
Efficient Decision Ordering Techniques for SAT-based Test Generation∗

Mingsong Chen Xiaoke Qin Prabhat Mishra
mchen@cise.ufl.edu xqin@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract
Model checking techniques are promising for automated

generation of directed tests. However, due to the prohibitively
large time and resource requirements, conventional model
checking techniques do not scale well when checking complex
designs. In SAT-based BMC, many variable ordering heuris-
tics have been investigated to improve counterexample (test)
generation involving only one property. This paper presents ef-
ficient decision ordering techniques that can improve the over-
all test generation time of a cluster of similar properties. Our
method exploits the assignments of previously generated tests
and incorporates it in the decision ordering heuristic for cur-
rent test generation. Our experimental results using both soft-
ware and hardware benchmarks demonstrate that our approach
can drastically reduce the overall test generation time.

1 Introduction

Due to the increasing complexity and decreasing time-to-
market requirements, functional validation of System-on-Chip
(SOC) designs is becoming a major bottleneck. Conventional
simulation-based validation methods mainly adopt two kinds
of tests: constrained-random and directed tests. Compared to
constrained-random testing, directed testing uses fewer tests
to achieve the required functional coverage. Thus the overall
validation effort can be reduced. However, most directed test
generation methods need the expert knowledge of design under
validation. The inevitable human intervention makes directed
test generation laborious, time consuming and error-prone. So
it is necessary to develop efficient techniques to automate the
process of directed test generation.

Model checking is recognized as one of the most promising
methods for automated generation of directed tests. In SOC
functional validation, the design is transformed to a formal
specification, and the negation of the coverage requirements
are derived as safety properties in the form of temporal logic.
During verification, the model checker exhaustively enumer-
ates all the possible states. If any state contradicts the speci-
fied property, the model checker will report a counterexample.
Such a counterexample is a sequence of variable assignments
which can be refined to a test. Validation of SOC design using

∗This work was partially supported by NSF CAREER award 0746261.

these tests can guarantee coverage requirement. To address the
state space explosion problem when checking complex designs,
Boolean Satisfiability (SAT) based Bounded Model Checking
(BMC) [1] is proposed. By unrolling the design and the prop-
erty k times, BMC converts the k-step state search problem into
a SAT problem. If the property fails within k steps, a SAT solver
will report a satisfiable assignment (counterexample).

Decision ordering plays an important role during the search
because different ordering implies different search path which
strongly affects the search time. Most existing decision order-
ing methods focus on exploiting the useful information of gen-
eral SAT problem with only one SAT instance. Generally for
test generation, a design may have various properties and BMC
will check each of them individually. Based on the same de-
sign, similar properties describe correlated functional scenar-
ios. Therefore the respective counterexample are expected to
have a significant overlap. This paper exploits the decision or-
dering information in the context of test generation involving
one design and multiple properties. The contribution of this
paper is the development of an algorithm to drastically reduce
the overall directed test generation time by using our proposed
heuristics on decision ordering. We integrated our method into
the SAT solver zChaff [2]. Experimental studies show that our
method can drastically reduce the overall test generation time.

The rest of the paper is organized as follows. Section 2
presents related work on SAT-based BMC techniques and deci-
sion ordering heuristics. Section 3 describes SAT-based BMC.
Section 4 proposes our test generation methodology using effi-
cient decision ordering techniques. Section 5 presents the ex-
perimental results. Finally, Section 6 concludes the paper.

2 Related Work

Model checking [3] techniques have been widely accepted
as a promising method for automatic test generation. Due to
the scalability issues of conventional Binary Decision Diagram
(BDD) based methods, SAT-based BMC is proposed as a com-
plementary solution for large designs. Many studies in both
software and hardware domains [4] show that BMC has bet-
ter capacity and productivity over unbounded model checking
for real designs. Various techniques based on conflict clause
forwarding and variable ordering [5] are proposed to further
improve the efficiency of BMC-based test generation.

