
Efficient Techniques for Directed Test Generation using Incremental Satisfiability∗

Prabhat Mishra and Mingsong Chen

Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA

{prabhat, mchen}@cise.ufl.edu

Abstract

Functional validation is a major bottleneck in the current

SOC design methodology. While specification-based valida-

tion techniques have proposed several promising ideas, the time

and resources required for directed test generation can be pro-

hibitively large. This paper presents an efficient test genera-

tion methodology using incremental satisfiability. The existing

researches have used incremental SAT to improve counterex-

ample (test) generation involving only one property with differ-

ent bounds. This paper is the first attempt to utilize incremen-

tal satisfiability in directed test generation involving multiple

properties. The contribution of this paper is a novel methodol-

ogy to share learning across multiple properties by developing

efficient techniques for property clustering, name substitution,

and selective forwarding of conflict clauses. Our experimental

results using both software and hardware benchmarks demon-

strate that our approach can drastically (on average four times)

reduce the overall test generation time.

1 Introduction

Functional verification is a major bottleneck in System-on-

Chip (SOC) design due to the combined effects of increasing

design complexity and decreasing time-to-market. Simulation-

based validation is the most widely used form of SOC verifi-

cation using functional test programs. There are three types of

test generation techniques: random, constrained-random, and

directed. The directed tests can reduce overall validation effort

since shorter tests can obtain the same coverage goal compared

to the random tests. However, directed test generation is mostly

performed by human intervention. Due to manual develop-

ment, it is infeasible to generate all directed tests to achieve

a comprehensive coverage goal. Automatic test generation is

the alternative to address this problem.

Test generation using model checking is one of the most

promising approaches due to its capability of automatic test

generation. However, it is unsuitable for large designs due to

the state space explosion problem. SAT-based bounded model

checking (BMC) restricts search space that is reachable from

initial states within a fixed number (k) of transitions, called

bound. After unrolling the model of design k times, the BMC

∗This work was partially supported by grants from Intel Corporation and

NSF CAREER award 0746261.

problem is converted into a propositional satisfiability (SAT)

problem. SAT solver is used to find a satisfiable assignment

of variables that is converted into a counterexample. If the

bound is known in advance, SAT-based BMC is typically more

effective for counterexample (test) generation because search

for counterexample is faster and SAT capacity reaches beyond

BDD capacity [1]. The effectiveness of BMC can be further

improved by observing that the search for counterexamples of

increasing lengths is translated into a sequence of SAT checks.

Therefore, it is possible to exploit the similarity of these SAT

instances by forwarding clauses learned during conflict analy-

sis from one instance to the next.

Incremental SAT-based BMC is very promising to reduce the

test generation complexity but all the existing approaches are

applicable for a test generation scenario consisting of one de-

sign and only one property (with varying bounds). This paper

proposes a novel methodology to exploit incremental SAT in

the context of test generation involving one design and multi-

ple properties. The basic idea of our approach is to reuse the

learning of one test generation instance for other related test

generation scenarios. It is important to note that the design re-

mains the same for all test generation scenarios. Although, each

test generation instance requires a different property, several

properties related to testing specific functionalities are similar

or have a significant overlap. A major challenge in implement-

ing this idea is to identify the property similarities and perform

efficient clustering to share learning and thereby reduce the test

generation time. To enable the knowledge sharing across mul-

tiple properties, we have developed a number of efficient tech-

niques for property clustering, name substitution, and selective

forwarding of conflict clauses. The contribution of this paper is

the development of a number of conceptually simple, but very

effective, techniques to generate drastic reduction in directed

test generation time.

The rest of the paper is organized as follows. Section 2

presents related work addressing test generation approaches.

Section 3 presents our test generation methodology using in-

cremental satisfiability. Section 4 presents the experimental re-

sults. Finally, Section 5 concludes the paper.

2 Related Work

Model checking [4] has been successfully used in software

and hardware verification as the test generation engine [3, 18].

Model of design is applied to a model checker along with

negated temporal logic properties to exploit falsification capa-

bility of model checking. However, traditional model check-

ing does not scale well due to the state explosion problem.

