2016 IEEE 40th Annual Computer Software and Applications Conference

Improving Defect Detection Ability of Derived Test
Cases Based on Mutated UML Activity Diagrams

Haiying Sun*, Mingsong Chen*, Min Zhang*, Jing Liu* and Ying Zhang®
*Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
Email: {hysun,mschen,mzhang,jLiu}@sei.ecnu.edu.cn
fSoftware Engineering Institute, East China Normal University, Shanghai, China
Email: 10122510209 @ecnu.cn

Abstract—Structure coverage driven test generation is the key
approach for automatic testing at source code level. However,
the defect detection ability of the generated test cases should
be carefully evaluated since the correlation between coverage
and test effectiveness is in doubt. In this paper, we propose a
test generation approach based on mutation testing with the
intent to derive test cases towards finding defects rather than
just covering certain syntactic structures. Moreover, instead of
generating test cases from the code under test directly, we base
our approach on UML activity diagrams to make it possible
to decide verdicts of test inputs. Mutation operators for activity
diagrams are defined and the test generation algorithms are based
on solving mutated path constraints. Experimental results have
shown that by applying the proposed mutated testing approach,
test cases with higher defect detection ability can be generated.

I. INTRODUCTION

Finding defects is the fundamental purpose of each testing
technique. Defect detection ability is the indictor used to
measure the possibility of a set of test cases on finding
defects. A test case set is said to be of high quality or
high defect detection ability if it is more likely to find more
defects than the others. Structure coverage criteria are a set
of related testing adequacy rules which are widely applied
in many code level test generation tools. Statement coverage,
condition coverage and etc. are among the frequently used
ones. These tools are surely efficient and can reduce testing
effort. However, since they generate test cases directly from
the program under test by applying expected coverage criteria,
some questions should be answered clearly before putting
them into practical testing activities.

The first question is how to evaluate a program under test
passes or fails test cases when expected results are absent from
these derived test cases. It is well known in traditional manual
testing low-level design specification is one of the ideal test
references when considering about code testing. However, as
for coverage based test generation from source code, no but
the program under test itself is the main reference. As a result,
in our opinion, these derived test cases are towards executing
the program under test rather than detecting detects hiding
in it. And this question leads to the second one: how is the
defect detection ability of the derived test case set. In fact,
very recently, more and more researchers have questioned
on the defect detection ability of test sets generated from
coverage criteria [1], [2], [3], [4]. Moreover, some research

0730-3157/16 $31.00 © 2016 IEEE
DOI 10.1109/COMPSAC.2016.136

275

results also point out that the correlation between coverage
and test effectiveness is low to moderate [5].

The activity diagram is the modeling formalism in UML
to emphasize the sequence and conditions for coordinating
lower-level behaviors. Compared with the control flow graph
(CFG) based formalism used in code based test generation
approaches, the expressive power of activity diagrams is
much stronger. Except that, a kernel set of activity modeling
elements is armed with precisely defined semantics [6] which
is crucial for qualified test case generation. Mutation testing is
a defect-guided testing technique. In mutation testing, defects
are deliberately seeded into the program under test by applying
mutation operators. These defects represent certain kinds of
mistakes that a software engineer is mostly like to make
when programming. According to the fundamental premise
of mutation testing, if a test case set can find these inserted
defects, it can also find the corresponding real defects. Because
mutation testing requires not only executing expected program
behaviors but also producing incorrect outputs, it is considered
superior to structure coverage criteria [7].

To derive test cases towards detecting defects rather than
just covering expected certain kind of code structures, in this
paper, we propose a test generation method based on mutated
activity diagrams. That is, instead of generating test cases from
the code under test directly, we not only take activity diagrams
as the test references but also deliberately insert certain kinds
of defects into them to guide qualified test cases generation.

II. MUTATION OPERATORS FOR ACTIVITY DIAGRAMS

Mutation operators are at the heart of mutation testing. In
this section, according to the intended fault models and the
foundational subset of the UML definition [6], we design
mutation operators for activity diagrams.

A. Modeling Elements in Activity Diagrams

In UML, an activity diagram is the graphical notation
of an activity. An activity models behavior by defining the
transformation of inputs to outputs through a controlled se-
quence of actions. An action represents a single step within
an activity which can’t be further decomposed. In the research,
we base our method on the foundational subset of the standard
UML activity models for it is armed with precisely defined
executable semantics [6]. Figure 1 illustrates the corresponding
model structures.