978-3-9810801-6-2/DATE10 © 2010 EDAA

Due to the incremental nature of BMC, SAT techniques [6, 7]
try to exploit the commonality between SAT instances and
reuse previously learned conflict clauses to prune current search
tree. Strichman [7] found that when solving the SAT instance
series of a property, some conflict clauses can be replicated and
forwarded because of the symmetry of the transition part of the
property. In [8], Mishra and Chen observed that during directed
test generation using SAT-based BMC, similar properties can
be clustered and solved together. For each cluster, they reused
the learned knowledge of base property to solve other proper-
ties. Our method in this paper uses variable ordering instead of
conflict clauses as learning knowledge to reduce the overall test
generation time. The comparison between our method and [8]
is shown in Section 5.

Different variable ordering will lead to different search trees,
therefore branching heuristics can improve the SAT searching
performance significantly [9]. As a popular SAT solver, zChaff
uses the Variable State Independent Decaying Sum (VSIDS)
heuristic [5]. This heuristic contains two parts: i) the static
part collects the statistics of the Conjunctive Normal Form
(CNF) literals prior to SAT solving and sets the initial deci-
sion ordering, and ii) during the SAT solving, the dynamic
part periodically updates the priority based on conflict clauses.
Although these general-purpose heuristics are promising for
propositional formulas, they neglect some unique information
of BMC. In [10], Strichman exploited the characteristics of the
BMC formulas for a variety of optimizations including decision
ordering. When the bound is unknown, SAT-based BMC needs
to increase the unrolling depth one-by-one until finding a coun-
terexample. Wang et al. [11] analyzed the correlation among
different SAT instances of a property. They used the unsatis-
fiable core of previously checked SAT instances to guide the
variable ordering for the current SAT instance.

To the best of our knowledge, all the existing approaches ex-
ploit variable ordering to improve the SAT solving time involv-
ing only one property (one SAT instance or several correlated
SAT instances with different bounds). Our approach is the first
attempt to use decision ordering to reduce the test generation
time for a cluster of similar properties.

3 Background: SAT-based BMC
SAT-based BMC is very promising to locate the errors and

report the counterexample for a faulty property when bound is
known a priori. Given a model M, a safety property p, and a
bound k, BMC will unroll the model k times and transform the
problem into a Boolean formula as follows:

BMC(M, p,k) = I(s0)∧
k−1∧
i=0

T (si,si+1)∧
k∨

i=0

¬p(si)

It consists of three parts: i) I(s0) presents the system initial
state, ii) T (si,si+1) describes the state transition from state si
to state si+1, and iii) p(si) tests whether property p is true in
state si. Then this formula will be transformed to CNF and
solved by SAT solvers. Semantically, if there is a satisfiable

assignment for this property, then the property is false, written
M |=/k p. Otherwise, it means that the property holds for the
design within bound k, written M |=k p.

while (1) {
run periodic functions();
if (decide next branch()) {

while (deduce() == CONFLICT) {
blevel = analyze conflicts();
if(blevel < 0) return UNSAT;

}
} else return SAT;

}

Figure 1. DPLL search procedure of zChaff

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [12]
is widely used for SAT search. Figure 1 shows its implementa-
tion in zChaff. It contains three parts:

• Periodic function updates the SAT configuration, triggered
by some specified events such as updating the scores of
literals after a certain number of backtracks.

• Boolean Constraint Propagation (BCP) is implemented in
deduce. It figures out all possible implications by previous
decision assignment.

• Conflict analysis does a proper backtrack when encounter-
ing a conflict. It analyzes the reason for the conflict and
make it as a conflict clause to avoid the same conflict in
future processing.