Biere et al. [2] introduced bounded model checking (BMC)

combined with satisfiability solving. The recent developments

in SAT-based BMC techniques have been presented in [15].

BMC is an incomplete method that cannot guarantee a true

or false determination when a counterexample does not exist

within a given bound. However, once the bound of a counterex-

ample is known, large designs can be falsified very fast since

SAT solvers [14] do not require exponential space, and search-

ing counterexample in an arbitrary order consumes much less

memory than breadth first search in model checking. The per-

formance of bounded and unbounded algorithms was analyzed

on a set of industrial benchmarks in [16]. The capacity increase

of BMC techniques has become attractive for industrial use. In-

tel study [5] showed that BMC performs better over unbounded

model checking for real designs. The efficiency of test gener-

ation can be further improved by employing incremental SAT

solving.

Incremental SAT solvers [6, 12, 17] try to leverage the sim-

ilarity between the elements of a sequence of SAT instances;

most do so by re-utilizing conflict clauses, though when many

closely related instances must be solved, caching solutions [11]

and incremental translation [13] can also be effective. If a SAT

instance is obtained from another by adding some clauses (as in

[7]), then all conflict clauses of the first can be forwarded to the

second. This is correct because the second instance implies the

first, which in turn implies all its (conflict) clauses. Therefore,

when clauses are only added through the sequence of instances,

there is no need to screen conflict clauses to determine which

ones can be forwarded. This, on the other hand, is necessary

when arbitrary clauses are both added and subtracted to create

a new instance. A common approach to such general case is to

have the incremental SAT solver keep track of whether a con-

flict clause depends on some removed clauses. The approach

of [12] is to record, for each conflict clause, the clauses that

made up the corresponding implication graph. This approach

does not require any prior knowledge of the subsequent SAT

instances to be solved incrementally, and does not restrict the

changes possible from one instance to the next; however, keep-

ing track of dependencies may be expensive. Strichman [17]

was the first to observe that in BMC some clauses are known

to survive through all instances in the sequence. A formula

passed by BMC to the SAT solver contains clauses that de-

scribe the transition relation of the model unrolled a number

of times. These clauses are not discarded when the length of

the counterexample is increased. Hence, a conflict clause that

depends only on them can be forwarded.

To the best of our knowledge, all the existing approaches ex-

ploit incremental satisfiability to improve the test (counterex-

ample) generation time involving only one property with dif-

ferent bounds. Our approach is the first attempt at utilizing in-

cremental satisfiability across multiple properties in the context

of directed test generation for validation of SOC designs.

3 Test Generation using Incremental SAT

The goal of our approach is to reduce the overall functional

validation effort by reducing the test generation time for di-

rected tests. We assume that the designer have developed a set

of properties (one property to generate one directed test) based

on a specific fault model. For example, a pipelined processor

with n functional units needs n(n− 1)/2 properties to activate

all 2-unit interactions. Based on the structure of the design and

the fault model, the generated properties can be clustered us-

ing functional as well as structural similarity e.g., all properties

related to a particular execution path can be placed in a clus-

ter. The basic idea is to learn from solving one property and

share learning (through conflict clauses) for solving the simi-

lar properties in the cluster. While solving the first property,

the SAT solver may have taken many wrong decisions (lead to

conflicts) and therefore took long time to find a counterexam-

ple. By forwarding conflict clauses, we are ensuring that these

wrong decisions are avoided while solving the similar proper-

ties. An important question is whether all the wrong decisions

are relevant to all the properties in the clusters? Since the prop-

erties are similar but not the same, all the decisions are not rel-

evant. Therefore, adding all the conflict clauses while solving

the similar properties may increase the solution time. In our

approach, we determine the common CNF (conjunctive nor-

mal form) clauses by computing the intersection of clauses and

use this intersection information to exactly identify the conflict

clauses that are relevant to solving the respective properties.

This paper focuses on test generation for safety properties.

In this context, we are interested in finding a counterexample

for each property. We assume that the bound is pre-determined

and given as input to our method. Determination of bound is

intractable in general. However, in the context of directed test

generation, it is possible to determine the bound based on the

structure of the design and the associated property.