IEEE
computer
psomety

[I B >

Action Sendsignal action Accept Event Action

e o ® 0 N} K

Action Node

fctivity Control Node o . N
Node Initial Final Decision Merge Joint Fork
node node node node node node
objecthode |1 2>) (1
Object node Inputpin outputpin
Control Flow
Activity Control flow arrow

S

Object flow arrow

Object Flow

Fig. 1. Graphics Notation of Modeling Elements in Activity Diagram

B. The Fault Models

A mutation operator is a predefined rule to introduce a cer-
tain kind of fault into the object under test. Therefore, the first
step on designing a mutation operator set is to identify valuable
fault models. The purpose of mutating an activity diagram in
our method is to generate defect-detecting test cases for the
program under test rather than validate the activity diagram
itself. As a result, the selected fault models are programming
language based. However, different programming languages
have different fault models, it is impossible to include all. In
the paper, we only synthesize three categories of common fault
models for programming languages. It is surely feasible to add
new mutation operators with certain testing objectives to this
set for specific programming language.

« Expression Error: errors made in formulating an expres-

sion, such as misused operators, variables and constants;

« Control Structure Error: errors made in using iterative,

conditional and concurrent statements;

« Integration Error: errors made in the connection of indi-

vidual code segments.

Because we don’t include structure modeling information,
such as class diagram, in our method, the encapsulation, inher-
itance, polymorphism, dynamic binding related fault models
are excluded by now.

C. The Mutation Operators

Over the years, researchers have designed mutation opera-
tors for various programming languages and several specifica-
tion languages. However, there is none for activity diagrams.
This is perhaps because mutation testing is traditionally used
more on program testing than specification. Although it is
reasonable to include as many mutation operators as possible
for a language when first designing its mutation operators, it
has been already realized that a large set of mutation operators
will lead to too many redundant mutants which may not only
sharply increase the testing cost but also inflate the result [8].

Selective mutation is a reduced mutation approach focusing
on establishing an effective subset of mutation operators.
Given a mutation operator set O and one of its subset S C O,
if test cases that are created specifically to kill mutants created
by S also kill mutants created by O, then S defines an effective
subset of O. To provide an effective mutation operator set,
we base our design on summarizing typical selective mutation
studies [9], [10], [11], [12]. The result is shown in Table I.

276

According to the syntactic definition of activity diagrams, we
construct five classes of mutation operators:

1) action node mutation operators: ANDO and ANRO.

2) control node mutation operators: DNDO, FIDO, FJAO,
FJUO and FDJU.

object node mutation operators: ONDO and ONRO.
flow mutation operators: SNEO and DNEO.
expression mutation operators: EORO, EENO, ELRO,
ERRO, ESRO and EBRO.

Since parameters are special kinds of object nodes, the
mutants produced by changing parameters for detecting in-
tegration errors can be generated by applying object node
mutation operators. By now, we don’t support initial node and
final node mutation but the preconditions and postconditions
of an activity diagram can be mutated by using expression
mutation operators because they are essentially expressions.

In our approach, the activity diagram mutants are calculated
by applying first-order mutation. That is, only a single change
is introduced into the original activity diagram. Though we
have no evidence to prove the first-order mutation for activity
diagrams has similar effects with that of high-order mutation.
However, this approach is the simplest and is applied widely
in program mutation testing.

3)
4)
5)

1II. TEST CASE GENERATION

Given an activity diagram A and the mutation operator set
O, our proposed test case generation process based on mutated
activity diagrams is composed of the following steps

1) For Yo € O, generate set of mutants » A’ for A by
applying first order mutation

For VA’ € Y A',if A’ is equivalent to A, then Y A’ =
A A

For VA" € Y A’, calculate set of prime activity dia-
grams y_ A, for A/

For VA', € 3 A’,, calculate path constraint set which
may weakly kill the mutant. If there are forks and
joints nodes in A’} the constraints are calculated by
calculating representative paths otherwise by basic paths

2)
3)

4)

Figure 2 is the main algorithm. The path constrains are solved
with the Yices SMT solver.