Decision ordering plays an important role during the SAT
search. In zChaff, each literal l is associated with a
zchaff score(l) which is used for decision ordering at de-
cide next branch(). Initially the score is equal to the literal
count in corresponding CNF file. During the SAT solving, the
score will be updated in the periodic function after a certain
numbers of backtracks. The calculation of the new literal score
is as follows, where lits in new confs(l) is the number of newly
added conflict clauses which contain literal l since last update.

cha f f score(l) = cha f f score(l)/2+ lits in new con f s(l)

Studies show that modern SAT solvers spend approximately
80% of time to carry out BCP. In addition, during the conflict
analysis, long distance backtracks will increase the burden of
SAT solvers. Our method tries to optimize both parts by using
the learning from decision ordering. The learning can guide the
SAT search so that it can drastically reduce the search time.

4 Test Generation using Decision Ordering
For model checking based directed test generation, each

property is a negation of a desired system behavior. Thus it
is assumed that each property can produce a counterexample
(test). The properties which are used to detect the similar func-
tional errors have a large overlap and can be clustered. This

section presents our decision ordering heuristic to reduce the
overall test generation time for a cluster of similar properties.
The remainder of this section is organized as follows. In Sec-
tion 4.1, we present an overview of our approach using an il-
lustrative example. Section 4.2 presents our decision ordering
heuristic. Finally, Section 4.3 proposes an algorithm which in-
corporates our heuristic.

4.1 Overview

As discussed in Section 3, the most time consuming parts
in SAT search are BCP and long distance backtracking. They
are indicated by implication number and conflict clause num-
ber which represent the successful decision ratio and backtrack
number respectively. Ideally, a search method can get a satis-
fiable assignment by making the assignment for each variable
only once. However, generally it is impossible to achieve such
scenario. For a cluster of similar properties and pre-determined
bounds, the objective of our method is to reduce the number of
implications and conflict clauses of unchecked properties by in-
corporating the learned decision ordering knowledge from pre-
viously checked properties.

d d

b b b

1 0 01

1 0 1 0

1 001

C

1 0 1 0 1 0 1 0

C C C C C C C C C C C C

1 0 1 0 1 0 1 0

S SC

aa

bbbb

a
a

b

a) Partial view of the first example b) Partial view of the second example

Search Path Variable: a, b, c, d

Ordering: d, d’, a, a’, b, b’, c, c’ Ordering: d, d’, a, a’, b, b’, c, c’

S: SuccessC: Conflict

Figure 2. Two examples of SAT search

If we have two similar properties for a design, both properties
will have a large overlap of CNF clauses and counterexample
assignments. Figure 2 shows the partial views of search trees
and search paths of the two properties. The search paths are
formed according to the decision ordering (shown on top of the
search trees). For each variable v in the ordering, there are two
literals (v means v = 1 and v′ means v = 0). As shown in the
Figure 2a, there are 3 conflicts encountered where variable c is
involved in conflicts. The search stops after finding a satisfiable
assignment a = 0, b = 0, c = 1, d = 1 in this scenario. In
Figure 2b, the search will be successful only when a = 0, b = 0,
c = 1, d = 0 after encountering 7 conflicts. Therefore the search
of the second example will be more time-consuming because of
more backtracks.

Because of the large overlap in the assignment of counterex-
amples, the result of previously checked properties can be used
as a learning for unchecked properties. For example, in Fig-
ure 2, the result of first example strongly indicates the assign-
ment of the second example because of the satisfiable assign-
ment intersection a = 0, b = 0, c = 1. If the second example

use the decision ordering based on the variable assignment in
the intersection first, the searching time of the second example
can be drastically reduced as shown in Figure 5.

4.2 Decision Ordering Heuristic

In this section we present our heuristic as well as its im-
plementation to improve the overall test generation time. Our
heuristic consists of both ordering of values as well as variables.

