2.30

bmc-galileo-9 63624 326999 1.74 0.99 0.94 0.56 3.11
Bmc-ibm-10 59056 323700 7.98 3.96 8.23 7.86 2.02
Bmc-ibm-11 32109 150027 6.98 4.58 1.8 6.97 3.88

VLIW-1 521188 13378461 1366.78 1070.4 2074.19 489.15 2.79
VLIW-2 521158 13378532 198.12 77.45 221.17 298.16 2.56
VLIW-3 521046 13376161 145.46 151.85 55.66 52.93 2.75
VLIW-4 520721 13348117 1126.13 295.15 599.22 94.4 11.93
VLIW-5 520770 13380350 879.24 757.09 703.1 167.78 5.24
VLIW-6 521192 13378781 211.50 51.49 544.26 317.26 4.11
VLIW-7 521147 13378010 87.61 189.41 357.63 400.74 1.00
VLIW-8 521179 13378617 1227.75 952.13 443.38 377.74 3.25
VLIW-9 521187 13378624 962.82 107.99 1523.44 1590.54 8.92
VLIW-10 521182 13378625 1769.14 915.73 930.2 1595.05 1.93

PIPE-1 138917 4678756 1327.92 752.52 279.82 278.17 4.77
PIPE-2 138918 4678718 1710.66 1703.37 403.97 403.97 4.23
PIPE-3 138917 4678757 825.78 394.07 365.04 969.33 2.26
PIPE-4 138563 4675040 1080.10 32.57 408.13 14.06 76.82
PIPE-5 138918 4678760 626.9 566.75 603.45 114.57 5.47
PIPE-6 138795 4671352 0.43 0.65 117.44 117.23 1.00
PIPE-7 138918 4678760 1734.26 987.88 1359.35 534.72 3.24
PIPE-8 138711 4688614 113.07 2.06 0.65 0.65 173.95
PIPE-9 138916 4676007 6062.27 6065.7 355.56 355.62 17.05
PIPE-10 138918 4678760 1430.29 1074.18 277.98 978.93 5.15

113

CNFs. This table shows that our method can drastically reduce the test generation time

(up to 174 times). We can observe that in majority of the cases, the conflict clauses

forwarding based intra-property learning can improve the test generation time compared

to zChaff. However, decision ordering method and hybrid method are not always helpful.

This is because the decision ordering based method may lead the search in a wrong way

with more conflicts.

Figure 5-8 and 5-9 show the statistics of conflicts and implications for the collected

benchmarks using various intra-property learning methods. We normalized the generated

conflict clauses for each learning method using the total conflict clauses and implications

generated by the four different methods shown in Table 5-1. The vertical axis of the

stacked graphs shows the normalized percentage of conflict clauses and implications

respectively. We can find that the result of the percentage of conflict clauses and

implications is consistent. In other words, less conflicts will result in less implications.

Furthermore, these figures also are consistent to the test generation performance shown

in Table 5-1. It indicates that, by using the proposed intra-property learning methods in

parallel, we can drastically reduce the conflicts as well as implications during the SAT

searching. Consequently we can save the test generation time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
on

fli
ct

 C
la

us
e

Pe
rc

en
ta

ge

zChaff Conflict Clause Decision Ordering Hybrid

Figure 5-8. Conflict statistics using various intra-property learnings

114

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Im

pl
ic

at
io

n
P

er
ce

nt
ag

e
zChaff Conflict Clause Decision Ordering Hybrid

Figure 5-9. Implication statistics using various intra-learnings

5.4.2 Inter-Property Learning

5.4.2.1 A MIPS Processor

The MIPS processor design is based on the example described in Section 2.3.2. We

applied our methodology to generate the required directed tests for four pipeline paths in

the execute stage (ALU, FADD, MUL and DIV).

Due to the similarity, we cluster the properties of each path together to share the

learning. There are 16 properties divided into 4 clusters. Each cluster has a base property.

Table 5-2 shows the results. The first column indicates the component under test. The

second column shows the properties used for test generation. The third column gives

the test generation time using zChaff directly. The fourth column shows the result by

forwarding conflict clauses among properties. It has three sub-columns. Since the conflict

clauses forwarding based method needs to explore the common clauses, we need to figure

out the intersection between SAT instances. Therefore the first sub-column gives the

intersection time. The second sub-column gives the checking time under the learning

of conflict clauses. The third sub-column gives the speedup over zChaff (speedup =

zChaff T ime

Intersection T ime + Checking T ime
). The fifth column gives the test generation result using

decision ordering based learnings. It has two sub-columns: i) test generation time, and ii)

115

speedup over zChaff. The last column shows the result which uses both conflict clauses

and decision ordering based learnings.

For the base property of each cluster, we adopt the intra-property learning techniques.

Since the base property is a major bottleneck of the clustering based methods described

in Chapter 4, the test generation time reduction for the base property can drastically

increase the overall performance. In Table 5-2, we also give the summary for each

property cluster. We found that the hybrid method needs less time during the test

generation. However, since the conflict clause forwarding needs to consider the SAT

instance intersection, the overall performance of hybrid method is worse than the decision

ordering based method. In general, the decision ordering based method can achieve the

best performance. In this case study of four clusters with four property in each cluster, we

can achieve 4-6 times improvement.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

C
on

fli
ct

 C
la

is
e

N
um

be
r

Properties

zChaff Conflict Clause Variable Ordering Hybrid

Figure 5-10. Conflict statistics for MIPS processor

During the SAT searching, the number of conflict clauses and number of implications

strongly indicate the searching time. Figure 5-10 illustrates the conflict clause generation

for each property during the search using different methods. Figure 5-11 shows the

corresponding implication numbers. It can be seen that, by using our method, the

number of conflict clauses and implications can be reduced drastically by several

orders-of-magnitude, which results in significant improvement in test generation time.

116

Table 5-2. Test generation result for MIPS processor

MIPS Prop. zChaff [74] Conflict Clause Decision Ordering Hybrid
Component (Tests) Time (s) Inter. (s) Time (s) Speedup Time (s) Speedup Inter. (s) Time (s) Speedup

p1
1 19.78 0 11.9 1.66 13.08 1.51 0 9.36 2.11

ALU p2 16.55 2.49 0.87 4.93 0.13 127.31 2.49 0.11 7.84
Unit p3 15.41 2.08 1.82 3.95 0.15 102.73 2.08 0.11 6.45

p4 16.21 2.66 0.54 5.07 0.18 90.06 2.66 0.12 5.69

Summary all 67.95 22.36 3.04 13.54 5.02 16.71 4.07

p5
1 15.21 0 16.14 0.94 16.09 0.95 0 8.34 1.82

DIV p6 19.83 2.77 1.84 4.30 0.12 165.25 2.77 0.11 9.40
Unit p7 13.74 2.79 0.98 3.64 0.49 28.04 2.79 0.15 5.56

p8 13.24 2.84 0.91 3.53 0.14 94.57 2.84 0.18 4.66

Summary all 62.02 28.27 2.19 16.84 3.68 15.76 3.94

p9
1 16.01 0 18.00 0.89 11.59 1.38 0 9.33 1.72

FADD p10 15.38 2.61 2.60 2.95 0.16 96.13 2.61 0.12 5.01
Unit p11 15.63 2.08 1.80 4.03 0.12 130.25 2.08 0.12 6.65

p12 18.37 2.88 0.92 4.83 0.12 153.08 2.88 0.12 7.09

Summary all 65.39 30.89 2.12 11.99 5.45 17.34 3.77

p13
1 50.90 0 38.9 1.31 31.88 1.60 0 26.18 1.94

MUL p14 51.27 3.35 13.14 3.11 0.29 176.79 3.35 0.66 15.40
Unit p15 47.85 3.14 15.06 2.63 0.22 217.50 3.14 0.61 12.24

p16 53.44 2.89 14.59 3.06 0.25 213.76 2.89 0.15 16.75

Summary all 203.46 91.07 2.23 32.64 6.23 36.61 5.56

1 Base property

117

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

Im
pl

ic
at

io
n

N
um

be
r

Properties

zChaff Conflict Clause Variable Ordering Hybrid

Figure 5-11. Implication statistics for MIPS processor

It is important to note that the hybrid method can achieve least number of conflicts and

implications, which justifies our discussion in Section 5.2.4.

5.4.2.2 A Stock Exchange System

The formal NuSMV description of the on-line stock exchange system (OSES)

is derived from its UML activity diagram specification described in Section 2.3.5 in

Chapter 2. A path in the UML activity diagram indicates a stock transaction flow. There

are a total of 49 properties generated based on path coverage criteria. According to their

similarity, we group them into nine clusters.

Table 5-3. Test generation result for stock exchange system

Cluster Size zChaff Conflict Clause Decision Ordering Hybrid Max
[74] (s) (s) (s) (s) speedup

C1 3 13.63 11.93 8.55 10.71 1.59
C2 4 26.35 35.37 3.99 7.75 6.60
C3 8 463.54 183.06 41.24 50.43 11.24
C4 4 3.36 5.01 1.49 5.56 2.26
C5 4 66.59 40.47 6.38 11.30 10.44
C6 8 343.88 270.48 12.28 23.33 28.00
C7 2 17.81 6.73 7.03 6.20 2.87
C8 8 666.61 343.94 51.80 71.19 12.87
C9 8 208.50 101.91 34.99 34.83 5.99

Average - 201.14 110.99 18.64 24.59 10.79

Table 5-3 shows the test generation results involving all the 9 clusters. The first

column indicates the clusters. The second column indicates the size of each cluster

118

(number of properties). The third column presents the test generation time (including

base property) using zChaff. The fourth column gives the result using conflict clause based

inter- and intra- property learnings. The fifth column presents the result using decision

ordering based inter- and intra- property learnings. The sixth column indicates the test

generation time using both learnings (i.e., hybrid method). The last column indicates

the maximum speedup using our heuristic methods. In this case study, our approach can

produce an average of 10.79 times overall improvement in test generation time compared

to zChaff. It is important to note that the decision ordering method can achieve the best

performance, which is consistent with the result obtained in Section 5.4.2.1.

5.5 Summary

To address the complexity of test generation using SAT-based BMC, this chapter

presented a novel methodology which explores the intra-property learnings within a SAT

instance and inter-property learnings between similar SAT instances. All these learnings

are based on decision ordering heuristics as well as conflict clause forwarding techniques.

To the best of our knowledge, our work is the first attempt to share the decision ordering

learnings on different parts of a SAT instance as well as across multiple properties.

By exploiting the commonalities during the search of satisfiable assignments, the test

generation time of a single property as well as a set of similar properties can be reduced.

The experimental results using both hardware and software designs demonstrated the

effectiveness of our method. Our studies show that hybrid learning is more profitable for

solving one SAT instance, whereas decision-ordering based learning is more beneficial for

solving a set of similar SAT instances.

119

CHAPTER 6
EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES

Checking the first (base) property is a major bottleneck during the test generation

using clustering and learning techniques, since the base property can not actively obtain

learnings from others to improve its test generation time. Especially when checking a

large design with complex properties (i.e., properties with large cone of influence or deep

bounds), BMC based methods are very costly since large SAT instances indicate long SAT

search time.

p1 pm......p2 p1 p2 pn......

t1 t2 tm

Composition

T

learnings P

BMC

T’
a) Test−oriented decompositionb) Our Learning−oriented decomposition

+

PP

Figure 6-1. Two property decomposition techniques

To address this problem, Koo et al. proposed a property decomposition technique

[47] as shown in Figure 6-1a. The basic idea is to decompose a complex property into

several simple sub-properties, and then compose the tests corresponding to sub-properties

to derive a test for the original property. Since the test generation time of sub-properties

is typically several orders of magnitude smaller than the original property, the state

space explosion problem can be avoided in many scenarios. However, the composition of

tests of sub-properties is a major bottleneck in this method since it is hard to automate.

The inevitable human intervention and expert knowledge is required during the test

composition. In many cases, it may not be possible to obtain the required counterexample

by composing partial (local) counterexamples. As an alternative, in this chapter, we

120

propose a learning-oriented decomposition technique shown in Figure 6-1b which can

be fully automated. Unlike the test-oriented method in [47], our approach is based on

the learned knowledge (i.e., decision ordering) during the test generation of decomposed

profitable sub-properties. Such learnings can be used to drastically accelerate the original

property falsification. Therefore the overall test generation effort can be significantly

reduced. Our method makes three important contributions: i) it proposes a method

that can spatially or temporally decompose a complex property into several simple but

profitable sub-properties; ii) it proposes an approach that can derive learnings from the

decomposed sub-properties; and iii) it proposes a method that can guide the complex

property checking using derived learnings.

Formal Model
Generation

Formal Model
Learnings

Test Generation

Specification Implementation

ValidationValidation Test cases

(SMV Input)

Design Specification

Decomposition
Property

Complex

Checking

Properties

Figure 6-2. Our test generation framework

Figure 6-2 shows our test generation framework. The inputs to this framework are

the design specification and required properties. To reduce this complexity, there are three

important steps (three shaded boxes in the figure). First, we propose two novel property

decomposition techniques which can significantly reduce the complexity during property

121

falsification. Next, by checking the selected profitable sub-properties, we can collect

useful learnings for the original property checking. Finally, the learned knowledge can be

utilized as a decision ordering heuristic to avoid the unnecessary conflicts during the test

generation. Therefore, the test generation time can be drastically reduced.