A. Prime Activity Diagram

Prime activity diagrams are used to deal with infinite paths
that may occur in an activity diagram. Given an activity
diagram A, a path of A is a sequence of action sets where
each action set is a sequence of action nodes which may occur
concurrently and each pair of adjacent actions in a action set
and each pair of adjacent action sets in the path should satisfy
their corresponding transition relations and guard conditions
defined in .A. For example, the action set sequence < a >, <
be><e><g><h> < f><i,j>isapath
of the activity diagram defined in Figure 5. In the path, the
action set < b, ¢ > is composed of two action nodes b and ¢
which means action b and ¢ can happen concurrently. A path
is called a basic path if no action set appears more than once
in the path. A prime path is a basic path and it should not

TABLE I

MUTATION OPERATORS FOR ACTIVITY DIAGRAM

Mutation Operator

Description

ANDO (Action Node Deletion Operator)

Each action (including called action) is replaced by a special action named Failed which should
report a failure

ANRO (Action Node Replacement Operator)

Each action (including called action) is replaced by another action defined within its scope

DNDO (Decision Node Guard Operator)

Each guard condition of decision node is replaced with boolean constant rrue and false

FIDO (Fork and Joint Node Removement Operator)

Remove each pair of fork and joint nodes in the activity diagram

FJAO (Fork and Joint Node Addition Operator)

Add a new pair of fork and joint within an existing pair of fork and joint in the activity diagram

FJUO (Fork and Joint Node Down Operator)

Shift down each pair of fork and joint nodes

FDJU (Fork Down and Joint Up)

Shift down the fork node while lift up the joint node. That is, the concurrency region is shrink

ONDO (Object Node Deletion Operator)

Delete input pin and output pin (including parameters of the activity) of an action one by one

ONRO (Object Node Replacement Operator)

Each input pin and output pin of an action (including parameters of the activity) is replaced by
another

SNEO (Source Node Exchange Operator)

Modifying the source node of an object flow by replacing to another output pin of the owner
action node of the source node

DNEO (Destination Node Exchange Operator)

Modifying the destination node of an object flow by replacing to another input pin of the owner
action node of the destination node

EORO (Operand Replacement Operator)

Replace an operand of the expression by another syntactically legal operand

EENO (Expression Negation Operator)

Replace an expression (including its subexpression) by its negation

ELRO (Logical Operator Replacement Operator)

Replace a logic operator by each of another logical operator

ERRO (Relational Operator Replacement Operator)

Replace a relational operator by each of another relational operator

ESRO (Shift Operator Replacement Operator)

Replace a shift operator by each of another shift operator

EBRO (Bitwise Operator Replacement Operator)

Replace a bitwise operator by each of another bitwise operator

Algerithm GenPathConstraintsforMA(£,0)
Input: An activity diagram #, the Mutation Operators Set O
Output: The Path Constraintsset used to generate test cases which can weakly kill the implementation
mutants
GenPathConstraintsforMA(7,0)
begin
for each mutation operatoro € 0
begin
7' =EIs U CalADMutants (7,0)
end
PathConstraints= @, RPConstraints = & BPConstraints= &
for each # €28
begin
#'z = CalPrimeAD(#); // Calculate the prime activity diagram for #'
if exists concurrency tokensin #'- then
RPConstraints = CalRepresentativePathsConstraints (F's)
PathConstraints = PathConstraints U RPConstraints
RPCanstraints = @
else
BPConstraints = CalBasicPathsConstraints (#'z)
PathConstraints = PathConstraints U BPConstraints
BPConstraints= &
end
end

Fig. 2. Generating Path Constraints From An Activity Diagram and the
Mutation Operators Set

appear as a subpath of any other basic path. If the first action
set of a path is composed of the initial action node and the
last action set is composed of the final action node, the path
is called as a complete path. Given an activity diagram A, its
prime activity diagram is composed of the complete path set
which covers all the prime paths of A. Figure 3 presents the
algorithm to generate a prime activity diagram. The algorithm
begins with the paths of length O and then extends the path
by increasing its length 1 a time according to the transition
relation until all paths can’t be extended any more.

The prime activity diagram can solve the infinite path
problem imposed by iterations but it can’t solve the many path
combinations caused by concurrency. Therefore, we introduce
the concept of representative path. In a prime activity diagram,
if there exists many complete prime paths satisfying:

1) These paths have the same action set sequence

2) For the corresponding action sets in these paths, they

have same action nodes but different sequence

277

Algorithm CalPrimeAD(7)
Input: An activity diagram &
Qutput: The Prime activity diagram of &
CalPrimeAD(7)
begin
extentablePathSet = @ basicPathSet = @ primePathSet = @
ParseAD(%); //Parse the activity diagram and return its actionSetSet, edgeSet
extentablePathSet= actionSetSet /{begin with the paths of length 0
while (extentablePathSetl= @)
// if the path is ended in <ag> or if after extending the path with 1 edge, there may
exist same action set , it should not be extended
if <a;> € » or existSameActionSet(z,1) then
basicPathSet = basicPathSet U {}
extentablePathSet = extentablePathSet-{s}
else
//extend the path by adding 1 to its length
extentablePathSet = extentablePathSet U extendPathWithOneEdge(», edgeSet)
end
endwhile
for each pair of paths p,, p; in basicPathSet
ifisSubpath(p;, p;) thenbasicPathSet = basicPathSet-{p;}
endfor
primePathSet = extendToCompletePath(basicPathSet, actionSetSet, edgeSet)
reverseParseAD(primePathSet, actionSetSet, edgeSet)
end

Fig. 3. Prime Activity Diagram Generation

only one of them will be selected as representative path. For
example, there are overall 33 complete prime paths in its prime
activity diagram of Figure 5. For the following four paths, only
one (any one is permitted) will be selected:

) <a><be><e><g><h><[f><i4,j>
2) <a><cb><e><g><h><f><ij>
3) <a><bc><e><g><h><f><gi>
4 <a><cb><e><g><h><f><ji>

B. Path Constraint Generation

Path constraint is a predicate used to define the conditions
under which the path may be executed. A path constraint is the
conjunction of each condition appears along with a complete
path. Calculating path constraints which may kill the mutants
is crucial in the test case generation process.

According to the definition of mutation testing, a mutant is
killed if and only if the output of a mutant is differently from
that of the original one. However, it has been pointed out that
this standard is too expensive and hard to be automated [13].

TABLE II
CONSTRAINTS FOR WEAKLY KILLING MUTANTS

Mutation Operator Constraints Rules
ONRO VO1,05 € Ao, pin(01)! = pin(0>)
SNEO Yopini, opiny € O, opiny — opin,! = oping
DNEO Viping,iping € O, tping — ipiny! = iping
EORO Yvi,v2 € V,v1 — v1! = vg
EENO e — e
ELRO Vop € {&&,][}, viopvs — V op,, € {&&, [[}\op. v10p,,va
Vope {<, > =,>=,<=! =}, viopr2 = Y op,, € {<,>,==,>=,<=,! =}\op.
ERRO (M(v10pv2) A (V10p.,v2)) V ((viepv2)Al(v10p.,v2))
ESRO Vop € {<,>}. viopva — YV op,, € {<K, >}\op, v10pm,v2
EBRO Vop € {&,]," }, viopva — YV op,, € {&,[,” }\op, v10p,v2
TABLE III TABLE IV
TCAS MUTANTS THE JAVA PROGRAM MUTANTS
Applied Mutation Operator Mutants Applied Mutation Operator Mutants
Number Number
OAAN (arithmetic operator mutation) 4 AOR g (basic binary arithmetic operators replacement) 12
OLRN (logical operator by relational operator) 102 AOIy (insert basic unary arithmetic operators) 9
ORLN (relational operator by logical operator) 30 AOIg (insert short-cut arithmetic operators) 96
ORAN (relational operator by arithmetic operator) 75 AODy (delete basic unary arithmetic operators) 2
OLLN (logical operator mutation) 17 ROR (relational operator replacement) 126
ORRN (relational operator mutation) 75 COR (conditional operator replacement) 4
OLNG (logical negation) 47 COD (conditional operator deletion) 3
SSDL (statement deletion) 10 COI (conditional operator insertion) 22
Total 360 LOI (logical operator insertion) 27
ASR s (short-cut assignment operator replacement) 8
L. . . MSP (modify synchronized block parameter) 2
Therefore, the most majority of mutation testing approaches RTXC (remove thread method-X call) 1
adopt weak mutation criterion which only requires to change $StKl (remove synchronized keyword from method) 33438
otal

the internal state of the mutants immediately after executing
the mutated point. In order to calculate test cases which may
weakly kill the mutants, special conditions should be added.
Table II lists the mutation operators and their corresponding
weakly killed constrains. Ao is the object node set of an activi-
ty diagram A, O is an object node, V' is the variables set, ipin,,
opin;, v; denote input pin, output pin and variable respectively,
op is an operator. These special constraints are defined as the
result of extending Zhang’s constraint generation rules [7].
Because the action node mutation operators: ANDO, ANRO
and control node mutation operators: DNDO, FIDO, FJAO,
FJUO, FDJU may change the executing sequence of the code,
mutants generated from these operators can be surely weakly
killed due to different program counters. The ONDO operator
changes the number of variables, as a result, the internal states
of mutants generated from ONDO are different from that of
the original one.