4.2.1 Bit Value Ordering

Similar properties generally have a large intersection of both
corresponding CNF clauses and counterexample assignments.
This indicates that the satisfiable assignment of checked
SAT instances contain rich decision ordering knowledge for
unchecked satisfiable SAT instances. In SAT search, incorrect
value selection for each variable will cause conflicts which will
result in backtracks to remove the reason of the conflicts. A
good decision ordering can mostly avoid such faulty assign-
ments. Unlike pruning the search tree using conflict clause for-
warding [8], bit value ordering changes the search path. By
setting the bit priority (choose 0 or 1 first) for each variable us-
ing the knowledge of previous property checking, the length of
the search path can be reduced.

bb

1

1

C C C

1 1 0 1

bb

a
a

d
0

0

1 0

SC

0

C C C

1

1

C C C

1 1 0 1

bb

a
a

d
0

0

1 0

SC

0

C C C

a) Without bit value ordering

Ordering: d, d’, a, a’, b, b’, c, c’

a=0, b=0, c=1, d=1

01

0 0

01

bb

Learned assignment:

Ordering: d, d’, a’, a, b’, b, c, c’

b) With bit value ordering

Figure 3. A scenario where bit value ordering works

Figure 3 shows an example where bit value ordering works.
As shown in Figure 2a, we can get a satisfiable assignment
a = 0, b = 0, c = 1 and d = 1. This assignment can be used
to change the decision ordering of the second example. That
means, when node a is encountered, the search chooses a = 0
first in its search path. The same rule also applies on other
nodes. Applying such heuristic in Figure 3b, there are only 4
conflicts encountered compared to 7 conflicts in Figure 3a. In
addition the search path is also shortened. Therefore the search-
ing time is reduced.

It is important to note that the bit value ordering itself is not
always helpful for the SAT searching. For example in Figure 4,
a = 1, b = 0, c = 1, d = 1 is the only satisfiable assignment in
the given scenario. The searching in Figure 4a without bit value
ordering is faster than the searching in Figure 4b because of less
conflicts. As another example, if the learning assignment in
Figure 4 is a=0, b=0, c=1 and d=0, the searching performance

will be worse than the search in Figure 4b. Clearly, in the search
tree, the early decision variables (e.g. node d) strongly affect
the performance of the searching if they are not consistent with
learned bit value ordering.

1

1

C C C

1 1

d
0

0

bb

a

b

01

a) Without bit value ordering b) With bit value ordering

Learned assignment: a=0, b=0, c=1, d=1

Ordering: d, d’, a, a’, b, b’, c, c’ Ordering: d, d’, a’, a, b’, b, c, c’

0

0

b

a

1

1

C C C

1

d

0

00

SS

Figure 4. A scenario where bit value ordering fails

4.2.2 Variable Ordering

Although bit value ordering is promising in general, there are
still a lot of conflicts encountered during the search. According
to the example shown in Figure 4, if early decision nodes make
a wrong decision, the search path will be lengthened due to
the long distance backtrack. To reduce the searching time, it
is necessary to restrict the conflict detection and reasoning in a
small area.

1

01

C C C

1 0 1 0

C

bb

a
a

d

1

b

1

0

0

0

S

1 0

0

S

1 0
a

b

d

1

a) With bit value ordering b) With bit value and variable ordering

Ordering: d, d’, a’, a, b’, b, c, c’ Ordering: a’, a, b’, b, d, d’, c, c’

Learned assignment: a=0, b=0, c=1, d=1

C C

Figure 5. An example of bit value and variable ordering

Efficient combination of variable ordering and bit value or-
dering is very promising. As shown in Figure 5b, the search
time is better than that in Figure 5a due to a shorter search path
and less conflicts. The reason of this improvement is that we
increase the priority of literal a′ and b′. Since d is the variable
with different value between the two satisfiable assignments
shown in Figure 2, lowering down the priority of such variables
based on potential value difference between two CNFs can ef-
ficiently avoid the long distance backtrack. Generally, before
SAT solving, it is hard to figure out the difference between two
satisfiable CNF variable assignments. However, based on the
value assignment statistics of the checked properties, the vari-
able ordering can be constructed. For a variable with a lower as-

signment value variation, which indicates high chance of same
value, we will enhance its priority by increasing the score of its
two literals.

