
Coverage-driven Automatic Test Generation for UML Activity Diagrams

Mingsong Chen, Prabhat Mishra
Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611
{mchen, prabhat}@cise.ufl.edu

Dhrubajyoti Kalita
Intel Corporation

1900 Prairie City Road, Folsom, CA 95630
dhrubajyoti.kalita@intel.com

ABSTRACT

Due to the increasing complexity of today’s embedded systems, the
analysis and validation of such systems is becoming a major chal-
lenge. UML is gradually adopted in the embedded system design
as a system level specification. One of the major bottlenecks in
the validation of UML activity diagrams is the lack of automated
techniques for directed test generation. This paper proposes an au-
tomated test generation approach for the UML activity diagrams.
The contribution of this paper is the use of specification coverage
to generate properties as well as design models to enable directed
test generation using model checking. Our experimental results
demonstrate that our approach can drastically reduce the validation
effort in both specification and implementation levels.

Categories and Subject Descriptors: I.6.4 Simula-
tion and ModelingModel Validation and Analysis

General Terms: Verification

Keywords: Test Generation, UML Activity Diagrams

1. INTRODUCTION
There is a noticeable trend in the embedded system design that

the design flow starts from high level specifications in both hard-
ware and software designs. As a general purpose modeling lan-
guage, Unified Modeling Language (UML) [1] is becoming a promis-
ing specification for both software and hardware designs [2, 3].
UML activity diagram is a semi-formal specification that adopts
the Petri net-like [4] semantics to describe the workflow of the sys-
tem as well as the internal logic of a complex operation. Because
of the ability to describe the global ordering of atomic pieces of be-
havior(i.e. activities), UML activity diagram can be used to model
the dynamic concurrent scenarios of a group of objects, or the con-
trol flow of an operation. Therefore, the UML activity diagram is
well suited for system level design of embedded systems.

Automatic test generation from high level specifications can have
double impacts: i) the generated tests can be used to verify the spec-
ification to ensure its correctness, ii) the same tests can be reused
to verify the implementation. As an abstract level executable spec-
ification, UML activity diagrams capture the key system behaviors.
The tests generated from the UML activity diagram can not only be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’08, May 4–6, 2008, Orlando, Florida, USA.
Copyright 2008 ACM 978-1-59593-999-9/08/05 ...$5.00.

used to guarantee the consistency between abstraction levels, but
also it can be reused to reduce the overall validation effort. How-
ever, there is a lack of automated techniques for directed test gen-
eration from UML activity diagrams. This paper presents an auto-
mated approach for directed test generation using model checking.
It makes three important contributions: i) define specification cov-
erage of UML activity diagrams to generate the required properties,
ii) propose a set of rules to transform the UML activity diagrams
to a formal model, and iii) apply model checking to perform test
generation using the generated properties and the formal model.

The remainder of the paper is organized as follows. Section 2
describes the related work addressing validation of UML activity
diagrams. Section 3 briefly describes the modeling of UML activ-
ity diagrams. Section 4 presents our test generation methodology
followed by a case study in Section 5. Finally, Section 6 concludes
the paper.

2. RELATED WORK
There are several research works that use model checking based

techniques for verifying UML activity diagrams. Eshuis [5] presents
a translation procedure from UML activity diagrams to the input
language of NUSMV [6]. However, the translation is used to verify
the consistency of a UML activity diagram and a set of class dia-
grams. Guelfi et al. [7] provide a formal definition of syntax and
semantics for UML activity diagrams endowed with time aspects.
They outline the translation from the semantics into the PROMELA
- an input language of the SPIN model checker. Das et al. [8] pro-
pose a method to deal with timing verification of UML activity
diagram models. These activities primarily focus on checking the
consistency or correctness of the model itself instead of generating
directed tests.