IV. EXPERIMENTAL STUDY

To validate our approach, we have conducted three experi-
ments on the TCAS program and a concurrent Java program
described in [14]. These two programs are selected because of
their distinct characteristics. The former is a typical process-
oriented program with complex control logics while the latter
is an object-oriented program with concurrent behaviors. We
deliberately select programs written in different languages to
study the generality of our approach since activity diagrams
are independent of implementation technology.

The downloaded TCAS package has already included a
set of 41 mutants. But since we don’t know which mutation
operators are used to generate these 41 mutants, we also
generate another mutant set as shown in Table III. These

278

mutants are generated manually as we only want to applying
those mutation operators which are studied to be efficient on
safety critical software [2]. Except for concurrent mutants,
the Java program mutants are generated by using pJava as
shown in Table IV. Those mutation operators which generate
zero mutants aren’t listed in the table. Concurrent mutants
are generated manually since we can’t find any available
concurrency mutation tool.

The process of our experiments can be divided into two
phases. In the first phase, we first use random testing to derive
the initial test cases and select the ones which are satisfied with
the expected coverage. Then, we evaluate their defect detection
ability by calculating mutation scores against the program
mutants. In the second phase, we apply our proposed mutated
approach to generate test cases and calculate their mutation
scores as that of the first phase. The experimental results
have shown that by applying the mutated testing approach,
the mutation scores of the derived test sets in the case studies
are improved about 70.4%, 36.6% and 21.6% respectively.

A. Experiments on TCAS

TCAS is a safety critical system equipped on commercial
aircrafts to avoid a potential collision. Figure 4 is its functional
flow defined in an activity diagram. We have conducted two
experiments on TCAS. The first experiment is based on the
downloaded 41 mutants and the second one is based on our
generated 360 mutants.

The first task for the TCAS experiments is to write a
program which randomly generates test cases satisfying the
expected coverage criteria. We have tried to generate 100, 200,
400, 1000 and 5000 random test cases and found the 400 set is

Input parameters
Y eguess
exit(1)
argu=13
Resolve the input
asameters
cnabled s (ices_cquippedss |, i(enableda (tcas_equipped
intent_ner_known) &8 intemt_not_known) axit0)
11 tecas_equipped T ficas_equipped)))
Tnhib_Biased_Climb() T
2

upward_preferred?

u;wamymm% tupward_preferred

calculate resuit caleulate result

dt_sep=UNRESOLVED

alt_sep=DOWNWARD_R4

need_upward RA

v it sep—~UPWORD_RA | nesd_depmward R Inedd_dounvard_RA
Inhib_Biased_Climb()
7 need_upyard RA

upward prefered? at_sep~UNRESOLVED fnesd, upimd AR

{need_upward RAZE:

: T i

Upwerd_preferred
i need_downward A

calculate result calculate result —>

\ i

need_downward RA

Fig. 4. The Activity Diagram of TCAS

TABLE V
THE 6 COVERAGE SATISFIED TESTS AGAINST THE 41 TCAS MUTANTS
Total Tested Mu- | Mutants Equivalent Mutants Mutation
tants killed Mutants Survived Score
41 17 0 24 41.50
TABLE VI
THE 6 COVERAGE SATISFIED TESTS AGAINST THE 360 TCAS MUTANTS
Mutation Total Mutants Equivalent Mutants Mutation
Operator Mutants killed Mutants Survived Score
OAAN 4 3 0 1 75.00
OLRN 102 43 25 34 55.84
ORLN 30 12 8 10 54.55
ORAN 75 29 20 26 52.73
OLLN 17 7 0 10 41.17
ORRN 75 34 20 21 61.82
OLNG 47 32 4 11 74.41
SSDL 10 4 2 4 50.00
Total 360 164 79 117 58.36

the most effective as it is satisfied with 91% condition/decision
coverage and 93% decision coverage with the least test case
number(Because there is an infeasible path in the origin TCAS
program, the coverage ratio can never achieve 100%). Then,
we select a minimal subset from this 400 set which can keep
the coverage ratio unchanged since not all of the 400 test cases
contribute to the expected coverage and this set includes 6 test
cases. In the third step, we execute these 6 test cases against
the 41 and 360 mutants to evaluate its defect detection ability
by calculating mutation scores. The results are shown in Table
V and Table VI. It can be seen from the tables that the average
mutant scores of the 6 test cases set are 41.5% and 58.36%.