The rest of the chapter is organized as follows. Section 6.1 proposes two novel

property decomposition methods based on learning techniques. Section 6.2 presents the

decision ordering based learning techniques for original property checking. Section 6.3

describes how to use the learned knowledge from the decomposed properties for test

generation. Section 6.4 shows an example using our decomposition techniques. Section 6.5

presents case studies using both hardware and software designs. Finally, Section 6.6

summarizes the chapter.

6.1 Learning-Oriented Property Decomposition

This section first discusses the potential learnings of the properties for test generation.

Next, we propose our spatial and temporal decomposition techniques.

6.1.1 Potential Learnings for Complex Properties

During test generation using BMC based methods, there are two kinds of complex

properties which are often encountered: i) properties which describe complex scenarios

involving multiple components of the design; and ii) properties which indicate events with

long delay. Both cases will result in large SAT instances because of the corresponding

large Cone of Influence (COI) and large bounds. Therefore it is necessary to explore

learnings to reduce the complexity during the test generation.

For a complex system level property which describes interactions between different

components, it can be partitioned into multiple component level sub-formulas. As an

example shown in Figure 6-3, a system level property P can be broken into 3 component

level sub-properties P1, P2 and P3 with different COI. When checking a sub-property

such as P1 with a small COI, it usually needs much less time and space than that of

checking the complex property P . The knowledge learned during checking P1 can be used

122

for test generation of the property P . In Section 6.1.2, we propose a spatial property

decomposition method to explore such learnings.

Cone 2

Cone 3

P1

P2

P3

V1

V2

V3

V4

V5

Vn

. .
 .

. .
 .

Design Block

Cone 1

P

Figure 6-3. The COI of a design block

Transactions are widely used to describe SoC system level behaviors. A transaction

is a sequence of strongly relevant events. As an example shown in Figure 6-4, there are

3 transactions, and each transaction has two events. We classify the relation between

these events in two categories. The cause effect relation (marked by ⇒) defines the

relation of intra-transaction events. For example, in transaction T1, if e1 happens, then e2

should happen in future. The happen before relation (marked by ≺) specifies the relation

of inter-transaction events. It indicates which events happen before other events. For

example, e4 ≺ e5 means e4 happens before e5.

During the test generation for transactions, we specify a negated safety property to

indicate the occurrence of event e in the form of ∼ F (e). Generally, if an event happens

with a long delay, BMC will unroll the design many times which will drastically increase

the checking complexity. According to the definition, the “⇒” relation can be used to

derive helpful learnings. For example in Figure 6-4, let property P1 =∼ F (e1) and

property P2 =∼ F (e2). Since e1 ⇒ e2 implies F (e1) → F (e2), i.e., ∼ P1 →∼ P2, it

shows that the P1’s counterexample will be helpful for deriving P2’s counterexample.

Such information can be used as a learning. The “≺” relation also can be used to indicate

123

the learning information. Assuming e4 ≺ e5, the counterexample of ∼ F (e4) is shorter

than the counterexample of ∼ F (e5). However, by our observation, counterexample of

∼ F (e4) may have a large overlap of variable assignments with the counterexample of

∼ F (e5). Therefore the learning from ∼ F (e4) can benefit the test generation of ∼ F (e5).

In Section 6.1.3, we propose a temporal property decomposition method to explore such

learnings.

e1 e2

e6

T1

e3

T2

e4
e5

T3

Figure 6-4. A functional scenario with three transactions

6.1.2 Spatial Property Decomposition

A complex false safety property can be decomposed into a set of sub-properties with

equivalent semantics. If the partial counterexamples generated by the sub-properties can

be refined to guide the complex property falsification, the original property is spatially

decomposable.

Definition 8. Let P be a false safety property. P is spatially decomposable in the form

p1 ∧ p2 ∧ . . .∧ pn or in the form p1 ∨ p2 ∨ . . .∨ pn if all the following conditions are satisfied.

• If the decomposed properties are in the form p1∧p2∧. . .∧pn, then at least one property
pi (1 ≤ i ≤ n) has a counterexample. In this case, the bound of P is the minimum
bound of pi which has a counterexample.

• If the decomposed properties are in the form p1 ∨ p2 ∨ . . . ∨ pn, then each property pi

(1 ≤ i ≤ n) has a counterexample. In this case, the bound of P is the maximum bound
of all decomposed properties.

124

• The counterexamples generated from properties pi (1 ≤ i ≤ n) can guide the test
generation for property P .

According to Definition 13, the following rules can be used for complex property

decomposition.

∼ X(p ∨ q) ≡∼ X(p)∧ ∼ X(q)

∼ X(p ∧ q) ≡∼ X(p)∨ ∼ X(q)

∼ F (p ∨ q) ≡∼ F (p)∧ ∼ F (q)

(6–1)

The false property in the form of ∼ F (p ∧ q) and ∼ F (p → q) cannot be

directly decomposed into conjunctive or disjunctive form. However, by introducing a

synchronization clock clk, they can be spatially decomposed. It is important to note that

the value of the clk indicates the bound of the false property. The Equation (6–2) shows

that the counterexample of ∼ F (p ∧ q ∧ clk = k) can be refined by the counterexamples of

∼ F (p ∧ clk = k) and ∼ F (q ∧ clk = k).

∼ F (p ∧ q ∧ clk = k) ≡∼ F (p ∧ clk = k)∨ ∼ F (q ∧ clk = k)

where ∼ F (p ∧ q ∧ clk = k) is false.

(6–2)

For a false property in the form F (p → q), p describes the pre-condition, and q indicates

the post-condition. When the property G(∼ p) holds, F (p → q) will be vacuously

true, and the checking of ∼ F (p → q) will report a counterexample without satisfying

the precondition p. This counterexample may not match the original intention. In

Equation (6–3), we only consider the case where the pre-condition p is satisfied.

∼ F (p→ q ∧ clk = k) ≡∼ F (p ∧ clk = k)∨ ∼ F (q ∧ clk = k)

where ∼ F (p→ q ∧ clk = k) and ∼ F (p ∧ clk = k) are false.

(6–3)

Based on the rules presented in Equation (6–1)-Equation (6–3), a system level property

can be decomposed in the form of p1 ∧ p2 ∧ . . . ∧ pn or p1 ∨ p2 ∨ . . . ∨ pn. In fact, if the

complex property can be decomposed in the form p1 ∧ p2 ∧ . . . ∧ pn, it is not necessary to

125

use the learning information. We just need to sort the property pi (1 < i ≤ n) according

to their increasing bounds, and check the sub-properties from the small bounds to large

bounds. The counterexample of first falsified property can be used as a counterexample for

the complex property.

When checking a complex property in the form of p1 ∨ p2 ∨ . . . ∨ pn, it is not necessary

to check all its sub-properties. Because the bounds of sub-properties are the same as the

complex property, if the COI of a sub-property is similar to the complex property, the test

generation complexity of such sub-property will be similar to the complex property. In this

case, it is not economical to use learning. Therefore we need to figure out sub-properties

with small COI from the complex property.

pi ∨ pj ∨ pk = (pi ∨ pk) ∨ pj (6–4)

According to the commutative law, for a complex property, we can classify its

atomic sub-properties into several clusters. For example, in Equation (6–4), pi and pk

are clustered together, and pj belongs to another cluster. For each cluster, we generate a

refined property which represent all the atomic sub-properties in the cluster to derive the

learning. Based on our experience, the following clustering rules work well for most of the

time.

Structural similarity: In each cluster, all the variables in the sub-formulas should come

from the same component (e.g., fetch module in a processor design).

Functional similarity: In each cluster, all the sub-formulas should describe the related

functional scenarios (e.g., fetching instructions and/or data).

Algorithm 9 presents our spatial decomposition method which can derive a set of

refined sub-properties with small COI for learning. The inputs of the algorithm are

a design model D and a complex property P in disjunctive form. Step 1 initializes

the SD props with an empty set. Step 2 tunes sub-properties’ order according to the

commutative law and clusters sub-properties using the similarity rules. Step 3 selects the

126

ith cluster. If the COI of such cluster is smaller than k
n

of P ’s COI, step 4 will generate

a new refined property newP for the ith cluster. Step 5 adds newP to SD props. The

refined property newP for learning represents a cluster of sub-properties as shown in step

3. Finally this algorithm will return a set of refined sub-properties for deriving learnings

(described in Section 6.2). Since the COI of a refined property in SD props is small, its

test generation time will be much smaller than that of the original complex property. It is

important to note that this algorithm may return an empty set which means the property

cannot be spatially decomposed.

Algorithm 9: Spatial Decomposition

Input: i) The design model, D

ii) A property P in the form p1 ∨ p2 ∨ . . . ∨ pn

Output: A set of refined sub-properties for learning, SD props

1. SD props = {};

2. (cluster1, . . . , clusterm) = clustering(P,modular/functional);

for i is from 1 to m do

3. cluster i = {prop1, . . . , propk};

if COI(clusteri) ≤
k
n
COI(P) then

4. generate a refined property newP for the clusteri;

5. SD props = SD props
⋃

newP ;

end

end

return SD props;

6.1.3 Temporal Property Decomposition

Temporal property decomposition tries to eclipse the bound effect. The basic idea

of temporal decomposition is to deduce a long bound property from a sequence of

short bound properties. For example, P1, P2, P3 and P4 (P4 = P) are properties

indicating four different stages of property P . The bound of them are K1, K2, K3 and

K4, respectively, and K1 < K2 < K3 < K4. Because P1’s counterexample is similar

to the prefix of the P2’s counterexample, P1’s counterexample contains rich knowledge

127

that can be used when checking P2. Similarly, during the property checking, P3 can

benefit from P2 and P4 can benefit from P3. Therefore the knowledge learned from lower

bound properties can be reused by the larger bound property. Such learning can avoid

some unnecessary random SAT searching and can quickly obtain the counterexample for

property P .

Definition 9. Let P be a false safety property, and P is temporally decomposable if all the

following conditions are satisfied.

• P can be divided into false properties p1, p2, . . . and pn (P = pn) with increasing
bounds.

• ∼ pi →∼ pi+1 (1 ≤ i ≤ kn − 1), which indicates the counterexample generated from
properties pi can guide the test generation for property pi+1.

If the counterexamples of lower bound property can be used to reason about P , the

property P is temporally decomposable. In temporal decomposition, finding the implication

relation (“→”) between properties is a key process. In our framework, we construct such

implication relation by exploring the order between events, i.e. “⇒” or “≺”.

e3 e5

e6

e4

e1 e2 e7 e8 e9
1

3

5 5

1 2

2
2 1

Event Happen beforeCause effect

Figure 6-5. A DAG of event relation

When checking a large bound property for a transaction, there may be many events

along the path to the target events. Checking all these events to obtain learnings is

time-consuming. For example, assuming that we want to check the property ∼ F (e9),

128

the relation between events is described using a directed acyclic graph (DAG) shown in

Figure 6-5. Each node indicates an event, and each directed edge indicates the relation

of “⇒” or “≺”, and each edge is associated with the delay between events. In this DAG,

there are 8 events that happen before e9. However, it is not necessary to check all of them.

Since the branch nodes of a DAG contain the critical variable assignment information,

in our decomposition method, we only consider the events which determine the branches

along the path from initial state e1 to the target state e9.

Algorithm 10 describes how to obtain a sequence of properties based on temporal

decomposition. It accepts an event DAG with the initial and target events as inputs. Step

1 uses Dijkstra’s algorithm [24] to find a shortest path. Step 2 initializes the sequence

TD props with a property for the initial event. Step 3 and 4 select the branch events and

append their correspond properties to the TD props. Finally the algorithm reports the

property sequence for deriving learnings. By using this algorithm, (∼ F (e1), ∼ F (e3),

∼ F (e7)) is a property sequence from the temporal decomposition in Figure 6-5.

Algorithm 10: Temporal Decomposition

Input: i) An event DAG, D

ii) Initial event src, target event dest

Output: A property sequence TD props

1. path = Dijkstra(D, src, dest) to find the shortest delay path;

2. TD props = (property for src);

for i is from 2 to len (number of events in path) do

3. (ei−1, ei) = (i − 1)th edge of path;

if out degree(ei−1) + in degree(ei) > 2 then

4. Append the property for ei to TD events;

end

end

return TD props;

129

6.2 Decision Ordering Based Learning Techniques

SAT based model checking encodes a property checking problem into a SAT instance

(a Boolean formula). A counterexample of the property is a satisfiable variable assignment

for this formula. Although the variable assignment of counterexamples derived from the

decomposed sub-properties may not satisfy the SAT instance of the complex property,

it has a large overlap with the complex property on the variable assignment. Such

information can be used as a learning to bias the decision ordering when checking the

complex property.

During the SAT search, decision ordering plays an important role to quickly find

a satisfiable assignment. The learning approach in this chapter is motivated by the

work proposed in Chapter 5. It is based on Variable State Independent Decaying Sum

(VSIDS) method [63]. A major difference is that our method incorporates the statistics of

decomposed properties. Since different sub-properties have different bounds, we consider

such information in our heuristics.