Model driven testing [9] inspires the idea of automatic test gen-
eration from the UML activity diagrams. Wang et al. [10] pre-
sented an approach to generate test case from UML activity dia-
grams based on Gray-Box method. However, they did not provide
any procedure to automatically generate the tests from the extracted
scenario. Chen et al. [11] proposed a method that selects the tests
from the random tests based on the coverage criteria of the UML
activity diagrams for Java programs. But this method can not guar-
antee the selected tests can give a good coverage result because
of the randomness. Furthermore, generating the program execu-
tion traces is very time-consuming and can be infeasible in many
scenarios. To the best of our knowledge, there are no existing ap-
proaches that define fault model at the specification level and use it
to generate directed tests from UML activity diagrams.

3. MODELING OF ACTIVITY DIAGRAMS
This section briefly describes UML activity diagrams. First, we

formally define several aspects of activity diagrams which will be
used in the test generation. Next, we define the coverage criteria of
the UML activity diagrams.

3.1 Definitions
Figure 1 shows an activity diagram which uses most of the ele-

ments of the UML activity diagram. It describes the functionality
of withdrawing money from the ATM. The user needs to enter the
access code first, and in case of failure, he can input the access
code again. The operation will abort if access code is wrong in
both cases. If the input access code is right, the user will enter the
amount of the money he wants to withdraw. At the same time, in or-
der to print the receipt, the printer will be warmed. Once the ATM
decides whether there is enough money the user can withdraw, it
provides cash and generates the information of this withdraw oper-
ation. Finally, the printer will print the receipt.

syn_2

e

d

b

c

a

start

f

end

and print receipt

Finish transaction

print receipt

Prepare to

access code

Handle incorrect

Ask for amount

[correct]

syn_1 t6

t10

t11

t9

t8

t7

t5

t4

t3
t2

t1

Dispense cash

Generate receipt

content

[amount available]

[amount not available]

g

[resolved]

Verify access code

[not resolved]

[incorrect]

Figure 1: An example of UML activity diagram

In this paper, we mainly consider the control and data flow of
activity diagrams that are relevant to test generation.

Definition 1. An activity diagram is a six-tuple D = (A, T, F, C,
aI , aF) where

• A = {a1, a2, . . . , am} is a finite set of activity states.

• T = {t1, t2, . . . , tn} is a finite set of completion transitions.

• C = {c1, c2, . . . , cn} is a finite set of guard conditions, and
ci is in correspondence with ti, Cond is a mapping from ti

to ci so that Cond(ti) = ci.

• F ⊆ {A × T} ∪ {T × A} is the flow relation between the
activities and transitions.

• aI ∈ A is the initial state, and aF ∈ A is the final state.
There is only one transition t ∈ T such that (aI , t) ∈ F , and
for any t′ ∈ T , (t′, aI) /∈ F and (aF , t′) /∈ F .

Definition 1 describes the relation between the activities and tran-
sitions. It is a static structure of activity diagram. At any time, when
analyzing an activity diagram, the current state (denoted by CS) of
an activity diagram is represented by a set of activity states.

Definition 2. Let D = (A, T, F, C, aI , aF) be an activity dia-
gram. The current state CS of D is a subset of A. For any transi-
tion t ∈ T ,

• •t, t• denote the preset and postset of τ respectively, then
•t = { a | (a, t) ∈ F and a ∈ A} and t• = {a | (t, a) ∈
F and a ∈ A}.

• enabled(CS) denotes the set of transitions that start from
CS, then enabled(CS) = { t | •t ⊆ CS }.

• firable(CS) denotes the set of transitions that can be fired
from CS , then firable(CS)={ t | t ∈ enabled(CS) and
•t are all completed and Cond(t) is satisfied and (CS −
•t)∩ t• = ∅}, and after some t is fired, the new current state
CS′ = fire(CS, t) = (CS − •t) ∪ t•.

For example, when {d, f} is the current state of the activity dia-
gram, only the transition t9 is firable at this time. If t9 is fired, then
the next state is {e, f}.