Algorithm 1 describes our test generation methodology. It

accepts a design and a set of properties as inputs and generates

the testcases. Since one property is used to generate a testcase,

the number of input properties is exactly same as the number

of output testcases. The first step is to partition the set of prop-

erties into different clusters based on their similarity in terms

of both structure and behavior. The second step is to select the

base property who has the potential to generate maximum over-

all savings for the cluster by sharing learned conflict clauses.

The third step computes the CNF clauses for all the proper-

ties in each cluster using the design and the respective bound.

The fourth step performs name substitution to maximize knowl-

edge sharing. The fifth step computes the intersection of CNF

clauses between the base property and all the other properties

in the cluster. The sixth step marks the clauses in the base prop-

erty to indicate whether a particular clause is also in the clause

set of another property in the cluster. The marking informa-

tion includes the identifier of the property (or properties) with

which the clause is identical. The next step uses an existing

SAT solver to generate the conflict clauses and the counterex-

ample (test) for the base property. Based on the intersection

information with the base property, the set of conflict clauses is

filtered to identify the relevant ones for solving the other prop-

erties in step 8. The final step uses the relevant conflict clauses

to solve the remaining properties using our approach. The al-

gorithm reports all the generated counterexamples (tests).

Algorithm 1: Test Generation using Incremental Satisfiability

Inputs: i) Design, D

ii) Properties, P, and their respective satisfiable bounds

Outputs: Testcases

Begin

1. Cluster the properties based on similarity

for each cluster, i, of properties

2. Select the base property Pi
1 and generate CNF, CNF i

1

for j is from 2 to the sizei of cluster i

/* Pi
j is the jth property in the ith cluster */

3. Generate CNF, CNF i
j = BMC(D,Pi

j,boundi
j)

4. Perform name substitution on CNF i
j

5. INT i
j = ComputeIntersection(CNF i

1, CNF i
j)

6. Mark the clauses of CNF i
1 using INT i

j

endfor

/* Generate the counterexample and record conflict clauses */

7. (Con f lictClausesi, test i
1) = SAT(CNF i

1)

Testcases = {test i
1}

for j is from 2 to the sizei of cluster i

/* Find relevant ones for Pi
j from conflict clauses

8. CCi
j = Filter (Con f lictClausesi, j)

endfor

for j is from 2 to the sizei of cluster i

9. test i
j = SAT(CNF i

j

S

CCi
j)

Testcases = Testcases ∪ test i
j

endfor

endfor

return Testcases

End

We use a simple example to illustrate how Algorithm 1

works. Let us assume that we are interested in generating tests

using n properties for a design. The first step divides the prop-

erties into m (m ≤ n) clusters based on property similarities.

Each cluster can have different number of properties. In the

worst case, each cluster can have only one property which is

not suitable for test generation using incremental satisfiability.

However, this scenario is rare in practice since a typical design

uses thousands of properties for directed test generation and

majority of them share significant parts of the design function-

ality. For ease of illustration, let us assume that there is a cluster

with three similar properties, {P1, P2, P3}. Let us further as-

sume that the second step selects P1 as the base property using

the method described in Section 3.1. The fourth step computes

intersection of CNF clauses of P1 with P2, and P1 with P3. This

information is used to filter conflict clauses (generated while

solving P1) relevant for P2 and P3 in step 8. The last step adds

the relevant conflict clauses while solving the respective prop-

erties to reduce the test generation time. The remainder of this

section describes three important steps in our approach: prop-

erty clustering, computation of intersections, and identification

of relevant conflict clauses.

3.1 Clustering of Similar Properties

One obvious, but costly, way to determine property similar-

ity for clustering is to compute the intersection of CNF clauses

between properties. We can cluster the properties that have a

relatively large number of clauses in the intersection. This is a

very time consuming step because it requires n(n−1)/2 inter-

sections for n properties. A simple and natural way to cluster

properties is to exploit the structural and behavioral informa-

tion of the properties. As mentioned earlier, in the context of

directed test generation, properties are generated based on a

set of fault models to obtain a functional coverage goal. Each

fault model tries to cover different parts of the design (e.g., all

computation nodes, execution paths, various interactions, etc.).