Let bounds be an array which stores the bound of k sub-properties. Because in

spatial method the decomposed sub-properties may be independent, the learning between

sub-properties is not significant. So we set bound[i] = 1(1 ≤ i ≤ k). However for

temporal decomposition, the vstat information of lower bound properties can further

benefit the larger bound property checking. Moreover the larger bound sub-property is

closer to the final properties than smaller bound sub-properties. Therefore, for temporal

decomposition based method, the sub-properties is sorted according to the increasing

bound and bound[i] indicates the bound of ith property. Let vstat[sz][2] (sz is the variable

number of the complex property) be a 2-dimensional array to record the statistics of

variable assignments. Initially, vstat[i][0] = vstat[i][1] = 0 (0 < i ≤ sz). vstat will be

updated after checking each sub-property. When checking the sub-property pj , if variable

vi is evaluated and its value in the counterexample is 0 (false), vstat[i][0] will be increased

by bounds[j]; otherwise if vi = 1 (true), vstat[i][1] will be increased by bounds[j].

130

Assuming li is a literal of vi (vi has two literals, vi and vi’), we use score(li) to

indicate its decision ordering. Initially, score(li) is equal to the literal count of li. However,

at the beginning of SAT searching and periodic score decaying, the literal score will be

recalculated. Let

bias =
MAX(vstat(vi), vstat(v

′
i)) + 1

MIN(vstat(vi), vstat(v′i)) + 1

indicate the variable assignment variance.

score(li) =

max(vi) ∗ bias (vstat[i][1] > vstat[i][0]&li = vi)

or(vstat[i][1] < vstat[i][0]&li = v′i)

score(li) otherwise

The new literal score will be updated using the above formula where max(vi) =

MAX(score(vi), score(v
′
i)) + 1.

a

bb

c c c c

a

aa

b

bb

c

b

bb

c c c ccccc

c c c

0 0

0 0 0 0

0 0

Initialization

0 1

0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 3

0 0 3 0

0 0 2 1 0 000

p1: a=0, b=1, c=0

learning: a=0, b=1, c=0
p2: a=0, b=1, c=1

learning: a=0, b=1, c=1

Figure 6-6. Learning statistics applied on decision trees

131

Figure 6-6 shows an example of temporal decomposition using our heuristic. The

complex property P is decomposed into three properties p1, p2 and p3(= P) with bound 1,

2 and 3 respectively and we assume that we always check the variables in the order of a,

b, c. Initially, when checking p1, there is no learning information. However, after checking

p1, we can predict the decision ordering for p2 based on the collected vstat information

from p1. Also we can predict the decision ordering of p3(= P) from the vstat of p1 and p2.

When checking P , the content of vstat indicates that variables a is more likely to be 0, b

and c are more likely to be 1.

6.3 Test Generation using Our Methods

In this chapter, we assume that the bound of complex property and decomposed

properties can be pre-determined. Determination of bound is hard in general. However, for

directed test generation, the bound can be determined by exploiting the structure of the

design. An example of bound determination is presented in Section 6.4.

Algorithm 11: Test Generation based on Property Decomposition

Input: i) Formal model of the design, D

ii) Decomposed properties props and satisfiable bounds

iii) The complex property P , with the satisfiable bound boundp

Output: A test testP for P

1. CNFs = BMC(D, props, bounds);

2. (CNF1, . . . , CNFn) = sort CNFs using increasing file size;

3. Initialize vstat;

for i is from 1 to the n do

4. testi = SAT(CNFi, vstat);

5. Update(vstat, testi, bounds[i]);

end

6. Generate CNF = BMC(D, P, boundP);

7. testP = SAT(CNF , vstat);

return testP ;

132

Algorithm 11 describes our test generation methodology. The inputs of the algorithm

are a formal model of the design, a set of decomposed properties props and their

satisfiable bounds bounds, and the complex property P with its satisfiable bound boundp.

Step 1 generates CNF files in the DIMACS format [74] for each decomposed property in

props. Step 2 sorts the CNFs by their DIMACS file size. Step 3 initializes vstat which is

used to keep statistics of the variable assignments for decomposed sub-properties. Then

for each decomposed sub-property, we collect its counterexample assignments from step 4

to step 5. For each iteration, we need to update vstat statistics. In step 6 and step 7, the

complex property P is checked using the decision ordering derived from the decomposed

sub-properties. Finally, the algorithm reports a test for the complex property P .

6.4 An Illustrative Example

This section presents an example of how to use decomposition methods on a design

illustrated in Section 2.3.2. Assume that we want to check a complex scenario that the

units MUL5 and FADD4 will be active at the same time. We generate the property P

which is a negation of the desired behavior as follows. The remainder of this section will

solve it using spatial and temporal decomposition methods.

/* Original complex property P */

P: ~ F(mul5_active=1 & fadd3_active=1)

6.4.1 Spatial Decomposition

In the MIPS design, each functional unit has a delay of one clock cycle. To trigger

the functional unit MUL5, we need at least 7 clock cycles (there are 7 units along the

path Fectch → Decode → . . . → MUL5). Similarly, to trigger the functional unit FADD3,

we need at least 5 clock cycles. Plus one clock cycle for initialization, we need 8 clock

cycles for triggering this interaction. Thus the bound of this property is 8. According

to Equation (6–2) and Algorithm 9, property P can be spatially decomposed into two

sub-properties as follows, assuming the COI of P1 and P2 are both smaller than half of

COI of P .

133

/* Modified original complex property P’ */

P’: ~ F(mul5_active=1 & fadd3_active=1 & clk=8)

/* Spatially decomposed properties */

P1: ~ F(mul5_active=1 & clk=8)

P2: ~ F(fadd3_active=1 & clk=8)

When checking P1 and P2 individually, we can get the following two counterexamples.

Counterexamples for P1 and P2

Cycles P1’s Instructions P2’s Instructions

1 NOP NOP

2 MUL R2, R2, R0 NOP

3 NOP NOP

4 NOP FADD R1, R1, R0

5 NOP NOP

6 NOP NOP

7 NOP NOP

8 NOP NOP

However, according to Algorithm 11, the test generation for P2 is under the

guidance of P1’s result. Thus, the counterexample of P2 guided by P1 contains P1’s

partial behavior (see clock cycle 2 below). So the score of literals which have repetitive

occurrences is enhanced.

Counterexample for P2 guided by P1

Cycles P2’s Instructions

1 NOP

2 MUL R2, R2, R0

3 NOP

4 FADD R1, R1, R0

5 NOP

6 NOP

7 NOP

8 NOP

134

The statistics saved in vstat indicates an assignment which has a large overlap of the

assignments with the real counterexample that can activate property P . Thus it can be

used as the decision ordering learning to guide the property checking of P .

6.4.2 Temporal Decomposition

For temporal decomposition, we need to figure out the event implication relation first.

Because we want to check the property F (mul5 active = 1 & fadd3 active = 1), the

target event is mul5 active = 1 & fadd3 active = 1. Figure 6-7 shows the implication for

this event. There are 7 events in this graph, and e7 is the target event.

DIV
MUL3

MUL3
IALU

e4e2

e3

e5

e1 e6

FETCH
MUL1 MUL2

DECODE
MUL3

FADD1
MUL4

FADD2
MUL5
FADD3

e7
1 1

1

11

1

1

1 1

Figure 6-7. Event implication graph for property P

Assuming e1 is the initial event, from e1 to e7, there is only one path e1 → e2 →

e4 → e6 → e7. Along this path there is a branch node e2. According to the Algorithm 2,

we need to check two events e1 and e4 using following properties. By using our learning

technique, during the test generation, P e4 can benefit from P e1, and P can benefit from

P e4.
/* Spatially decomposed properties*/

P_e1: ~ F(fetch_active=1 & mul1_active=1)

P_e4: ~ F(mul3_active=1 & fadd1_active=1)

6.5 Experiments

This section presets two case studies: the VLIW implementation of the MIPS

architecture (described in Section 4.5.1) and the stock exchange system (described in

135

Section 4.5.2). In our framework, we used NuSMV [27] to generate the CNF clauses (in

DIMACS format) and integrated our proposed methods in the zChaff [74] SAT solver. The

experimental results are obtained on a Linux PC using 2.0GHz Core 2 Duo CPU with 1

GB RAM.

6.5.1 A VLIW MIPS Processor

This section presents the experimental result using a five-stage pipelined MIPS

processor design. The details of the design are illustrated in Section 2.3.2 and Section 6.4.

Since the generated properties are in various complex formats, it is difficult to figure

out the implication between events. Therefore in this case study, we only investigate the

spatial decomposition based learnings.

Table 6-1. Test generation result for MIPS processor

Property zChaff [74] Cluster Refinement Spatial Speedup
(Tests) (sec) # # (sec) zChaff vs Spa.

Property format: ∼ F (p ∨ q)
p1 119.96 3 3 0.03 3999
p2 56.22 2 2 0.03 1874
p3 2.32 2 2 0.01 232

Property format: ∼ F (p ∧ q)
p4 43.96 3 2 18.88 2.33
p5 15.24 2 1 6.57 2.32
p6 9.28 2 1 4.42 2.10

Property format: ∼ F (p → q)
p7 13.59 2 1 4.16 3.27
p8 68.33 2 1 13.16 5.19
p9 160.51 3 2 30.31 5.30

We select nine complex properties from the MIPS design. Table 6-1 shows the test

generation results using our spatial decomposition method. The first column indicates the

selected properties. The second column gives the test generation time using zChaff. The

third and fourth columns present the number of sub-property clusters and the number of

refined sub-properties for deriving learnings. The last two columns show test generation

time using learnings and the improvement of our spatial decomposition based method

over the method using zChaff. We cluster 9 properties into 3 groups (3 properties in each

136

group), and each group has a specific property format. For example, the first group can

be decomposed as p1 ∧ p2 · · · ∧ pn. Thus the test generation can be done when finding a

counterexample from a lower bound sub-property without any learnings. For the second

and third groups, the properties can be decomposed in the form of p1 ∨ p2 · · · ∨ pn.

Each sub-property are of the same bound. Therefore we need to cluster the sub-property

according to the similarity rules presented in Section 6.1.2. Compared to the method

without any learnings (column 2), our spatial decomposition based learning method can

drastically reduce the test generation time.

0

1

2

3

4

5

6

p4 p5 p6 p7 p8 p9

S
pe

ed
up

Properties

Time Conflict Clauses Implications

Figure 6-8. Property checking result for MIPS processor

During the SAT-based BMC falsification, conflict clause number and implication

number are key factors which determine the test generation performance. Decision

ordering learned from decomposed properties can efficiently avoid the conflicts when

checking the complex property. Figure 6-8 shows the result of properties p4 − p9 presented

in Table 6-1. It illustrates the performance improvement (spatial method over zChaff)

using time, implication number and conflict clause number. It can be seen that, by using

spatial method, the number of conflict clauses and implications can be reduced drastically

by 2-4 times, which consistently results in significant improvement in test generation time

(2-5 times).

137

6.5.2 A Stock Exchange System

The on-line stock exchange system (OSES) is a software (described in Section 2.3.5)

which mainly deals with stock order transactions. We generate 18 complex properties to

check the stock transactions. In the UML activity diagram, each transaction is indicated

by a path which is a sequence of activities (events). The test generation for a transaction

using only one complex property is time consuming. So we temporally decomposed the

transaction into several stages which specify the branch activities along the path, and for

each stage we create a sub-property.

Among the 18 complex properties, ten of them are time-consuming (more than 10

seconds without using our method). Table 6-2 shows the test generation results for these

ten properties using temporal decomposition. The first column indicates the property. The

second column indicates the test generation time using zChaff without any decomposition

and learning techniques. The third column presents the bound of the complex property.

The fourth column indicates the number of temporal sub-properties decomposed along

the stock transaction flow. The last two columns indicate the test generation time (using

temporal decomposition) and its speedup over zChaff. In this case study, our approach can

produce around 3-60 times improvement compared to the method using zChaff.

Table 6-2. Test generation result for OSES

Property zChaff [74] Bound Decomposed Temporal Speedup
(Tests) (sec) # (sec) zChaff vs Temp.

p1 25.99 8 3 0.78 33.32
p2 48.99 10 4 2.69 18.21
p3 39.67 11 5 3.45 11.50
p4 247.26 11 5 22.46 11.01
p5 160.73 11 5 15.68 10.25
p6 97.54 11 4 1.56 62.53
p7 31.39 10 4 12.31 2.55
p8 161.74 11 4 12.62 12.82
p9 142.91 10 4 17.57 8.13
p10 33.77 10 4 1.76 19.19

138

6.6 Summary

To address the test generation complexity of a single complex property using

SAT-based BMC, this chapter presented a novel method which combines the property

decomposition and learning techniques. By decomposing a complex property spatially

and temporally, we can get a set of sub-properties whose counterexamples can be used

to predict the decision ordering for the complex property. Because of the learning from

the simple sub-properties to the complex property, the overall test generation effort can

be reduced. The case studies demonstrated the effectiveness of our method using both

hardware and software designs that generated significant savings (2-60 times) in test

generation time.

139

CHAPTER 7
REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALENCE

For software designs, the difference between specification level tests and implementation

level tests is small. Generally, the specification level tests can be automatically reused and

applied on software implementations. Consequently, the consistency between different

software designs can be checked. However, due to the significant difference in timing

and other details, maintaining the functional equivalence between different hardware

abstraction layers is a major challenge during the SoC design. In this chapter, we are

focusing on checking the functional consistency between different hardware abstractions.