4.2.3 Heuristic Implementation

In our heuristic implementation, we predict the decision order-
ing based on the statistics collected from the checked proper-
ties. Let varStat[sz][2] (sz is the largest variable number for
CNFs) be a 2-dimensional array to keep the count of vari-
able assignments. Initially, varStat[i][0] = varStat[i][1] = 0
(0 < i ≤ sz). varStat will be updated after checking each prop-
erty. Assuming we are now checking property p j, if the value
of variable vi in the assignment of the p j is 0, then varStat[i][0]
will be increased by one; otherwise, varStat[i][1] will be in-
creased by one. This updated information of varStat will be
utilized when checking property p j+1.

d

b d

0 1

varStat

[1] v’

[0] v

a

varStat

[0] v

[1] v’

......

......

......1100

1 0 0

cb

......

......1200

2

a c

0

varStat

[0] v

[1] v’

a

0

b c d

0 0

00 0 0

p1: a=0, b=0, c=1, d=1

......

......

1

2

......

predict ordering for p3

p2: a=0, b=0, c=1, d=0

score(a’)

score(c)

score(b) score(b’)

score(c’)

score(a)

a = 0, b = 0, c = 1, d = ?

Learning from p1 + p2

Learning from p1Initial values

Figure 6. Statistics for two properties

For example, if we have three properties p1, p2 and p3, the
statistics after checking p1 and p2 are shown in Figure 6. When
checking p3, we can predict its decision ordering based on the
collected information saved in varStat. The content of varStat
indicates that variables a and b are more likely to be 0, c is more
likely to be 1 and d can be assigned any value. Furthermore,
varStat implies the assignments for variable a, b and c are more
consistent than the assignment for variable d. Thus the score of
variable a, b and c will be increased. In other words, they will
be searched first as described in Section 4.2.2.

Assuming li is a literal of vi, we use the following equation
to predict the bit value assignment of vi when checking p j+1.

potential(li) =


1 (varStat[i][1] > varStat[i][0]&li = vi)

or(varStat[i][1] < varStat[i][0]&li = v′i)
0 otherwise

For example, potential(li) = 0 means that value of li is more
likely to be 0 in the satisfiable assignment of p j+1. For exam-
ple, in Figure 6, potential(a) = 0 which means that a is more
likely to be assigned with 0. Let

ratio(i) =
max(varStat[i][0],varStat[i][1])+1
min(varStat[i][0],varStat[i][1])+1

indicates the assignment variance of variable vi. The larger
ratioi means that the value assignments for variable vi are more
consistent. So it can be used for variable ordering.

Our decision heuristic is based on VSIDS [5]. The only
difference is that our method incorporates the statistics of
previously checked properties. For each literal li, we use
score(li) to describe its priority. Initially, score(li) is equal
to the literal count of li. At the beginning of search as
well as periodically decaying time, the literal score will be
recalculated using the following equation where max(vi) =
MAX(score(vi),score(v′i))+1.

score(li) =

{
max(vi)∗ ratio(i) pontential(li) = 1
score(li)∗ ratio(i) otherwise

4.3 Test Generation using Our Heuristics

In this paper, we assume that the bound is pre-determined
and given as an input to our method. Determination of bound
is hard in general. However, for directed test generation, the
bound can be estimated by exploiting the structure of the de-
sign. Algorithm 1 describes our test generation methodology.
The inputs of the algorithm are a formal model of the design
and a cluster of similar properties. The first step initializes
varStat which is used to keep statistics of the variable assign-
ments. After generating a CNF for the base property p1 in step
2, step 3 solves the CNF using chaff score presented in Sec-
tion 3 without any learning techniques. In step 4, varStat is
updated after the satisfiable assignments of pi−1 are obtained.
Step 5 generates CNFs for unchecked properties, and step 6
checks such properties using our decision ordering techniques.
Finally, the algorithm reports all the generated counterexam-
ples (tests).