Therefore, we can cluster the properties that try to cover a spe-

cific part of the design using the same fault model. For ex-

ample, in an SOC environment, the properties can be clustered

based on whether they are related to verifying the processor, co-

processor, FPGA, memory, bus synchronization, or controllers.

Each cluster can be further refined based on structural details of

each component. For example, the processor related properties

can be further divided based on what execution path they cover

such as ALU pipeline, load-store pipeline etc.

Once clustering is completed, we need to determine the base

property of the cluster. In our approach, the base property is

solved first and its conflict clauses are shared between the re-

maining properties. Although, any property in the cluster can

be used as the base property for that cluster, our studies have

shown that certain properties serve better as base property and

thereby generates maximum overall savings for the cluster. We

need to consider two important factors while choosing a base

property for a cluster. First, the base property should be able to

generate a large number of conflict clauses. In other words, a

weak base property may find the satisfiable assignment quickly

without making mistakes (generating conflict clauses). In this

scenario, the remaining properties have nothing to learn from

the base property. Secondly, the SAT checking time for the

base property should be relatively small. This will ensure that

the overall gain is maximized by reducing the solution time of

the properties which takes longer time to solve. In fact, none

of these requirements can be determined without actually solv-

ing them. Based on our experience, we have observed that the

following heuristics works well most of the time.

• Choose the property with the smallest bound that have sig-

nificant variable and/or sub-expression overlap with the

rest of the properties in the cluster.

• If the property bounds in the cluster are same, choose the

property with the smallest number of variables that have

significant variable and/or sub-expression overlap with the

rest of the properties in the cluster.

3.2 Name Substitution for Computation of Intersections

Name substitution is an important preprocessing step in Al-

gorithm 1. Currently there are a few BMC tools that can sup-

port the name mapping from the variables of the CNF clauses

and the names in the model of the unrolled design. So the

variables of the CNF clauses of two different properties may

not have any name correspondence. In other words, the same

variable in two properties may have different name in their re-

spective CNF clauses. Therefore, without name substitution

(mapping), it will miss the structural similarity. As a result, the

computed intersection will be small and will adversely affect

the sharing of learned conflict clauses. Our experimental stud-

ies have shown that the improvement in test generation time

without using name substitution is negligibly small due to very

small number of clauses being forwarded as a result of small

number of clauses in the intersection. Since the properties are

similar and the design is exactly the same, the size of the in-

tersection is very large when our name substitution method is

employed.

Our framework uses zChaff SAT solver which accepts the

input in the DIMACS format. The input DIMACS file for each

property provides the name mapping from the CNF variable

to the unrolled design. The following example shows that the

variable 8 is used in CNF to refer to the 7th bit of variable var in

the design specification at time step 1. This can also be written

as, 8 => var[6] 1.

c 8 = V1_var[6]

Given two DIMACS files f 1 and f 2 for two properties P1

and P2 respectively, the name substitution is a procedure that

changes the names of clause variables of f 2 using the name

mapping defined in f 1. Figure 1 shows an example for name

substitution. Before the name substitution, the intersection

(f 1∩ f 2) is empty. However, after the substitution, there are

two common clauses in the intersection (f 1∩ f 2′). The com-

plexity of both name substitution and computation of intersec-

tion is linear (using hash table) to the size of the DIMACS file

of the properties. Therefore, the time required for name substi-

tution and intersection computation is negligible compared to

the SAT solving time for the complex properties.

c 2 => b_1

c 1 => a_1

c 3 => a_2

p cnf 3 3

−1 2 0

DIMACS f1 DIMACS f2

1 4 0

DIMACS f2’

c 2 => b_1
c 3 => a_2

p cnf 6 4p cnf 6 4

c 1 => a_1

c 6 => a_2

c 5 => b_1

......
c 4 => a_1

......