In this chapter, we focus on reusing validation effort between TLM and RTL models.

Since there is no mature automatic TLM to RTL refinement tool and manual

conversion is error-prone, various approaches are proposed to guide the TLM to RTL

conversion. Simulation is a widely used method for functional validation. By using

a transactor [6] between TLM and RTL designs for communication, the previously

generated TLM tests can be exercised on the refined RTL implementations to check the

functional correctness. However, due to substantial differences between TLM and RTL

models, traditional simulation methods can not guarantee the functional equivalence.

For black-box methods [66], simulation can not guarantee the bug propagation to the

outputs. Similarly, for white-box simulation methods [66], the code coverage [32] and

toggle coverage can not fully indicate the required functional coverage. This is due to the

lack of functional observation mechanisms for traditional simulation based methods.

Assertion based validation (ABV) [23, 29] has been successfully applied in SoC

validation to ensure the functional correctness. It not only increases the design observability

based on simulation using ad-hoc tests, but also takes advantage of more emerging formal

methods for improving the overall verification quality and results. As a functional

observation point, an assertion can be instrumented into TLM or RTL designs to

monitor the specified functional scenario. Currently, there are two most popular assertion

140

languages: Property Specification Language (PSL) [3] and System-Verilog Assertion (SVA)

[37]. PSL is platform-independent and can be used in multi-layer designs. SVA is similar

to PSL, nevertheless it is only customized for System-Verilog designs. In the context of

ABV, a property is defined as a logic constraint description built on Boolean expressions,

sequences and temporal operators, while assertion is defined as a directive to prove the

correctness of the property. For simplicity, in this chapter we use the term assertion to

indicate both assertion and property.

In this chapter, we propose a methodology to guarantee the functional equivalence

between TLM and RTL models based on the observability of assertions. The basic idea

is that in the TLM specification, if a test can exercise a specified functional scenario

monitored by some assertion, then in the RTL implementation, the counterpart of

the TLM test can also activate the counterpart of the TLM assertion. During the

TLM-to-RTL functional equivalence checking, we need to addresses the following four

issues:

• How to determine a set of TLM assertions for observing all the functional
scenarios? We proposed several fault models which require that all the specified
faults should be covered by the generated assertions.

• How to activate a given TLM assertion? We adopted the model checking
falsification technique to derive tests for activating TLM assertions. For each
assertion, we generate one test to activate it.

• How to reuse TLM validation effort? We developed the validation refinement
rules which can convert TLM assertions and tests to their RTL counterparts.

• How to use the correlation between TLM and RTL assertions for equiv-
alence checking? We proposed a method to verify the TLM-to-RTL equivalence
based on the criteria of assertion coverage and assertion ordering.

Our proposed approach addresses the above challenges and makes two major

contributions: i) develops a prototype tool for automatic TLM-to-RTL test and assertion

refinement, and ii) proposes a method that uses the assertion observability for checking

the functional equivalence between TLM and RTL models. Because our work is based on

141

the reuse of TLM validation effort, there is no extra cost (excludes defining the refinement

rules) since it needs to be validated anyway. Furthermore, our method is fully automated

and can be easily scaled for large designs.

The rest of this chapter is organized as follows. Section 7.1 presents related work on

validation reuse and equivalence checking between TLM and RTL models. Section 7.2

proposes our equivalence checking framework based on validation reuse. Section 7.3

presents the experimental results. Finally, Section 7.4 summarizes the chapter.

7.1 Related Work

TLM is promising to enable early design space exploration and hardware/software co-

simulation. Hsiung et al. [36] adopted SystemC TLM models to enable rapid exploration

of different reconfigurable design alternatives. In [44], Kogel et al. presented a SystemC

based methodology which provides sufficient performance, flexibility and cost efficiency as

required by demanding applications. Shin et al. [80] proposed a method to automatically

generate TLM models from virtual architecture models which can achieve significant

productivity gains.

As a hybrid method based on both simulation and formal verification, ABV is

acknowledged as a promising approach for functional validation in RTL level [1]. However,

ABV is still a challenging domain in system level design. To address the issues when

incorporating PSL within SystemC environments, Lahbib et al. [49] proposed an

automated solution which can embed PSL assertions in a SystemC design. Based on

static code analysis and genetic algorithms, Habibi et al. [33] presented an efficient

method to optimize test generation in order to increase the assertion coverage. Ecker et

al. [25] proposed a transaction level assertion framework using a new specialized language.

In [73], Pierre described an efficient and tractable solution for verifying the PSL based

properties of TLM design during the simulation. However, most researches are focused on

implementing PSL assertions in SystemC framework, and none of them use assertions for

checking the TLM-to-RTL functional equivalence.

142

Reusing the validation effort between abstraction levels can reduce overall validation

effort. Assertions can be treated as constraints of system specifications. Therefore the

assertion reuse can partially guarantee the consistency between different abstraction levels.

In [42], Kasuya and Tesfaye presented a mechanism to construct and reuse temporal

assertions in various TLM abstraction levels. As an alternative, test reuse can not only

reduce the test generation and simulation time, but also enable the co-simulation between

different abstraction levels. In [12], Bombieri et al. proposed a transactor-based dynamic

verification method. By using transactors, the TLM testbenches can be reused during

the TLM-RTL co-simulation. In [14], Bombieri et al. presented a formal definition of

functional equivalence based on events order without timing information. However,

they did not provide any implementation details for checking the proposed functional

equivalence. Similar to our work, the research of incremental ABV methodology described

in [13] uses various kinds of assertions to check the correctness of TLM-to-RTL refinement.

However, since their work is based on transactors, it is required that RTL implementations

should be ready before the co-simulation. Also, their work does not provide any methods

about how to activate all the instrumented assertions. Therefore it is difficult to guarantee

that the simulation can achieve the required assertion coverage quickly. Furthermore, their

method applies assertions on TLM specifications only. It just monitors primary input and

output signals without investigating RTL implementation details.

To the best of our knowledge, when checking refinement consistency and correctness,

existing approaches focus on test/assertion coverage without considering more details such

as the correlation between TLM and RTL assertions. Our approach is the first attempt to

reuse the validation effort to enable assertion-based equivalence checking between TLM

and RTL models.

Figure 7-1 shows the framework of our methodology. First by analyzing TLM

specifications, the TLM assertions and tests can be automatically derived according to

specified fault models. Next the refinement process translates the TLM assertions and

143

tests for RTL validation using our proposed mapping rules. The refined assertions will

be instrumented in RTL implementations. The refined tests will be applied on the RTL

implementations and the output of the tests and the activated assertions will be monitored

by a RTL assertion checker. Finally, by comparing simulation traces recorded by TLM and

RTL assertion checkers, the equivalence checker reports the results.

ack

req

VERT clk

Assertion Checker Assertion Checker

Assertions Assertions
RTL

Refinement

Test Mapping

Rules

Rules

Assertion Mapping

Equivalence Checker

TLM Validation RTL Validation

RTLTLM

AssertionsAssertions

Tests

TLM RTL
Tests

TLM

Figure 7-1. Our equivalence checking framework

7.2 A Framework for Checking TLM-to-RTL Functional Equivalence

Our methodology has three important steps: i) automatic validation of TLM

specifications (i.e., TLM assertion/test generation), ii) validation effort refinement,

and iii) assertion based equivalence checking. The following subsections discuss each of

these steps in detail.

7.2.1 Automatic Transaction Level Validation

SystemC TLM emphasizes the functionality of the data transfers instead of actual

implementation. Essentially a SystemC TLM design interconnects a set of processes

using transactions (i.e., C++ function calls) for communication. Each process does

the following tasks: receiving data, processing data and sending data. Due to various

complex constructs in C++, extracting all such behavior to enable automated analysis and

144

validation is difficult. Furthermore, the underlying complex SystemC scheduler aggravates

the modeling complexity. In fact, investigating the general features of SystemC TLM is

not necessary for functional validation of TLM models. For TLM, the most important

factors are the transaction data, the transaction flow and the transaction event order. So

during our assertion/test generation process, these factors need to be considered. Other

elements can be selectively abstracted.

7.2.1.1 Generation of TLM Assertions

Assertions are used to specify the required functional behaviors of a system. To

investigate the equivalence between TLM and RTL models, we need to explore as many

assertions as possible. In our method, we define a set of fault models to achieve a complete

set of assertions. Each fault indicates a required “design behavior” which may be violated

during the system design. For example, when validating a desired scenario described by

a sequence p (sequence is a PSL term which indicates a sequential expression), we use

the following PSL statement pairs to detect whether the sequence p will happen finally.

The Prop1 1 asserts that the sequence p must “eventually!” hold strongly during the

simulation, and Prop1 2 is used to record the assertion coverage during the simulation by

using verification directive “cover”.

Prop1_1: assert eventually! p;

Prop1_2: cover (p);

We consider the three TLM fault models which are described in Section 3.1.1.2.

Transaction data fault model deals with the possible value assignment for each part of the

transaction data. However, for property generation, due to the large size of value space,

trying all possible values of a data is infeasible. By checking each bit of a variable (data

bit fault) separately, the data content coverage can be partially guaranteed. The following

is an example of a data fault.

145

//The second bit of "packet.parity" can be 1.

assert eventually! (packet.parity==2);

cover (packet.parity==2);

Transaction flow fault model handles the controls along a transaction flow. To ensure

transaction flow coverage, one can cover branch conditions which exist in if-then-else or

switch-case statements. The goal is to check all possible transaction flows. The following is

an example of a transaction flow fault.

//The condition packet.to_chan=1 can be true.

assert eventually! (packet.to_chan==1);

cover (packet.to_chan==1);

Transaction event indicates the execution stage of a transaction or the interaction

between processes. Therefore, during the equivalence checking, the order of events

should be investigated. In our method, we consider various events in two categories: 1)

events of procedure calls, such as read and write, and put and get operations; and 2)

synchronization events, such as wait and notify operations. The following is an example of

a read procedure call.

//The event a=A.read() can be activated.

assert eventually! {A==a};

cover {A==a};

It is important to note that an assertion that is generated from the above three fault

models activate a specific functional scenario. In our method it just acts like a functional

check point to monitor the occurrence of a specific event instead of describing a complex

scenario. The order of the assertion activations plays an important role and will be

handled when verifying functional equivalence described in Section 7.2.4.

7.2.1.2 Generation of TLM Tests

Our equivalence checking approach is based on simulation, so we need to generate

tests to cover all the assertions derived using the method proposed in Section 7.2.1.1.

146

Conventional methods use millions of random/constrained-random tests, however, it is

difficult to exercise all the assertions in a reasonable time. As an alternative, directed

tests are promising since they exploit the structural information and can converge to 100%

assertion coverage quickly. However, most directed test generation methods need human

intervention which is error-prone and costly. In our framework, we developed a tool which

can enable automatic directed test generation. It is important to note that for random test

based methods, we may require a large set of tests for each assertion. However, when using

directed methods, we just need to derive one test for each assertion. Chapter 3 gives the

details for TLM test generation.

7.2.2 Refinement of TLM Assertions and Tests

When TLM assertions and tests are ready, we need to refine them to RTL counterparts

for reuse. A major challenge in the translation is how to bridge abstraction gap between

TLM and RTL models. As we know, TLM design is significantly different from its RTL

implementation in input/output port definition, internal structure and timing information.

Thus for TLM-to-RTL validation refinement, it is necessary to provide such missing

information which is also needed during the manual or automatic TLM-to-RTL synthesis.

In our framework shown in Figure 7-1, the Validation Effort Reuse Tool (VERT) is a

major component which enables TLM-to-RTL refinement by specifying rules. The inputs

of VERT are TLM assertions/tests as well as a Validation Refinement Specification (VRS)

which contains the rules to guide the validation refinement. Generally a VRS contains

three parts as follows.

• Symbol Mapping specifies the name and type mapping between TLM variables and
RTL signals.

• Assertion Refinement Rules specify patterns and timing information for RTL
assertions.

• Test Refinement Rules specify the interface protocols and timing information for
RTL input stimulus.

The following subsections describe each part in details.

147

7.2.2.1 Symbol Mapping

In our prototype tool, we use SystemC for transaction level modeling and Verilog for

RTL modeling. Due to the naming convention inconsistency between TLM specifications

and RTL implementations, during the validation refinement, it is necessary to have a

symbol table which specifies the name mappings. Each item in the symbol table defines

the correspondence between TLM variables and RTL variables. Generally it provides the

following information: i) name mapping, ii) date type mapping, and iii) bit mapping. The

following is an example of symbol mapping.

SYMBOL_MAPPING

bit[7:0] parity=packet.parity;

bit[7:0] header={packet.payload_sz[7:2], packet.to_chan[1:0]};

bit[7:0] payload[0..packet.payload_sz-1]=packet.payload[0..packet.payload_sz-1];

END_SYMBOL_MAPPING

For each symbol mapping item, the left hand side is the RTL data declaration, and

the right hand side is the bit mapping details from TLM data to RTL data. The VRS

allows the user to specify the RTL data using the concatenation of several TLM data.