Because of the inherent concurrency, several transitions can be
fired at the same time. For an activity diagram, all the firable tran-
sitions in a state form a concurrent transition.

Definition 3. Let D = (A, T, F, C, aI , aF) be an activity dia-
gram. For a state CS of D, a concurrent transition τ is a set of
transitions t1, t2, ..., tn ∈ firable(CS) where

1. ∀ i, j(1 ≤ i < j ≤ n), •ti ∩
•tj = ∅;

2. ∀ t ∈ (enabled(CS) − {t1, t2, ..., tn}), there exists i (1 ≤
i ≤ n) such that •t ∩ •ti 6= ∅.

After firing τ from state CS, the current state CS′ = fire(CS, τ) =
S

n
i=1(fire(CS, ti)) =

S

n
i=1((CS − •ti)

S

t•i).

An instance of dynamic behavior of an activity diagram can be
represented by a sequence of states and concurrent transitions. We
call it a path of the activity diagram.

Definition 4. Let D = (A, T, F, C, aI , aF) be an activity dia-
gram. A path ρ of the activity diagram is a sequence of states and
transitions, let

ρ = cs0

τ0−→ cs1

τ1−→ . . .
τ

n−1

−−−→ csn

where cs0 = {aI}, csn = {aF }, and csi+1 = fire(csi, τi) for
any i (0 ≤ i < n). ρ is a keypath if there is no repetition in ρ, i.e.
∀i, j (0 < i < j ≤ n), csi

T

csj = ∅.

There are five key paths in Figure 1. For the key path, when
firing the transitions, we need to consider the condition guard ex-
pressions.

3.2 Test Adequacy Criteria
Objective measurement of the test quality is one of the key is-

sues in the effort of testing. Test adequacy criterion specifies the
requirement of a particular testing. In software testing, the defini-
tion of test adequacy is given in [12] as a measurement function.
The situation of UML activity diagram is different because it is in
the form of model instead of code. Especially the path coverage of
activity diagram is complicated because of the concurrency. The
definition of coverage of UML activity diagram is as follows:

• Activity Coverage requires that all the activity states in the ac-
tivity diagram be covered. The value of activity coverage
is the ratio between the checked activities and all the activi-
ties in the activity diagram.

• Transition Coverage requires that all the transitions in the ac-
tivity diagram be covered. The value of transition coverage
is the ratio between the checked transitions and all the tran-
sitions in the activity diagram.

• Key Path Coverage requires that all the key paths in the ac-
tivity diagram be covered. The value of key path coverage
is the ratio between the traversed key paths and all the key
paths in the activity diagram.

4. TEST GENERATION METHODOLOGY
This section describes our automated approach for coverage di-

rected test generation of UML activity diagrams. Figure 2 shows
our test generation methodology. The UML activity diagram is
translated to a formal model (NUSMV input). Next, the proper-
ties in the form of CTL or LTL formulas can be generated from
the coverage criteria. Finally, the properties (negated version) are
applied on the formal model using model checking to generate re-
quired tests (counterexamples).

transform

generator

translate

UML
activity diagram Test criteria

UML activity diagram

parser and analyzer

(NuSMV input)

Formal model Coverage data

PropertiesTest cases
(Counter examples)

Model checker

(NuSMV)

(CTL, LTL formulas)

extract

Fault model

Figure 2: The test generation framework

4.1 Translation
Our technique can get both the control and data flow by pars-

ing the UML activity diagram. The translation is a process of the
mapping from control and data flow to the NUSMV input. The
translation consists of two parts: structure extraction and behavior
extraction.

Structure extraction analyzes the structure of the activity dia-
gram and then generates the skeleton of the NUSMV input. It first
collects all the data which is manipulated in the activities and the
data which is referred at the condition of the transitions. For ex-
ample in the Figure 1, there are five data members: access_code,
access_code_input, access_code_resolve, amount_input, and
amount_available. Because the value range of each data member
is continuous or a large set, in the model checking it may cause the
state space explosion. So we can use the partition method to gen-
erate proper combination of values of input and output parameters
to satisfy the condition constraints.