5 −4 0
5 6 0 3 2 0

 1 3 0

2 −3 0 5 −6 0
4 1 0

2 −1 0

2 3 0

Figure 1. An example of name substitution

It is important to note that the same variable at different time

steps can be assigned a different number. Therefore, the name

mapping (substitution) method needs to consider the same vari-

able at different time steps in the CNF clauses of the same prop-

erty as well as in the CNF clauses for the different properties in

the same cluster. Moreover, the name mapping routine needs to

remap some of the variables in the CNF clauses. For example,

when the variable 4 in file f 2 (in Figure 1) is replaced with the

variable 1 (in f 2′), the name mapping routine needs to remap

the original variable 1 in file f 2′ to a different variable.

3.3 Identification and Reuse of Common Conflict Clauses

Our implementation of relevant conflict clause determination

is motivated by the work of [17] which proved that for two set

of CNF clauses C1 and C2, and their intersection ϕ, using the

conflict clauses generated from the ϕ when checking C1 will

not affect the satisfiability of the CNF clauses C2

S

ϕ. There-

fore, the conflict clauses generated from the intersection when

checking the base property can be shared by other properties in

the cluster.

Strichman [17] suggested an isolation procedure that can iso-

late the conflict clauses which are deduced solely from the in-

tersection of two CNF clause set. We have modified the isola-

tion procedure to improve the efficiency of test generation for

a cluster of properties. We have modified zChaff [9] and use

it as the SAT solver in our framework. The zChaff provides

utilities for implementing incremental satisfiability. For each

clause, it uses 32 bits to store a group id to identify the group

where this clause belongs. Use of group id allows us to gener-

ate the conflict clauses for different properties when checking

the base property. If the ith bit of the group id is 1, it implies

that the clause is shared by the CNF clauses of property Pi. If

the clause of the base property is not shared by any property,

the field will be 0.

Assume that there are k properties in a cluster with P1 as the

base property. Therefore, there are k sets of clauses with C1 as

the base set (CNF clauses for P1), and C2,C3, ...,Ck are k − 1

similar sets with C1. We use the following steps to calculate the

conflict clauses for C2,C3, ...,Ck when solving C1.

1. During preprocessing, for each clause in C1, if this clause

exists in Ci(2 ≤ i ≤ k), then mark the ith bit of C1’s group

id 1.

2. When one conflict clause is encountered during the check-

ing of the base property, collect all the group ids of the

clauses which leads to the conflict. The group id of the

conflict clause is the logical “OR” of these group ids.

3. For each conflict clause, if the ith bit of the group id is 1,

then this conflict clause can be shared by Ci+1.

Figure 2 illustrates how this computation is done using an

example implication graph. The implication graph is a directed

acyclic graph where each vertex represents an assignment of the

variable and each edge implies that all the in-edges implicate

the assignment of the vertex. For example, x4@4 means vari-

able x4 is assigned value 1 at decision level 4. The graph has a

clause (x1′+x4+x5), we call it the antecedent clause of x4 i.e.,

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

−x5 @ 4

x1 @ 3

x4 @ 4

−x6 @ 1

x2 @ 4

x8 @ 4

−x8 @ 4

x7 @ 2

−x3 @ 4

CUT 1
(X1’ + x5 + x6 + x7’)

Conflict Clause

Conflict Side Clauses

(x1’ + x4 +x5)

(x3’ + x4’)

(x2 + x4’ +x6)

(x3 + x7’ +x8’)

(x2’ + x3 + x8)

ImplicateCutConflicting VertexImplication VertexDecision Vertex

Clauses
4 3 2 1

 0 1 1 1

1 0 1 0

1 1 1 1

1 0 1 0

1 1 1 0

Group id

Figure 2. An example of implication graph

the assignments x1 = 1 and x5 = 0 imply x4 = 1. Only the im-

plication vertex (non-decision vertex) has an antecedent clause.

The conflict exists when in the implication graph, one variable

is assigned both value 0 and 1. So the SAT solver will analyze

the conflict and find the reason expressed by the conflict clause.

A conflict clause can be found by a bipartition of the implica-

tion graph. The side containing the conflicting vertex called

con f lict side, and the other side is called reason side which

can be used to form the conflict clause. In Figure 2, CUT 1 is a

cut that divide the implication graph into two parts. We list the

conflict clause on the reason side and all other clauses on the

conflict side. In our approach, each conflict side clause has a

group id which is marked during the preprocessing step. So the

group id of the conflict clause is the logical “OR” value of all

the group ids of the conflict side clauses. For example, in Fig-

ure 2, we use four bits to express the group id, and the group

id of the conflict clause is 0010. In other words, this conflict

clause can only be forwarded to clause set C2. Therefore, the

use of this conflict clause in solving P2 will reduce the SAT

solving (test generation) time.