Also it supports the mapping from an array of TLM data to an array of RTL data. For

example, parity is a RTL data with 8 bits. It refers to the TLM variable packet.parity.

The header is a RTL data whose most significant six bits corresponds to the TLM data

payload sz and the least significant two bits correspond to the TLM data to chan. The

RTL data payload is an array where the width of each element is 8 bits. The (i+ 1)th

element payload[i] corresponds to the (i+ 1)th element of the TLM data packet.payload[i].

7.2.2.2 Assertion Refinement Rules

According to the definition in [3], a PSL or SVA assertion consists of four layers:

• Boolean Layer defines the Boolean expressions of signals which are evaluated in a
single evaluation cycle.

148

• Temporal Layer describes assertions involving complex temporal relations between
Boolean expressions. Temporal assertions are evaluated over a series of evaluation
cycles.

• Verification layer specifies the directives to verification tools to handle the temporal
assertions.

• Modeling layer is used to model the behavior of design inputs.

Our TLM-to-RTL assertion refinement only considers the first three layers since

the fourth layer is not relevant in our framework. As presented in Section 7.2.1.1, the

generated TLM assertions are in the simple syntax like “assert eventually! p”. Most

of them are temporal assertions involving transaction data only without any clock and

control signal information. However, RTL assertions generally have such lower level

details. Therefore, during the assertion refinement, we need to consider clock expression

and control signals. If all such information is provided, the assertion refinement can be

done by inserting the timing (i.e., clock expression) and control information as well as by

substituting symbols.

SYMBOL_MAPPING

bit[1:0] data_o_fsm=tmp_packet.to_chan;

......

END_SYMBOL_MAPPING

ASSERTION_SPEC

‘set_clock (posedge clock);

......

‘control

tmp_packet.to_chan

@ $rose(write_enb[%tmp_packet.to_chan]);

......

END_ASSERTION_SPEC

In the above assertion refinement rules, tmp packet.to chan is a TLM variable that

denotes the target slave address of the packet. From the symbol mapping, we can figure

149

out the corresponding RTL internal signal is data o fsm which is a 2-bit register. In

the ASSERTION SPEC block, the directive 8set clock sets the clock expression for the

refined assertions. Because in RTL different value of control signals may specify different

meaning to input data signals, we use the directive 8control to set the RTL control signals

during the TLM data refinement. The first parameter of 8control is a TLM variable

that appears in the TLM assertion. The second parameter is the corresponding RTL

control signal expression for the TLM variable. In this example, only when the RTL signal

write enb[%tmp packet.to chan] asserts, the RTL signal data o fsm can indicate the target

slave address. Here %tmp packet.to chan denotes the value of tmp packet.to chan.

TLM assertion: cover(tmp_packet.to_chan==1);

RTL assertion: cover property

(@(posedge clock) ($rose(write_enb[1])&&

data_o_fsm[1:0]==2’d1));

The above example shows the usage of the assertion refinement rules. The TLM

assertion wants to check whether the packet can be delivered to the slave 1. We can find

that the RTL assertion includes the clock expression. The VERT substitutes the TLM

variable tmp packet.to chan for its RTL signal data o fsm accompanied by its control

signal $rose(write enb[1]).

7.2.2.3 Test Refinement Rules

From the symbol mappings, we can get the size information of each RTL signal as

well as the bit correspondence between TLM data and RTL data. However, the RTL

test stimulus is a timed sequence of data signal inputs controlled by control signals.

Therefore it is required that the test refinement rules need to be programmable. Similar

to Verilog testbench, VRS supports basic programming constructs like if-then-else and

for-loop statements, sub-functions and so on. In essence, the test refinement rules consists

of a sequence of statements. These statements are well organized to describe the timing

150

sequence of RTL data inputs. Based on the symbol mappings and the compiled test

refinement rules, the V ERT will produce one RTL test for one TLM test.

TEST_SPEC router(packet)

......

main:

begin

initialize();

reset();

#5 PKT_VALID = 1’b 1;

DATA = header;

for(int i=0; i<packet.payload_sz; i++){

#10 DATA = parity[i];

}

#10 PKT_VALID = 1’b 0;

DATA = parity ;

slave_read(packet.to_chan, 1);

end

END_TEST_SPEC

The above code is an example of the test refinement rules. It describes a testing

scenario of the packet delivery for a router as follows: i) a master sends a packet to

the router, ii) the router parses the packet and notifies the corresponding slave to fetch

the packet, and iii) the slave receives the packet. Figure 7-6 shows an example of a

TLM-to-RTL test translation using the given rules.

7.2.3 A Prototype Tool for TLM-to-RTL Validation Refinement

We developed a prototype tool which incorporates the proposed methods in

Section 7.2.2. Figure 7-2 shows both the structure and workflow of our tool. The following

sub-sections will present its three key components: i) TLM2SMV for SMV model and

property generation, ii) TLM test generation using model checking, and iii) TLM2RTL for

RTL test and assertion generation.

151

TLM2SMV
Specification

SystemC TLM
Fault Model

Specification
SMV

PropertiesModel Checker
(SMV)

TLM−Test−GenTLM Tests

Simulator RTL
ImplementationAutomatic

Manual
Coverage Analysis

Formal Model
Generation

Processing

Processing
TLM2RTL

Validation Refinement
Specification

TLM

RTL

TLM Assertions

Figure 7-2. The structure of our prototype tool

7.2.3.1 TLM2SMV

Implemented based on the C++ parser Elsa [57], TLM2SMV can automatically

translate the SystemC TLM to a SMV specification and derive properties based on the

fault models. Due to the complex data type definition and complex constructs defined in

SystemC TLM library files, direct translation to SMV will cause the state space explosion.

So in our tool, we simplify such definition and predefine them for SMV transformation.

For example, we restrict the queue size for TLM FIFO channels. In SystemC, an integer

is 32-bit (with 232states). However, we reduce its size to 8 bits (with 28states) during the

SMV transformation.

Before the TLM to SMV translation, preprocessing procedure of TLM2SMV will

do the following three tasks: i) eliminate the header files and the comments, ii) add the

necessary predefine constructs, iii) convert the data type if necessary. Then TLM2SMV

will transform the TLM specification. As described in Section 2.1.2, TLM2SMV will

extract both static and dynamic information. At the mean time, it also collects the

152

information such as transaction relevant data, and branch conditions for the property

generation. Finally based on the collected information, we can get both a formal

specification in SMV and properties derived by specified fault models. By using Cadence

SMV verifier [56], we can get a set of counterexamples. The TLM tests are extracted from

these counterexamples.

7.2.3.2 TLM Test Generation

When a specified safety property is false, SMV model checker will generate a

counterexample to falsify it. The generated TLM counterexample is in the form of a

sequence of state assignments. This sequence starts from first state (initial state) and ends

at the error state which violates the property. If the Cone of Influence (COI) is enabled

during the property checking, each state will only contain the variables which are relevant

to the specified property. The generated counterexample is refined to produce the TLM

test.

7.2.3.3 TLM2RTL

Because SystemC TLM focuses on the system level modeling, the generated TLM

tests/ assertions lack the implementation level knowledge. So the generated TLM

tests/assertions are different from RTL tests/assertions and can not be directly used

to validate RTL implementation. For example, most loosely timed TLM models are

too abstract and assume that a transaction happened in one or a sequence of function

calls. However, a RTL design has much more details and it needs the detailed timing

information for each signal. In our framework, the user should provide a VRS which

provides the mapping rules for the TLM to RTL test/assertion translation. With the

generated TLM tests/assertions and the VRS as inputs, the TLM2RTL can translate

the TLM tests/assertions to RTL tests/assertions. Finally, the coverage of the TLM

implementation will be reported when simulating the generated RTL tests/assertions on

RTL designs.

153

7.2.4 Assertion-Based Functional Equivalence

After the assertion and test refinement, we need to perform the simulation on both

TLM and RTL designs to check the assertion-based functional equivalence. As shown

in Figure 7-1, there is a equivalence checker which monitors both the TLM and RTL

simulation result and reports the equivalence result based on its comparison.

TLM and RTL indicate different abstraction levels of the system. The traditional

simulation based method can only guarantee the correctness by enumerating input tests

and comparing the primary output results. However, the significant difference of internal

structure of TLM and RTL designs is often eclipsed. Therefore no relation on the internal

structure can be assumed during the simulation. As a functional constraint, the assertion

can be used as a checkpoint during the simulation. Based on the inherent observability,

the exercise of such checkpoints enables revealing the internal functional behaviors.

7.2.4.1 Assertion-Based Functional Coverage

During simulation, an assertion is covered means that the specific functional scenario

is activated. Therefore the coverage of the assertions indicates the adequacy of the

functional validation. Let T be a TLM design and R be a RTL design of T . We generate

a set of TLM assertions Tassertion according to the specified fault models of T , and we

obtain a set of TLM tests Ttest to activate such assertions. By using VRS, we can refine

the Ttest to a RTL test set Rtest, and refine Tasserion as a subset of the RTL assertion

set Rasserion. When running the Ttest and Rtest on T and R individually, we can get the

assertion coverage defined as follows.

Definition 10. Given a TLM specification T and its RTL implementation R, by applying

Ttest on T and Rtest on R, the assertion coverage can be calculated as:

Tcoverage =
of exercised TLM assertions

|Tasserion|

Rcoverage =
of exercised RTL assertions

|Rasserion|

154

In our framework, there are two kinds of assertions: i) TLM assertions which are

automatically generated from the TLM specifications, and ii) RTL assertions which are

refined from the TLM assertions. The RTL programmers can also provide additional

assertions based on other fault models and corner case scenarios. Therefore 100% TLM

assertion coverage may not indicate 100% RTL assertion coverage in case additional RTL

assertions are introduced.

7.2.4.2 Assertion Ordering

The assertion ordering plays an important role in TLM-to-RTL equivalence checking.

For a TLM or RTL design which is instrumented with a large number of assertions, during

the simulation, a test may exercise a sequence of assertions. An assertion indicates a

functional checkpoint. Such simulation result of a test leads to an assertion trace which

reveals the temporal order of checked functions in a system behavior. For a TLM test and

its refined RTL version, when applying them on the TLM and RTL designs individually,

it is required that the TLM functions and RTL functions happen consistently. In other

words, the TLM assertions and corresponding RTL assertions should happen in their

traces in the same order.

It is difficult to determine the order of the assertions during the simulation of a

test. Since the assertions belong to different parallel processes in the TLM specifications

and RTL implementations, even in the same assertion trace the assertions may not

be activated linearly. That means several assertions may be exercised simultaneously.

In addition, due to the existence of loop structure in a design, an assertion may be

exercised several times in a design. This will further increase the difficulty in assertion

matching between TLM traces and RTL traces. Inspired by the algorithm proposed by

Lamport [50], in our framework, each assertion activation in a trace is associated with a

“timestamp” to indicate the happens before (marked by ≺) relation. We use the timed

assertion in the form of (a, t) to denote that the assertion a happens at clock cycle t.

155

Definition 11. Given two timed assertions (a, t1) and (b, t2) in an assertion trace. The

relations between them are as follows.

• (a, t1) happens before (b, t2) iff t1 < t2.

• if t1 == t2, then the two assertions are concurrent, written (a, t1) || (b, t2)

Definition 11 describes the relation between the timed assertions. The key issue in

determining the order is to figure out the timestamp for an assertion. For RTL design,

because the assertions are translated into the VHDL/Verilog code, we can monitor the

simulation at each clock cycle. Therefore, we can define the timestamp using the clock

cycle number. However, figuring out the assertion order for TLM designs is not trivial due

to the multiple classification of TLM abstraction levels. According to the definitions in

[16], there are three TLM abstraction layers as follows.

• Programmer’s View (PV): Pure transaction based without timing information.

• Programmer’s View with Time (PVT): Transaction based with approximate
timing information.

• Cycle Accurate (CA): Cycle based with accurate timing information.

In the CA abstraction level, the model is cycle accurate. The CA TLM model is

quite similar to the corresponding RTL model with respect to the notion of time. For

the PVT abstraction level, the model simulates in non-zero simulation time. In spite of

the time inaccuracy, we can still judge the assertion order according to the simulation

time. During the simulation, if an TLM assertion is exercised, we can use the SystemC

function sc time stamp() to record the current simulation time. Such sc time information

can be used as the timestamp to order the assertions. For the PV abstraction level, both

the communication and computation part of the system are untimed. Therefore, it is

not suitable to use the system time to order assertions. To determine the order of the

interaction between communicating processes, SystemC provides the delta cycle concept

which adopts the evaluate-update paradigm to interpret zero-delay semantics. The evaluate

phase first executes all the processes that are ready-to-run. During the update phase the

156

scheduler calls the update() function to handle the pending processes registered by using

the request update() function. Each tiny delta cycle consists of these two steps without

advancing the simulation time. Therefore the delta cycle can be utilized for ordering the

assertions. For assertion ordering, we need to use a global variable as a counter of delta

cycles. This counter can be used as the timestamp for assertions. If two assertions happen

in the same delta cycle, then they are concurrent. Otherwise there is a “happen before”

relation between them. Let’s take the following simple program as an example.