The behavior extraction analyzes the behavior of the system,
such as the state change of each activities, data manipulation and
the condition of the transitions. In the semantics of activity dia-
gram, a keypath is an dynamic execution scenario from the ini-
tial node to the final node. To get all the keypaths of an activity

diagram, we can traverse the diagram by using DFS (depth first
search) which is similar to the method in [11]. But in our frame-
work, we need to extract both the data manipulations and the con-
ditions of transitions, because they will determine the executions of
keypaths.

4.2 Fault Model and Property Generation
When generating directed tests, it is required to use some notion

of coverage to indicate the sufficiency. Section 3.2 presents the
coverage of the activity diagram. Based on this, we can create the
fault model which is the negation of the coverage requirement. The
fault model in this paper is as follows.

Definition 5. Let AD be an activity diagram, there are three
fault models:

• Activity fault model. For each activity of AD, the model
assumes that such activity is not reachable.

• Transition fault model. For each transition of AD, the
model assumes that such transition can not be fired.

• Key path fault model. For every key path of AD, there is
no corresponding executable path.

From these three different models, we can generate the tests to
validate the various properties of the system. The activity fault
model can be used to check the reachability of each activity. So it
can be used to check whether there exists infinite loops in the sys-
tem. The transition fault model can be used to check the execution
order of the activities. It can also be used to check whether the
condition guard of the transition can be satisfied. Sometimes, we
need to check all the dynamic behaviors of the system, so key path
fault model is preferable in this case. The transformation from the
fault model to the properties (of the formal model) in the form of
NUSMV is a one-to-one mapping.

5. CASE STUDY
We compare our approach with the random test based method

[11], which is the best known result in this category. The experi-
mental results demonstrate that our method can drastically reduce
both the test generation time and overall validation effort by pro-
ducing high quality tests for the implementation.

5.1 A Control System
The first case is a small control system. The activity diagram

consists of 17 activities, 23 transitions and 6 key paths. Table 1
shows the comparison between our approach and the random test
based method [11]. For generating the tests with highest coverage,
the random method requires 8.83 seconds to run the 150 random
tests, however our method needs 0.91 seconds. In this case study,
our approach improves the test generation time by an order of mag-
nitude.

Table 1: Comparison of two methods

Coverage (%) Time
Method activity transition path (second)

random 30 90 85 50 1.33
random 50 95 93 67 2.35
random 100 100 100 83 5.13
random 150 100 100 100 8.83

Our method 100 100 100 0.91

By running the tests derived from the fault models, we can get a
100% activity coverage and transition coverage on the activity di-
agram. However, at the beginning of the experiment, the key path
coverage was 83.3% because the generated tests could not enable
one of the six key paths. Further analysis revealed that this partic-
ular path was a false path – it can never be activated by any tests
due to conflicting conditions used in that path. So we corrected this
error and achieved 100% key path coverage. The random test based
method [11] can only be used for implementation validation. How-
ever, the tests generated by our approach can be used for validation
of specification as well as the implementation.

Table 2: Implementation level coverage of the control system

Package Class Method Block Line

100% 100% 90% 88% 93%

We applied the generated tests to the Java implementation of the
control system. Table 2 shows the coverage of the Java code. The
generated tests obtained 100% package as well as class coverage.
However, the method, block and line coverage is around 90%.
Our analysis showed that the Java implementation have many “try”
and “catch” blocks to handle exceptions whereas the specification
does not have any information on the exception scenarios. As a re-
sult, the generated tests did not activate any of the exception blocks
which also resulted in low coverage of methods, blocks as well as
lines. Clearly, this is an issue of incomplete specification. Based
on this observation, we added exception information at the specifi-
cation level and generated tests which led to required coverage in
all the categories of the implementation.