Algorithm 1: Test Generation using Decision Ordering
Inputs: i) Formal model of the design, D

ii) A cluster of similar properties, P, with satisfiable bounds
Outputs: Test-suite
Begin

1. Initialize varStat;
2. Select the base property p1 and generate CNF, CNF1
3. (assignment1, test1) = SAT(CNF1, cha f f score(CNF1))
Test-suite = {test1}
for i is from 2 to the size of cluster P

4. Update varStat using assignmenti−1
5. Generate CNF, CNFi = BMC(D, pi, boundi)
6. (assignmenti, testi) = SAT(CNFi, score(CNFi))
Test-suite = Test-suite ∪ testi

endfor
return Test-suite

End

5 Experiments

This section presents two case studies: a VLIW implemen-
tation of the MIPS architecture [13] and a stock exchange sys-

tem. We used NuSMV [14] to generate the CNF clauses (in DI-
MACS format) and modified the zChaff [2] as our SAT solver.
We implemented our decision ordering heuristic on top of VS-
DIS. The experimental results are obtained on a Linux PC using
2.0GHz Core 2 Duo CPU with 1 GB RAM.

5.1 A VLIW MIPS Processor
The MIPS processor consists of five pipeline stages: fetch,

decode, execute, memory and writeback. We applied our
methodology to generate the required directed tests for four
pipeline paths in the execute stage (ALU, FADD, MUL, DIV).
Due to the similarity, we cluster the properties of each path
together to share the learning. There are 16 properties divided
into 4 clusters. Each cluster has a base property which is solved
first. Table 1 shows the results. The first column indicates the
properties used for test generation. The second column repre-
sents the test generation time using zChaff. The third column
shows the result by forwarding conflict clauses among prop-
erties [8]. The fourth column indicates the improvement by
[8] over zChaff. Following the results of our method in the
fifth column, the sixth column shows our improvement over the
method proposed in [8]. As expected, there is no improvement
for base properties since they are solved first without any learn-
ing opportunity. Compared to [8] which uses conflict clause
forwarding, our method can get an average of 15.87X improve-
ment using decision ordering.

Table 1. Test Generation Result for MIPS Processor
Prop. zChaff [2] Inc. [8] Improv. Ours Improv.

(Tests) (sec) (sec) [2] vs [8] (sec) [8] vs ours

ALU 1 23.20 23.20 1 23.20 1
p1 20.73 2.74 7.57 0.18 15.22
p2 21.33 3.01 7.09 0.15 20.07
p3 18.03 2.70 6.68 0.29 9.31

DIV 1 18.78 18.78 1 18.78 1
p4 23.55 2.72 8.66 0.13 20.92
p5 18.31 3.60 5.09 0.14 25.71
p6 18.11 3.72 4.87 0.18 20.67

FADD 1 22.90 22.90 1 22.90 1
p7 16.95 4.46 3.80 0.23 19.39
p8 18.89 2.71 6.97 0.16 16.94
p9 19.80 4.70 4.21 0.39 12.05

MUL 1 64.21 64.21 1 64.21 1
p10 59.15 3.36 17.60 0.24 14.00
p11 59.65 3.85 15.49 0.45 8.56
p12 73.98 6.28 11.78 0.18 34.89

1 Base property

During the SAT searching, conflict clause number and impli-
cation number strongly indicate the searching time. Figure 7 il-
lustrates the conflict clause generation for each property during
the search using different methods. Figure 8 shows the corre-
sponding implication numbers. It can be seen that, by using our
method, the number of conflict clauses and implications can be
reduced drastically by several orders-of-magnitude, which re-
sults in significant improvement in test generation time.

1 2 3 4 5 6 7 8 9 10 11 12
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6
zChaff Incremental [8] Our Approach

Properties

C
on

fli
ct

 C
la

us
e

N
um

be
r

Figure 7. Conflict Statistics for MIPS Processor

1 2 3 4 5 6 7 8 9 10 11 12
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9
zChaff Incremental [8] Our Approach

Properties

Im
pl

ic
at

io
n

N
um

be
r

Figure 8. Implication Statistics for MIPS Processor

5.2 A Stock Exchange System

The formal NuSMV description of the on-line stock ex-
change system (OSES) is derived from its UML activity dia-
gram specification, which contains 27 activities, 29 transitions.
It mainly deals with three scenarios: accept, check and execute
the customers’ orders (market orders and limit orders). A path
in the UML activity diagram indicates a stock transaction flow.
There are a total of 51 properties generated based on path cov-
erage criteria. According to their similarity, we group them into
nine clusters, C1-C9.