//process1 //process2

while(true){ while(true){

a=FIFO.read(); FIFO.write(random());

} }

Assuming the size of the FIFO channel is 1. The real action sequence of the above

code can be “ (write, 1), (read, 1), (write, 2), (read, 2), . . . ”. For each delta cycle, only

one write and read pair can happen. So we can find the order (write, 1) ≺ (write, 2) and

(read, 1) ≺ (write, 2).

7.2.4.3 Assertion Based Functional Equivalence

In our framework, we define functional equivalence based on the assumption that if

a TLM test can trigger a TLM assertion, then its RTL counterpart will also trigger the

corresponding RTL assertion. It is important to note that in this chapter we do not intent

to introduce new meaning of the classical equivalence checking. Our method still relies on

the same concept - if two designs are equivalent, when giving the same input tests, they

will produce the same outputs. Our goal is to increase the confidence of TLM-to-RTL

functional equivalence checking under the monitoring of assertions.

The refinement process is described by two functions - AR for assertion refinement

and TR for test refinement as follows.

AR : Tassertion → Rassertion

TR : Ttest → Rtest

157

We also define the functions MTLM and MRTL to indicate the relation between tests and

assertions, i.e., what the assertions are activated during the simulation of a given test.

MTLM : Ttest → 2Tassertion

MRTL : Rtest → 2Rassertion

MTLM indicates which TLM assertions are covered by a given TLM test. MRTL

indicates which RTL assertions are covered by a given RTL test. Based on the above

definitions, the definition of TLM-to-RTL equivalence is given as follows.

Definition 12. Given a TLM specification T and its RTL implementation R, T and R

are assertion equivalent iff Ttest can achieve 100% TLM assertion coverage and

∀t ∈ Ttest. MRTL(TR(t)) ⊇ {AR(a1), AR(a2), . . . , AR(an)}

where MTLM(t) = {a1, a2, . . . , an}.

The assertion equivalence only define the assertion coverage for each test. In fact,

there is a temporal relation between assertions. If the assertion equivalence considers the

event order, we call it strongly assertion equivalent.

Definition 13. Given a TLM specification T and its RTL implementation R, T and R

are strongly assertion equivalent iff

• T and R are assertion equivalent; and

• ∀t ∈ Ttest, the TLM assertions covered by t and the RTL assertions covered by TR(t)

are activated in the same order.

Figure 7-3 illustrates an example of assertion equivalence. Assuming the TLM

specification and the RTL implementation are assertion equivalent and t is a TLM test

and t′ = TR(t), we can get MTLM (t) = {a1,a2,a3} and AR(MTLM(t)) = {b1,b2,b3} which

is a subset of MRTL(t′). However, the assertion activiation order is not consistent (a2

happens before a1, but b1 happens before b2). Therefore, in this case, the TLM design and

RTL design are assertion equivalent but not strongly assertion equivalent.

158

RTL

TLM
t

t’
a1

a2

a3

b3

b1

b2

Figure 7-3. An example of assertion equivalence

7.3 Case Study

This section presents two case studies: a router system and a simplified version

of the pipelined Alpha AXP processor [76]. We use the prototype tool (described in

Section 7.2.3) to automatically generate the TLM assertions and tests as well as refined

RTL assertions and tests. The experimental results are obtained on an 3 GHz AMD

Opteron server with 16G RAM using Linux operation system.

7.3.1 A Router Example

Figure 2-11 shows the structure of the TLM specification of the router example. The

main function of the router is to parse the incoming packets and distribute them to target

slaves. The TLM and RTL packet formats are shown in Figure 7-4. The packet consists of

three parts: header, payload and parity. The header has 8 bits, bit 0 and bit 1 are used as

the address of output port (i.e., target slave address). The other 6 bits indicate the size of

the payload. So the maximum payload size is 63. The last byte of the packet is the parity

of both header and payload. In TLM design, the master module creates a packet first.

Then, the master sends the packet to the router for package distribution. The router has

one input port and three output ports. Each port is connected to a FIFO buffer (channel)

which temporarily stores packets. The router has one process route which is implemented

159

as a SC METHOD. Triggered by the incoming packets, the route process first collects a

packet from the channel connected to the master, next decodes the header of the packet

to determine the target slave address, and then sends the packet to the channel connected

to the target slave. Finally, the slave modules read the packets when data is available

in the respective FIFOs. The transaction data (i.e., packet) flows from the master to its

target slave via the router. The transaction flow is controlled by the variable to chan in

the packet header.

// Packet description in TLM

class Packet {

};

 public:
 sc_unit<2> to_chan;
 sc_unit<6> payload_sz;

 sc_unit<8> parity;
 sc_unit<8> payload[63];

a) TLM Packet

 7 6 5 4 3 2 1 0

length = N

1 byte

chan

......

N−byte
Payload

1 byte

data[N]

data[1]

parity

b) RTL Packet

Figure 7-4. The packet format of the router in TLM and RTL

In the TLM specification, the I/O port of the router will deliver one whole packet

at a time. However, in RTL implementation, during each clock cycle only a byte can

be transferred through the I/O ports. Figure 7-5 shows the RTL I/O interface of the

router example. During the validation refinement, we need to specify such mapping rules

between the TLM and RTL designs using a VRS. Section 7.2.2.3 shows the partial VRS

details of the router example. For instance, in the symbol mapping part, packet.to chan

in TLM corresponds to the RTL data header[0 : 1] and packet.payload sz corresponds

to header[2 : 7]. The array of TLM data packet.payload will be mapped to RTL data

160

payload, and the TLM variable packet.parity corresponds to RTL variable parity. All

such RTL packet data will be applied to input signal DATA[7 : 0]

Router

DATA[7:0]

ERR

PKT_VALID

CLK

RST

CHAN0[7:0]

CHAN1[7:0]

ENB0

VLD0

ENB1

VLD1

CHAN2[7:0]

ENB2

VLD2

Figure 7-5. The I/O interface of the router example

In Section 7.2.2.3, we have shown the partial VRS to specify test and assertion

refinement rules. By using our tool VERT, 95 TLM assertions were generated according

to the proposed fault models. For each assertion, we derived a property and used it as

an input of a model checker. The model checker generated one counterexample (test)

to exercise each assertion. So we obtained 95 TLM assertions and 95 TLM tests from

the TLM design. Table 7-1 gives the details. The first row defines the fault types. The

second row shows the number of TLM assertions with different fault type. The third row

indicates the number of generated TLM tests. The last row gives the test generation time

(in minutes) using the SMV model checker.

Table 7-1. Assertion refinement for the router example

Fault Type Data Faults Flow Faults Event Faults Total
Numbers of TLM Assertions 88 4 3 95
Numbers of TLM Tests 88 4 3 95
Test Generation Time (min.) 73.70 2.60 31.50 107.8

During the TLM specification parsing, we did not consider the FIFO channel

information because it is defined in the standard SystemC library. Therefore there is

161

no assertion for the FIFO channels in the router example. However, to improve the

RTL code coverage, we manually created 4 TLM tests (2 tests for FIFO overflow, 1 test

for reset check and 1 test for asynchronous read). Finally we got 99 TLM tests and 99

RTL tests for validation purposes. It is important to note that the generation of TLM

assertions/tests and refinement are independent. In other words, TLM assertions and tests

can come from multiple sources. We use the VRS to describe the both assertion and test

refinement rules for the router example. Under the guidance of the VRS, our tool VERT

can translate the TLM tests and TLM PSL assertions to the corresponding RTL tests as

well as RTL assertions in the form of SVA.

RST = 0;
ENB0 = 0;
ENB1 = 0;
ENB2 = 0;
PKT_VALID = 0;

#20 RST = 0;
#5 RST = 1;

#5 PKT_VALID = 1’b1;

p −> payload_sz = 4;

p −> to_chan = 1;

Initialization

Reset Sequence

#10 ENB1 = 1; Read

p −> payload[0] = 128;

p −> payload[1] = 0;

p −> payload[2] = 0;

p −> payload[3] = 0;

#10 DATA = 8’b00000000;

DATA = 8’b10000100;p − >parity = 132;

#10 DATA = 8’b10000000;

#10 PKT_VALID = 1b’0;

#10 DATA = 8’b00000000;

DATA = 8’b00010001;Compose

#10 DATA = 8’b00000000;

//RTL Test

($rose(write_enb[1]) && date_o_fsm[1:0]==2’d1));
RTL assertion: cover property (@(posedge clock)

//TLM Test

TLM assertion: cover (tmp_packet.to_chan = 1);

Figure 7-6. An example of TLM-to-RTL refinement

162

Figure 7-6 shows an example of TLM-to-RTL refinement. The goal of this example is

to exercise the scenario that the packet can be sent to slave 1. By using the TLM test, we

can activate the TLM assertion. Similarly, the RTL test can activate the RTL assertion.

We applied the TLM and RTL tests on the TLM and RTL designs independently.

For the TLM design, we can get 100% coverage on both code and assertions. For the

RTL design, we measured various coverage metrics 1 using Synopsys VCS cmView [82].

Table 7-2 shows the coverage obtained using the generated tests. Due to some unreachable

code and missing “else” statements in RTL implementation, it is not possible to obtain

100% coverage in all the categories. It is important to note that the directed tests can

only give 94.7% assertion coverage on the refined assertions. We investigated the assertions

which are not covered. The reason is that the generated assertions and tests try to

activate the scenario to chan = 3 which is used as an error state in TLM. Since RTL

implementation did not consider this case, i.e., sending a packet to slave 3, we modified

the RTL implementation and finally we can get 100% assertion coverage.

Table 7-2. RTL coverage for the router example

Source Condition FSM Toggle Path Assertion
99.5% 76.6% 100% 76.6% 73.6% 94.7%

When applying a test during the validation, several TLM or RTL assertions may be

exercised. To check the equivalence between TLM and RTL, our prototype tool recorded

the simulation order for assertion activation. Such information is used to check the

equivalence between the TLM and RTL design. Our result shows that the TLM and

RTL designs of the router example are assertion equivalent, For strongly equivalence

checking, we only used the assertions derived from the transaction flow and event faults.

By matching the timed assertions on the assertion trace of each test, it shows that the

TLM and RTL designs of the router example is also strongly assertion equivalent.

1 The assertion coverage can not be obtained by VCS cmView.

163

7.3.2 A Pipelined Processor Example

In Figure 2-13 of Section 2.3.3, we give the TLM specification structure of the Alpha

AXP processor. As shown in Table 7-3, we generated 212 TLM assertions using various

fault models for the processor model. By using SMV, we generated 212 TLM tests (117

tests for data faults, 86 tests for flow faults and 9 tests for event faults) to exercise all such

assertions.

Table 7-3. Assertions refinement for the Alpha AXP processor

Fault Type Data Faults Flow Faults Event Faults Total
Numbers of TLM Assertions 117 86 9 212
Numbers of TLM Tests 117 86 9 212
Test Generation Time (min.) 369.00 10.83 0.03 379.86

We applied all the generated tests under the observation of our tool VERT. According

to the results provided by VCS cmView, we obtained the RTL implementation coverage

report shown in Table 7-4. We found that the source and condition coverage can not

be improved further because all the uncovered code are due to unreachable MISSING

ELSE and default CASEITEM statements that do not exist in the RTL implementation.

We used all the assertion for assertion equivalence checking, and the result shows that

assertion equivalence can be achieved. For strongly equivalence checking, we did not

include the assertions derived from the transaction data fault model. By comparing the

assertion activation sequence, the equivalence checker shows that we can achieve a strong

assertion equivalence by using the generated directed tests.

Table 7-4. RTL coverage for the Alpha AXP processor

Source Condition FSM Toggle Path Assertion
98.9% 97.0% NA 70.2% 86.3% 100%

164

7.4 Summary

Raising the abstraction level in SoC design flow can significantly reduce the overall

design effort but introduces two challenges: i) how to guarantee functional equivalence

between system level designs and low level implementations, and ii) how to reuse

validation effort between different abstraction levels. To address both problems, this

chapter proposed a methodology which reuses TLM validation effort to enable RTL

validation as well as assertion-based functional equivalence checking between TLM and

RTL models. By extracting formal models from TLM specifications, we can generate a

set of assertions and corresponding tests to validate all the specified TLM “faults”. Then

the assertions and tests can be translated to their RTL counterparts using our proposed

VRS. During the simulation, the TLM-to-RTL functional equivalence can be verified based

on the assertion coverage and assertion ordering. The experimental results using several

industrial designs demonstrated the effectiveness and benefits of our approach.

165

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

SystemC TLMs and UML activity diagrams are widely used to enable early

exploration for both hardware and software designs. It can reduce the overall design and

validation effort of complex SoC architectures. SoC validation is a major bottleneck due

to lack of efficient automated techniques coupled with limited reuse of validation efforts

between abstraction levels. This dissertation presented a novel top-down methodology for

automatically generating tests from system-level specifications for functional validation

at different abstraction levels. This chapter concludes the dissertation and outlines future

research directions.

8.1 Conclusions

Existing SoC validation techniques widely employ a combination of simulation based

techniques and formal methods. Simulation based validation uses random or directed test

vectors to check the correctness of the design. Certain heuristics are used to generate

directed random tests. However, due to the bottom-up nature and localized view of these

heuristics, the generated tests may not yield a good coverage. Simulation using directed

tests is promising for functional validation, since running time can be significantly reduced

with fewer tests while the coverage requirement can still be achieved.