5.2 A Stock Exchange System
The purpose of the on-line stock exchange system (OSES) [11]

is to process the following scenarios: accept, check and execute the
customer’s orders (market order and limit order). The system uses
the UML activity diagram as its behavior specification. It has 27 ac-
tivities, 29 transitions and 18 key paths. The system is implemented
in JAVA and consists of 7 packages, 39 classes, 372 methods and
2510 lines. This system is much larger than the first case study.

Table 3: Comparison of two methods

Coverage (%) Time
Method activity transition path (minute)

random 800 96 83 89 19.06
random 1000 96 86 94 24.26
random 1500 100 100 100 30.25

Our method 100 100 100 7.08

In Table 3, the first three rows depict the results by using 800,
1000, 1500 random tests respectively. The result by our method is
shown in the last row. In the case of random 800, two key paths
are missing due to the randomness. So the coverage metrics are
not 100%. If we raise the number of the random tests to 1000, one
key path is still missing. Based on our observation, in the random
method, it is hard to determine what is an appropriate upper bound
for the random test number. And it is hard to discover whether the
specification is correct by the random tests. Clearly, our approach
reduced the validation effort by four times compared to the best
known result in this category.

Table 4: Implementation level coverage of OSES

Package Class Method Block Line

100% 100% 58% 55% 51%

Table 4 presents the coverage in the implementation level by
applying the generated tests using our method. The coverage of
method, block and line are not sufficient because the activity di-
agram does not consider all the scenario of the system, such as the
registration of the customers and so on. In this case, we needed to
add the missing details in the specification to obtain the required
coverage.

6. CONCLUSIONS
In this paper, we proposed an approach to automatically gen-

erate tests from UML activity diagrams. Our experimental results
demonstrated that the generated tests can produce the required func-
tional coverage and also can make a significant reduction in vali-
dation of specification as well as implementation. Model checking
based test generation is promising but it can lead to state space ex-
plosion in the presence of complex designs and properties. Our
future work will investigate various design and property decompo-
sition techniques to reduce the test generation complexity.

7. ACKNOWLEDGMENTS
This work was partially supported by grants from Intel Corpora-

tion and NSF CAREER award 0746261.

8. REFERENCES

[1] OMG. UML2.0 Superstructure Specification. Available at
http://www.omg.org/#UML2.0, October 2004.

[2] Grant Martin. UML for Embedded Systems Specification
and Design: Motivation and Overview. DATE, 2002.

[3] W. Mueller, et al. UML for ESL Design - Basic Principles,
Tools, and Applications. ICCAD, 2006.

[4] J. Peterson. Petri Nets Theory and the Modeling of Systems.
Prentice-Hall, N.J., 1981.

[5] Rik Eshuis. Symbolic model checking of UML activity
diagrams. ACM Transactions on Software Engineering and
Methodology , 15(1), 2006.

[6] A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri.
NUSMV: A New Symbolic Model Verifier. CAV, 1999.

[7] N. Guelfi and A. Mammar. A Formal Semantics of Timed
Activity Diagrams and its PROMELA Translation. APSEC,
2005.

[8] Dipankar Das, Rajeev Kumar and P. P. Chakrabarti. Timing
Verification of UML Activity Diagram Based Code Block
Level Models for Real Time Multiprocessor System-on-Chip
Applications. APSEC, 2006.

[9] R. Heckel and M. Lohmann. Towards Model-Driven Testing.
TACoS, 2003.

[10] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng.
Generating Test Cases from UML Activity Diagram based
on Gray-Box Method. APSEC, 2004.

[11] M. Chen et al. UML Activity Diagram Based Automatic Test
Case Generation for Java Programs. The Computer Journal,
doi:10.1093/comjnl/bxm057.

[12] H. Zhu, P. Hall, and J. May. Software Unit Test Coverage
and Adequacy. ACM Computing Surveys, 29(4), 1997.