4 Experiments

We have applied our test generation methodology for valida-

tion of various software and hardware designs. In this section,

we present two case studies from two different domains: a stock

exchange system, and a VLIW implementation of the MIPS ar-

chitecture. Both experiments were performed on a Linux PC

using 2.0GHz Core 2 Duo CPU with 1 GB RAM. In our exper-

iments, we used the NuSMV [8] as our BMC tool to generate

the CNF clauses (in the DIMACS format) for the design and

properties. We modified zChaff [9] to integrate our methods

for name substitution, clause intersection and constraint shar-

ing described in Section 3.

4.1 A Stock Exchange System

The purpose of the on-line stock exchange system (OSES)

is to process three scenarios: accept, check and execute the

customer’s orders (market order and limit order). The system

uses the UML activity diagram as its behavior specification and

JAVA based implementation. The UML specification has 27 ac-

tivities, 29 transitions and 18 key paths. We translate the spec-

ification into the NuSMV input and generate the correspond-

ing test case based on various functional coverage criteria. We

group the properties into five clusters. The first cluster consists

of {Path1, Path2} with Path1 as the base property in the clus-

ter. Similarly, each of the remaining clusters consists of four

properties with the first one as the base property.

Table 1. Test Generation for Stock Exchange System

Properties Preproc. zChaff [14] Our Method Improv.

(Tests) Time (s) (sec) (sec) Factor

Path1 Base 0.37 0.37 1.00

Path2 3.79 59.45 4.06 14.66

Path3 Base 2.82 2.82 1.00

Path4 4.16 2.89 0.54 5.35

Path5 4.09 29.67 4.04 7.34

Path6 3.73 42.75 6.28 6.81

Path7 Base 0.44 0.44 1.00

Path8 4.14 7.36 0.30 24.86

Path9 3.88 113.70 33.23 3.42

Path10 3.79 40.41 6.53 6.19

Path11 Base 4.58 4.58 1.00

Path12 4.24 13.04 1.20 10.91

Path13 4.44 23.74 14.60 1.63

Path14 4.02 102.76 31.42 3.27

Path15 Base 0.25 0.25 1.00

Path16 4.36 64.04 1.26 50.66

Path17 4.38 185.03 5.05 36.62

Path18 4.02 176.77 68.78 2.57

Average 4.08 48.33 10.32 4.68

Table 1 shows the results involving all the 18 properties of

key paths. The first column indicates the properties used for

test generation. The second column indicates the preprocess-

ing time that includes the time for both name substitution and

computation of clause intersection. This column is not applica-

ble for the base property since the base property is solved using

the existing approach. The third and fourth columns indicate

the time (in seconds) required to generate the counterexam-

ple (test) by zChaff [14] and our approach, respectively. The

last column indicates the improvement factor1 in test genera-

tion time. The last row in the table presents the averages of

all the entries. Our approach can produce almost five times

improvement compared to zChaff, a popular CNF SAT solver.

Our approach should be used in the test generation scenarios

where SAT takes a long time to find a counterexample. As a re-

sult, the cost (preprocessing time) will be negligible compared

to the savings in test generation time.

4.2 A VLIW MIPS Processor

We applied our methodology on a single-issue MIPS [10] ar-

chitecture. Figure 3 shows the simplified version of the VLIW

MIPS architecture. It has five pipeline stages: fetch, decode,

execute, memory (MEM), and writeback. The execute stage

1The improvement factor is computed as the ratio between the third and

fourth column entries.

has four parallel execution paths: integer ALU, 7 stage multi-

plier (MUL1 - MUL7), four stage floating-point adder (FADD1

- FADD4), and multi-cycle divider (DIV). The oval boxes rep-

resent units and dashed boxes represent storages. The solid

lines represent instruction-transfer paths and dotted lines repre-

sent data-transfer paths.