A major challenge to enable directed test generation is to automatically extract a

formal representation from system level specifications and develop an efficient coverage

metric that allows coverage-driven directed test generation. Chapter 2 and 3 described

a model checking based framework for directed test generation. This approach can

automatically extract formal models from the high level specifications (including SystemC

TLMs and UML activity diagrams as described in Chapter 2) as well as can generate

properties (assertions) to cover all the errors for the given fault models (described in

Chapter 3).

166

Most automatic directed test generation methods, especially for model checking based

techniques, are impeded by the capacity restrictions of corresponding tools. To address

the complexity of test generation using SAT-based BMC, this dissertation presented three

efficient techniques to reduce the overall test generation time:

• Property clustering exploited various similarities between properties in a cluster
(described in Chapter 4) to share learnings.

• Efficient decision ordering enables beneficial knowledge sharing (described in
Chapter 5) between properties to avoid repeated validation effort.

• Decomposition techniques tried to scale down the property checking problem into
several sub-problems (described in Chapter 6). The learning from the decomposed
sub-problems is beneficial to the test generation of the original complex property.

By exploiting the commonalities between properties, the test generation time of a set

of similar properties can be significantly reduced.

Furthermore, this dissertation presented a promising methodology that can check

the TLM-to-RTL functional equivalence by reusing the TLM level validation effort. The

refined assertions as well as tests can not only check the consistency between different

abstraction levels, but also can be used for validating the system behavior of RTL designs.

Since our method can be automated, complete reuse of TLM tests will lead to a drastic

reduction in RTL validation.

In conclusion, this dissertation presented an efficient framework that can automatically

generate tests from high-level SoC specifications and enable checking design errors in

different stages of the SoC design. Due to drastic reduction in overall validation effort, this

research will lead to cost-effective and high-quality systems.

8.2 Future Research Directions

Automated coverage-driven test generation and refinement for validation of SoC is

a challenging problem. The work presented in this dissertation can be extended in the

following directions:

167

• The coverage-driven property generation will generate a large set of properties, and
many of them may activate the same scenarios. Consequently, there exists a lot of
redundancy in the derived tests. Therefore, property compaction can be employed
before the automated test generation to reduce the required number of properties. To
further reduce the number of directed tests, existing test compaction techniques can
be used.

• Find a way to efficiently generate tests for different designs but using the same
property set. For example, spiral model is widely used as a software development
process. The design is often slightly modified according to new requirements. Thus
we need to re-generate the new tests for the properties of the previous design.
Because most of the functionality remains the same, proper learning techniques can
be used to generate the new tests.

• Currently most assertion based validation methods are based on simulation for both
TLM and RTL designs. Generally for a large design, there will be thousands of
assertions that need to be checked at the same time. Checking them independently
will strongly affect the simulation performance. In the worst case, activating one
assertion needs one test. Therefore it is necessary to design a methodology that can
investigate the dependence between assertions and generate a small set of tests for the
simulation but still can achieve the same assertion coverage.

• It is necessary to develop a framework that can debug the RTL level functional errors
using its TLM specification. This can help designers to quickly find the error and fix
it.

• Post-silicon debugging is an important stage during SoC design. However, in the
post-silicon stage, all the debugging tasks are focused at signal level. It is very
difficult to detect and check high level functional scenarios. Therefore it is necessary
to refine the high level validation effort into gate-level implementation.

• This dissertation demonstrated the learning techniques (i.e., conflict clause forwarding
and decision ordering) are promising for system level test generation. It can be
extended to other domains, such as circuit-level validation. By incorporating our
learning techniques, we believe that the performance of current SAT-based automatic
test pattern generation (ATPG) approaches can be drastically improved.

168

REFERENCES

[1] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs - Automatic
Generation of Simulation Checkers from Formal Specifications. In Proceedings of
Computer Aided Verification (CAV), pages 414–427, 2000.

[2] S. Abdi and D. Gajski. A formalism for functionality preserving system level
transformations. In Proceedings of Asia and South Pacific Design Automation
Conference (ASPDAC), pages 139–144, 2005.

[3] Accellera. Property Specification Language. [updated May 2008; cited February 2010].
Available at http://www.eda.org/ieee-1850/.

[4] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An analysis of
SAT-based model checking techniques in an industrial environment. In Proceedings of
Conference on Correct Hardware Design and Verification Methods (CHARME), pages
254–268. Springer, 2005.

[5] P. Ammann, P. Black, and W. Majurski. Using model checking to generate tests from
specifications. In Proceedings of International Conference on Formal Engineering
Methods (ICFEM), pages 46–54, 1998.

[6] F. Balarin and R. Passerone. Functional Verification Methodology based on Formal
Interface Specification and Transactor Generation. In Proceedings of Design, Automa-
tion, and Test in Europe (DATE), pages 1013–1018, 2006.

[7] M. Benedetti and S. Bernardini. Incremental compilation-to-SAT procedures. In
Proceedings of International Conference on Theory and Applications of Satisfiability
Testing (SAT), 2004.

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Y. Wang. Uppaal - a tool
suite for automatic verification of real-time systems. In Proceedings of Hybrid Systems
(HSCC), pages 232–243, 1995.

[9] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumdar. Generating tests
from counterexamples. In Proceedings of the 26th IEEE International Conference on
Software Engineering (ICSE), pages 326–335, Los Alamitos, CA USA, 2004.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Proceedings of International Conference on Tools and Algorithms for The
Construction And Analysis of Systems, pages 193–207, 1999.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Analysis and Construction of Systems
(TACAS), volume 1579 of LNCS, pages 193–207. Springer, 1999.

[12] N. Bombieri, F. Fummi, and G. Pravadelli. On the evaluation of transactor-based
verification for reusing tlm assertions and testbenches at rtl. In Proceedings of Design,
Automation, and Test in Europe (DATE), pages 1–6, 2006.

169

[13] N. Bombieri, F. Fummi, and G. Pravadelli. Incremental abv for functional validation
of tl-to-rtl design refinement. In Proceedings of Design Automation and Test in
Europe (DATE), pages 882–887, 2007.

[14] N. Bombieri, F. Fummi, G. Pravadelli, and J. Marques-Silva. Towards Equivalence
Checking Between TLM and RTL Models. In Proceedings of International Conference
on Formal Methods and Models for Co-Design (MEMOCODE), pages 113–122, 2007.

[15] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, C-35(8):677–691, August 1986.

[16] L. Cai and D. Gajski. Transaction Level Modeling: An Overview. In Proceedings
of International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 19–24, 2003.

[17] K. Chandrasekar and M. S. Hsiao. Integration of learning techniques into incremental
satisfiability for efficient path-delay fault test generation. In Proceedings of Design
Automation and Test in Europe (DATE), pages 1002–1007, 2005.

[18] M. Chen, X. Qiu, and X. Li. Automatic test case generation for uml activity
diagrams. In Proceedings of International Workshop on Automation on Software Test,
pages 2–8, 2006.

[19] A. Chureau, Y. Savaria, and E. M. Aboulhamid. The role of model-level transactors
and uml in functional prototyping of systems-on-chip: A software-radio application.
In Proceedings of Design Automation and Test in Europe (DATE), pages 698–703,
2005.

[20] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic
model verifier. In Proc. of Intl. Conference on Computer Aided Verification (CAV),
volume 1633 of LNCS, pages 495–499. Springer, 1999.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT press, 2000.

[22] D. Das, R. Kumar, and P. P. Chakrabarti. Timing verification of uml activity
diagram based code block level models for real time multiprocessor system-on-chip
applications. In Proceedings of Asia-Pacific Software Engineering Conference
(APSEC), pages 199–208, 2006.

[23] K. Datta and P. P. Das. Assertion Based Verification Using HDVL. In Proceedings of
the International Conference on VLSI Design (VLSID), page 319, 2004.

[24] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[25] W. Ecker, V. Esen, T. Teininger, M. Velten, and M. Hull. Interactive Presentation:
Implementation of A Transaction Level Assertion Framework in SystemC. In
Proceedings of Design, Automation, and Test in Europe (DATE), pages 894–899,
2007.

170

[26] M. Ericsson. Activity diagrams: what they are and how to use them. The Rational
Edge, 2004.

[27] FBK-irst and CMU. NUSMV. [updated August 2006; cited August 2008]. Available
at http://nusmv.irst.itc.it/.

[28] F. Ferrandi, F. Fummi, L. Gerli, and D. Sciuto. Symbolic functional vector generation
for VHDL specifications. In Design, Automation and Test in Europe (DATE), pages
442–446, 1999.

[29] H. D. Foster, A. C. Krolnik, and D. Lacey. Assertion-Based Design, 2nd Edition.
Kluwer Academic Publishers, Boston, MA, 2004.

[30] F. Ghenassia. Transaction Level Modeling with SystemC. Springer, 2005.

[31] N. Guelfi and A. Mammar. A formal semantics of timed activity diagrams and its
promela translation. In Proceedings of Asia-Pacific Software Engineering Conference
(APSEC), pages 283–290, 2005.

[32] H. Zhu and P. Hall and J. May. Software Unit Test Coverage and Adequacy. ACM
Computing Surveys, 29(4):366–427, 1997.

[33] A. Habibi and S. Tahar. Towards An Efficient Assertion Based Verification of
SystemC Designs. In Proceedings of International High Level Design Validation and
Test Workshop (HLDVT), pages 19–22, 2004.

[34] A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-Level
Models. IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
14(1):57–68, 2006.

[35] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, Sanfrancisco, CA, 2003.

[36] P. Hsiung, C. Lin, and C. Liao. Perfecto: A SystemC-based Design-Space Exploration
Framework for Dynamically Reconfigurable Architectures. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 1(3), 2008.

[37] IEEE P1800 Working Group. SystemVerilog Assertion. [updated September 2008;
cited March 2010]. Available at http://www.eda.org/sv-ac/.

[38] J. Hooker. Solving the incremental satisfiability problem. Journal of Logic Program-
ming, 15(12):177–186, 1993.

[39] J. Marques-Silva and K. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[40] H. Jin and F. Somenzi. An incremental algorithm to check satisfiability for bounded
model checking. In BMC, pages 51–65, 2004.

171

[41] D. Karlsson, P. Eles, and Z. Peng. Formal verification of systemc designs using a
petri-net based representation. In Proceedings of Design, Automation, and Test in
Europe (DATE), pages 1228–1233, 2006.

[42] A. Kasuya and T. Tesfaye. Verification Methodologies in a TLM-to-RTL Design Flow.
In Proceedings of Design Automation Conference (DAC), pages 199–204, 2007.

[43] J. Kim, J. Whittemore, J. Marques-Silva, and K. Sakallah. On solving stack-based
incremental satisfiability problems. In Proceedings of International Conference on
Computer Design (ICCD), pages 379–382, 2000.

[44] T. Kogel, M. Doerper, T. Kempf, A. Wieferink, R. Leupers, and H. Meyr.
Virtual Architecture Mapping: A SystemC based Methodology for Architectural
Exploration of System-on-Chips. International Journal of Embedded Systems (IJES),
3(3):150–159, 2008.

[45] H. Koo and P. Mishra. Specification-based compaction of directed tests for functional
validation of pipelined processors. In International Symposium on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 137–142, 2008.

[46] H.-M. Koo and P. Mishra. Test generation using (SAT)-based bounded model
checking for validation of pipelined processors. In Proc. of ACM Great Lakes
Symposium on VLSI (GSLVLSI), pages 362–365, 2006.

[47] H.-M. Koo and P. Mishra. Functional test generation using design and property
decomposition techniques. ACM Transactions on Embedded Computing Systems
(TECS), 8(4), 2009.

[48] D. Kroening and N. Sharygina. Formal verification of systemc by automatic
hardware/software partitioning. In Proceedings of International Conference on
Formal Methods and Models for Co-Design (MEMOCODE), pages 101–110, 2005.

[49] M. Lahbib, R. Kamdem, M. Benalycherif, and R. Tourki. An Automatic ABV
Methodology Enabling PSL Assertions across SLD Flow for SOCs Modeled in
SystemC. Computers and Electrical Engineering, 31(4):282–302, 2005.

[50] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communication of ACM, 21(7):558–565, 1978.

[51] M. Chen and X. Qiu and W. Xu and L. Wang and J. Zhao and X. Li. UML Activity
Diagram Based Automatic Test Case Generation for Java Programs. The Computer
Journal, 52(5):545–556, 2009.

[52] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of ACM, 7(3):201–215, 1960.

[53] M. Davis, G. Logemann and D. Loveland. A machine program for theorem-proving.
Communication of ACM, 5(7):394–397, 1962.

172

[54] M. Prasad and A. Biere and A. Gupta. A survey of recent advances in SAT-based
formal verification. International Journal on Software Tools for Technology Transfer
(STTT), 7(2):156–173, 2005.

[55] J. P. Marques-Silva and K. A. Sakallah. The impact of branching heuristics in
propositional satisfiability. In Proceedings of the 9th Portuguese Conference on
Artificial Intelligence, pages 62–74, 1999.

[56] K. L. McMillan. SMV Model Checker, Cadence Berkeley Laboratory. [updated June
2006; cited August 2008]. Available at http://www.kenmcmil.com/.