Table 2. Test Generation Result for Stock Exchange System
Cluster Size zChaff Inc. [8] Improv. Ours Improv.

[2] (sec) (sec) [2] vs [8] (sec) [8] vs ours

C1 3 1.18 2.18 0.54 0.70 3.11
C2 4 14.53 9.53 1.52 0.78 12.22
C3 8 375.91 170.06 2.21 36.19 4.70
C4 4 12.98 8.33 1.56 1.24 6.72
C5 4 7.13 16.88 0.42 1.02 16.55
C6 8 720.13 474.68 1.52 28.60 16.60
C7 4 10.80 24.55 0.44 1.95 12.59
C8 8 656.95 321.14 2.05 77.65 4.14
C9 8 248.17 82.42 3.01 37.93 2.17

Avg. - 227.53 123.31 1.85 20.67 5.97

Table 2 shows the test generation results. The first column
indicates the clusters. The second column indicates the size for
each cluster. The third column presents the test generation time
(including base property) using zChaff. The fourth and fifth

columns indicate the time required to generate the counterex-
ample (test) by using method proposed in [8] and correspond-
ing improvement factor, respectively. The last two columns in-
dicate the test generation time (including base property) and
its improvement factor using our heuristic. The last row indi-
cates the average value for each column. In this case study,
our approach can produce an average of 5.97X improvement
compared to the method proposed in [8].

6 Conclusions
Simulation using directed tests is promising for function val-

idation, since running time can be reduced with fewer tests
while the coverage requirement can still be achieved. Most
automatic directed test generation methods, especially model
checking based techniques, are impeded by the capacity restric-
tion of corresponding tools. To address the complexity of test
generation using SAT-based BMC, this paper presented a novel
decision ordering heuristic. To the best of our knowledge, our
work is the first attempt to share the learning across the decision
ordering of multiple properties. By exploiting the commonal-
ities during the search of satisfiable assignments, the test gen-
eration time of a set of similar properties can be reduced. The
experimental results using both hardware and software designs
demonstrated the effectiveness of our method.

References

[1] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model check-
ing. Advances in Computers, 58, 2003.

[2] http://www.princeton.edu/ chaff/zchaff.html. zChaff.
[3] E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT

Press, Cambridge, MA, 1999.
[4] N. Amla et al. An analysis of SAT-based model checking tech-

niques in an industrial environment. CHARME, 254–268, 2005.
[5] M. Moskewicz et al. Chaff: Engineering an efficient SAT solver.

DAC, pages 530–535, 2001.
[6] H. Jin and F. Somenzi. An incremental algorithm to check satis-

fiability for bounded model checking. BMC, 51–65, 2004.
[7] O. Strichman. Pruning techniques for the sat-based bounded

model checking problem. CHARME, 58–70, 2001.
[8] P. Mishra and M. Chen. Efficient techniques for directed test

generation using incremental satisfiability. In Proceedings of In-
ternational Conference of VLSI Design, 65–70, 2009.

[9] J. P. Marques-Silva and K. A. Sakallah. The impact of branching
heuristics in propositional satisfiability. In Proceedings of the 9th
Portuguese Conference on Artificial Intelligence, 62–74, 1999.

[10] O. Shtrichman. Tuning SAT checkers for bounded model check-
ing. CAV, 480–494, 2000.

[11] C. Wang et al. Refining the SAT decision ordering for bounded
model checking. DAC, 535–538, 2004.

[12] M. Davis et al. A machine program for theorem proving. Com-
munication of the ACM, 5:394–397, 1962.

[13] J. Hennessy and D. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers, 2003.

[14] http://nusmv.irst.itc.it/. NuSMV.