Instruction Flow

Data Transfer

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

Decode

IALU

MUL7

DIV

RegFile

Memory

Figure 3. The VLIW MIPS architecture

We translated the specification into the NuSMV input and

generated the required directed tests based on various path cov-

erage criteria. Table 2 shows the results. Each row presents

the averages of all the properties in that cluster. The first col-

umn indicates the four clusters corresponding to the four ex-

ecution paths in Figure 3. The second column represents the

average number of CNF clauses for each property in that clus-

ter. The third column shows the average number of clauses in

the intersection. The fourth and fifth columns indicate the time

(in seconds) required to generate the counterexample (test) by

zChaff and our approach, respectively. Our approach is able to

improve the test generation time on average by four times.

Table 2. Test Generation for MIPS Processor

Clusters CNF Intersec. zChaff Our Improv.

Clauses Size [9] Method Factor

CLALU 460994 457168 19.35 5.10 3.79

CLFADD 592119 67894 61.61 42.46 1.45

CLMUL 854386 522283 718.85 159.21 4.51

CLDIV 526517 457160 35.07 8.19 4.28

Average 608504 376126 208.72 53.74 3.88

5 Conclusions

Directed test vectors can reduce overall validation effort of

both hardware and software designs since shorter tests can ob-

tain the same coverage goal compared to the random tests. The

applicability of the existing approaches for directed test gen-

eration is limited due to capacity restrictions of the automated

tools. This paper addressed the test generation complexity by

exploiting the commonalities between a set of similar proper-

ties using incremental satisfiability. The existing incremental

SAT approaches are applicable only on a single property and it

utilizes the learning between various bounds of the same prop-

erty. To the best of our knowledge, our work is the first attempt

to share learning across multiple properties. To enable knowl-

edge sharing across multiple properties, we have developed a

number of conceptually simple, but extremely effective, tech-

niques including property clustering, name substitution, and se-

lective forwarding of learned conflict clauses. Our experimen-

tal results using both hardware and software designs demon-

strated on average four times reduction in directed test genera-

tion time.

References

[1] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model check-

ing. Advances in Computers, 58, 2003.

[2] A. Biere, A. Cimatti, E. Clarke and Y. Zhu. Symbolic model

checking without BDDs. TACAS, 193–207, 1999.

[3] A. Gargantini and C. Heitmeyer. Using model checking to gener-

ate tests from requirements specifications. ACM SIGSOFT Soft-

ware Engineering Notes, volume 24, 146–162, 1999.

[4] E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT

Press, Cambridge, MA, 1999.

[5] F. Copty et al. Benefits of bounded model checking at an indus-

trial setting. CAV, 436–453, 2001.

[6] H. Jin and F. Somenzi. An incremental algorithm to check satis-

fiability for bounded model checking. BMC, 51–65, 2004.

[7] J. Hooker. Solving the incremental satisfiability problem. Jour-

nal of Logic Programming, 15(12):177–186, 1993.

[8] http://nusmv.irst.itc.it/. NuSMV.

[9] http://www.princeton.edu/ chaff/zchaff.html. zChaff.

[10] J. Hennessy and D. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, 2003.

[11] J. Kim et al. On solving stack-based incremental satisfiability

problems. ICCD, 379–382, 2000.

[12] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incre-

mental satisfiability engine. DAC, 542–545, 2001.

[13] M. Benedetti and S. Bernardini. Incremental compilation-to-sat

procedures. SAT, 2004.

[14] M. Moskewicz et al. Chaff: Engineering an efficient SAT solver.

DAC, pages 530–535, 2001.

[15] M. Prasad, A. Biere and A. Gupta. A survey of recent advances

in SAT-based formal verification. STTT, 7(2):156–173, 2005.

[16] N. Amla et al. An analysis of SAT-based model checking tech-

niques in an industrial environment. CHARME, 254–268, 2005.

[17] O. Strichman. Pruning techniques for the sat-based bounded

model checking problem. CHARME, 58–70, 2001.

[18] P. Mishra and N. Dutt. Graph-based functional test program gen-

eration for pipelined processors. DATE, 182–187, 2004.