[57] S. McPeak. Elsa. [updated August 2005; cited August 2008]. Available at
http://www.eecs.berkeley.edu/˜smcpeak.

[58] P. Mishra and M. Chen. Efficient techniques for directed test generation using
incremental satisfiability. In Proceedings of International Conference of VLSI Design,
pages 65–70, 2009.

[59] P. Mishra and N. Dutt. Graph-based functional test program generation for pipelined
processors. In Proc. of Design Automation and Test in Europe (DATE), pages
182–187, 2004.

[60] P. Mishra and N. Dutt. Functional coverage driven test generation for validation of
pipelined processors. In Proc. of Design Automation and Test in Europe (DATE),
pages 678–683, 2005.

[61] P. Mishra and N. Dutt. Functional Verification of Programmable Embedded Architec-
tures: A Top-Down Approach. Springer, 2005.

[62] P. Mishra, H.-M. Koo, and Z. Huang. Language-driven validation of pipelined
processors using satisfiability solvers. In IEEE International Workshop on Micropro-
cessor Test and Verification (MTV)), pages 119–126, 2005.

[63] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automa-
tion Conference (DAC), pages 530–535, 2001.

[64] M. Moy, F. Maraninchi, and L. Maillet-Contoz. Lussy: A toolbox for the analysis
of systems-on-a-chip at the transactional level. In Proceedings of the International
Conference on Application of Concurrency to System Design, pages 26–35, 2005.

[65] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene, and
Y. Vanderperren. Uml for esl design: basic principles, tools, and applications. In
Proceedings of International Conference on Computer-Aided Design (ICCAD), pages
73–80, 2006.

[66] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of Software
Testing, 2nd Edition. John Wiley & Sons, Hoboken, New Jersey, 2004.

173

[67] O. Strichman. Pruning techniques for the SAT-based bounded model checking
problem. Proceedings of Correct Hardware Design and Verification Methods
(CHARME), ser. LNCS, T. Margaria and T. Melham, Ed. Springer-Verlag,
2144:58–70, 2001.

[68] Object Management Group. UML Profile for System on a Chip
(SoC), v 1.0.1. [updated August 2006; cited August 2008]. Available at
http://www.omg.org/technology/documents/formal/profile soc.htm.

[69] Object Management Group. UML Superstructure V2.1.2. [updated November 2007;
cited August 2008]. http://www.omg.org/docs/formal/07-11-02.pdf.

[70] Open SystemC Initiative (OSCI). Systemc. [updated august 2006; cited august 2008].
Available at http://www.systemc.org.

[71] P. Mishra and N. Dutt. Specification-driven Directed Test Generation for Validation
of Pipelined Processors. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 13(3):1–36, 2008.

[72] J. Peterson. Petri Nets Theory and the Modeling of Systems. Prentice-Hall, N.J.,
1981.

[73] L. Pierre and L. Ferro. A Tractable and Fast Method for Monitoring SystemC TLM
Specifications. IEEE Transactions on Computers, 57(10):1346–1356, 2008.

[74] Princeton Univeristy. zChaff. [updated November 2004; cited August 2007]. Available
at http://www.princeton.edu/˜chaff/zchaff.html.

[75] R. Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM Transactions
on Software Engineering and Methodology, 15(1):1–38, 2006.

[76] R. L. Sites. Alpha AXP Architecture. Digital Technical Journal, 4(4), 1992.

[77] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A uml 2.0 profile for systemc:
toward high-level soc design. In Proceedings of the ACM International conference on
Embedded software, pages 138–141, 2005.

[78] A. Rose, S. Swan, J. Pierce, and J. Fernandez. Transaction Level Modeling in
SystemC. OSCI TLM Working Group, 2005.

[79] R. Schutten and T. Fitzpatrick. Design for verification methodology allows silicon
success. EETIMES, (16500856), 2003.

[80] D. Shin, A. Gerstlauer, J. Peng, R. Dömer, and D. Gajski. Automatic Generation
of Transaction Level Models for Rapid Design Space Exploration. In Proceedings
of International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 64–69, 2006.

174

[81] O. Shtrichman. Tuning SAT checkers for bounded model checking. In Proceedings
of the The International Conference on Computer Aided Verification (CAV), pages
480–494, 2000.

[82] SYNOPSYS. VCS Verification Library. [updated August 2007; cited August 2007].
Available at http://www.synopsys.com.

[83] The Satisfiability Library. SAT Benchmark Problems. [updated September 2003; cited
March 2010]. http://www.satlib.org/Benchmarks/SAT/BMC/description.html.

[84] B. Unhelkar. Verification and Validation for Quality of UML 2.0 Models. John Wiley
& Sons, 2005.

[85] M. Velev. Boolean Satisfiability (SAT) benchmarks. [updated November 2006; cited
March 2010]. http://www.miroslav-velev.com/sat benchmarks.html.

[86] M. Velev. Automatic abstraction of equations in a logic of equality. In Proceedings of
Proceedings of Analytic Tableaux and Related Methods (TABLEAUX), pages 196–213,
2003.

[87] C. Wang, H. Jin, G. D. Hachtel, and F. Somenzi. Refining the SAT decision ordering
for bounded model checking. In Proceedings of Design Automation Conference
(DAC), pages 535–538, 2004.

[88] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng. Generating test cases from uml
activity diagram based on gray-box method. In Proceedings of Asia-Pacific Software
Engineering Conference (APSEC), pages 284–291, 2004.

[89] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability
engine. In Proceedings of Design Automation Conference (DAC), pages 542–545, 2001.

[90] W. Wolf, A. A. Jerraya, and G. Martin. PDF Multiprocessor System-on-Chip
(MPSoC) Technology. IEEE Transactions on In Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 27(10):1701–1713, 2008.

[91] L. Zhang, C. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of International Conference
on Computer-Aided Design (ICCAD), pages 279–285, 2001.

[92] L. Zhang, M. Prasad, and M. Hsiao. Incremental deductive & inductive reasoning for
SAT-based bounded model checking. In Proceedings of International Conference on
Computer-Aided Design (ICCAD), pages 502–509, 2004.

175

BIOGRAPHICAL SKETCH

Mingsong Chen received his B.S. and M.E. degrees from the Department of Computer

Science and Technology of Nanjing University in China in 2003 and 2006 respectively.

His research focuses on design automation of embedded systems, functional verification of

System-on-Chip architectures, model checking techniques and software engineering.

In 2002, Mr. Chen joined the Software Engineering Group of Nanjing Unverisity

as a research assitant. His research was focused on model checking of real-time systems

and automatic test generation for UML activity diagrams. Under the supervision of

Prof. Xuandong Li and Jianhua Zhao, he received his master’s degree with thesis

titled “Dynamic Optimization Techniques for State Space in Timed Automata during

Reachability Analysis”. Since 2006, he pursued his Ph.D. degree in CISE department

of University of Florida. He joined the CISE Embedded Systems Group in 2007 under

the supervision of Prof. Prabhat Mihsra. He participated the research project titled

“SOC Validation using SystemC Transaction Level Models”which was funded by Intel

Corporation and U.S. National Science Foundation. During his Ph.D. study, one of his

papers presented in International Conference on VLSI Design 2009 was nominated for

best paper award. He was also a recipient of DAC Young Student Support Program Award

in 2008.

Mr. Chen currently serves as a reviewer of several ACM and IEEE conferences

including DAC, DATE, CODES+ISSS, ASP-DAC, GLSVLSI, VLSI Design, and ISVLSI.

He is a student member of IEEE.

176

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 SoC Design Flow
	1.2 Functional Validation of SoC Designs
	1.2.1 Overview of Functional Validation Methods
	1.2.2 Potential Improvement Opportunities
	1.2.3 Challenges

	1.3 Dissertation Contributions

	2 FORMAL MODELING OF SoC SPECIFICATIONS
	2.1 Specification using SystemC TLMs
	2.1.1 Formal Modeling of SystemC TLMs
	2.1.2 Transformation from SystemC TLM to SMV
	2.1.2.1 Structure Extraction
	2.1.2.2 Behavior Extraction

	2.1.3 A Prototype Tool For TLM to SMV Translation

	2.2 Specification using UML Activity Diagrams
	2.2.1 Notations
	2.2.2 Formal Modeling of UML Activity Diagrams
	2.2.3 Transformation from UML Activity Diagrams to SMV
	2.2.3.1 Static Information Extraction
	2.2.3.2 Dynamic Information Extraction

	2.2.4 A Prototype Tool For UML to SMV Translation

	2.3 Case Study
	2.3.1 Example 1: A Router
	2.3.2 Example 2: A MIPS Processor
	2.3.3 Example 3: An Alpha Processor
	2.3.4 Example 4: A Control System
	2.3.5 Example 5: A Stock Exchange System

	2.4 Summary

	3 COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS
	3.1 Coverage-Driven Property Generation
	3.1.1 Fault Models
	3.1.1.1 Generic Fault Models for Graph Based Models
	3.1.1.2 Fault Models for SystemC TLM Specifications
	3.1.1.3 Fault Models for UML Activity Diagrams

	3.1.2 Functional Coverage Based on Fault Models

	3.2 Test Generation using Model Checking Techniques
	3.2.1 Test Generation using Unbounded Model Checking
	3.2.1.1 Unbounded Model Checking
	3.2.1.2 Test Generation Algorithm

	3.2.2 Test Generation using Bounded Model Checking
	3.2.2.1 SAT-Based Bounded Model Checking
	3.2.2.2 Test Generation Algorithm
	3.2.2.3 Determination of Bound

	3.3 Case Studies
	3.3.1 A Control System
	3.3.2 A Stock Exchange System (OSES)

	3.4 Summary

	4 PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION
	4.1 Related Work
	4.2 Background: SAT Solver Implementation
	4.2.1 DPLL Algorithm
	4.2.2 Conflict Clause Based Learning

	4.3 Property Clustering
	4.3.1 Similarity based on Structural Overlap
	4.3.2 Similarity based on Textual Overlap
	4.3.3 Similarity based on Influence
	4.3.4 Similarity based on CNF Intersection
	4.3.5 Determination of Base Property

	4.4 Efficient Test Generation using Learning Techniques
	4.4.1 Conflict Clause Forwarding Techniques
	4.4.2 Name Substitution for Computation of Intersections
	4.4.3 Identification and Reuse of Common Conflict Clauses

	4.5 Case Studies
	4.5.1 A VLIW MIPS Processor
	4.5.1.1 Structure-based Clustering
	4.5.1.2 Clustering based on Textual Similarity
	4.5.1.3 Influence-based Clustering
	4.5.1.4 Intersection-based Clustering
	4.5.1.5 Comparison of Clustering Technqiues

	4.5.2 A Stock Exchange System

	4.6 Summary

	5 DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNING
	5.1 Related Work
	5.2 Decision Ordering Based Learnings
	5.2.1 Overview
	5.2.2 Bit Value Ordering
	5.2.3 Variable Ordering
	5.2.4 Conflict Clause based Decision Ordering (Hybrid)

	5.3 Test Generation using Decision Ordering
	5.3.1 Test Generation for a Single Property
	5.3.1.1 Heuristic Implementation
	5.3.1.2 Test Generation

	5.3.2 Test Generation for a Cluster of Similar Properties
	5.3.2.1 Heuristic Implementation
	5.3.2.2 Test Generation

	5.4 Case Study
	5.4.1 Intra-Property Learning
	5.4.2 Inter-Property Learning
	5.4.2.1 A MIPS Processor
	5.4.2.2 A Stock Exchange System

	5.5 Summary

	6 EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES
	6.1 Learning-Oriented Property Decomposition
	6.1.1 Potential Learnings for Complex Properties
	6.1.2 Spatial Property Decomposition
	6.1.3 Temporal Property Decomposition

	6.2 Decision Ordering Based Learning Techniques
	6.3 Test Generation using Our Methods
	6.4 An Illustrative Example
	6.4.1 Spatial Decomposition
	6.4.2 Temporal Decomposition

	6.5 Experiments
	6.5.1 A VLIW MIPS Processor
	6.5.2 A Stock Exchange System

	6.6 Summary

	7 REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALENCE
	7.1 Related Work
	7.2 A Framework for Checking TLM-to-RTL Functional Equivalence
	7.2.1 Automatic Transaction Level Validation
	7.2.1.1 Generation of TLM Assertions
	7.2.1.2 Generation of TLM Tests

	7.2.2 Refinement of TLM Assertions and Tests
	7.2.2.1 Symbol Mapping
	7.2.2.2 Assertion Refinement Rules
	7.2.2.3 Test Refinement Rules

	7.2.3 A Prototype Tool for TLM-to-RTL Validation Refinement
	7.2.3.1 TLM2SMV
	7.2.3.2 TLM Test Generation
	7.2.3.3 TLM2RTL

	7.2.4 Assertion-Based Functional Equivalence
	7.2.4.1 Assertion-Based Functional Coverage
	7.2.4.2 Assertion Ordering
	7.2.4.3 Assertion Based Functional Equivalence

	7.3 Case Study
	7.3.1 A Router Example
	7.3.2 A Pipelined Processor Example

	7.4 Summary

	8 CONCLUSIONS AND FUTURE WORK
	8.1 Conclusions
	8.2 Future Research Directions

	REFERENCES
	BIOGRAPHICAL SKETCH