In the remaining experiment steps, we apply our proposed
approach to derive test cases. According to its structure, 4
out of the 17 mutation operators can be applied to the TCAS
activity diagram and 165 feasible mutated path constraints are
generated which is shown in Table VII. These path constraints
are then translated into the Yice-readable format to calculate
the corresponding test cases. After deleting duplicated outputs,
we finally get 46 test cases and the mutation score of this test
set against the 41 and 360 mutants are 70.73% and 79.71%
as shown in Table VIII and Table IX. Therefore, the mutation
scores have been improved about 70.4% and 36.6%.

279

TABLE VII
THE TCAS ACTIVITY DIAGRAM MUTANTS

Applied Number of Mu- | Number of feasible | Number of Infeasi-
Mutation tants path ble path
Operator
ANDO 32 16 16
EENO 9 7
ELRO 48 37 11
ERRO 108 105 3
TABLE VIII
THE 46 MUTATION BASED TESTS AGAINST THE 41 TCAS MUTANTS
Total Tested Mu- Mutants Equivalent Mutants Mutation
tants killed Mutants Survived Score
41 29 0 12 70.73
TABLE IX
THE 46 MUTATION BASED TESTS AGAINST THE 360 TCAS MUTANTS
Mutation Total Mutants Equivalent Mutants Mutation
Operator Mutants killed Mutants Survived Score
OAAN 4 4 0 0 100.00
OLRN 102 49 25 28 63.64
ORLN 30 20 8 2 90.91
ORAN 75 50 20 5 90.91
OLLN 17 11 0 6 64.71
ORRN 75 48 20 7 87.27
OLNG 47 35 4 8 81.40
SSDL 10 7 2 1 87.5
Total 360 224 79 57 79.71

Sequential

concurrent

Fig. 5. Activity Diagram of the Java program

B. Experiment on a Java Program

The main function of the java program is to record its
concurrent behavior traces into a log file. Fig. 5 is its activity
diagram [14]. In the activity diagram, an action node denotes
a method of the corresponding class which appends its name
to the current concurrent trace in the log file. As that of the
TCAS experiment, we write a program to randomly generate
test cases satisfying with the condition coverage. We have tried
50,100 and 200 test cases and found the 100 set is the most
effective. In the next step, 5 out of the 100 test cases are
selected as the final set which can achieve condition coverage
with the least size. We then evaluate this test set against the
348 mutants and Table X presents the corresponding results. It
can be seen that the average mutation score is 81.73% which is
much better than that of the TCAS. After careful analysis, we
conclude that this is because the logical complexity of TCAS
is higher than that of the java program.

TABLE X
THE 5 COVERAGE SATISFIED TESTS AGAINST THE 348 JAVA MUTANTS
Mutation Total Mutants Equivalent Mutants Mutation
Operator Mutants killed Mutants Survived Score
AORp 12 10 0 2 83.33
AOI 9 7 0 2 717.78
AOlg 96 67 1 28 70.53
AODy 2 2 0 0 100.00
ROR 126 106 2 18 85.48
COR 4 2 0 2 50.00
COD 3 3 0 0 100.00
COI 22 18 0 4 81.82
LOI 27 24 0 3 88.89
ASRgs 8 6 0 2 75.00
MSP 2 2 0 0 100.00
RTXC 4 4 0 0 100.00
RSK 33 31 0 2 93.94
Total 348 282 3 63 81.73
TABLE XI
MUTANTS OF THE JAVA PROGRAM ACTIVITY DIAGRAM
Mutation Number of Feasible Infeasible
Operator Mutants Paths Paths
EENO 35 15 20
ERRO 175 108 67
DNDO 70 35 35
FIDO 1 8 0
FDJU 2 10 0
Total 283 176 122
TABLE XII
THE 14 MUTATION BASED TESTS AGAINST THE 348 JAVA MUTANTS
Mutation Total Mutants Equivalent Mutants Mutation
Operator Mutants killed Mutants Survived Score
AORp 12 12 0 0 100.00
AOIy, 9 9 0 0 100.00
AOIs 96 93 1 2 97.89
AODy, 2 2 0 0 100.00
ROR 126 124 2 0 100.00
COR 4 4 0 0 100.00
COD 3 3 0 0 100.00
COI 22 22 0 0 100.00
LOI 27 27 0 0 100.00
ASRgs 8 8 0 0 100.00
MSP 2 2 0 0 100.00
RTXC 4 4 0 0 100.00
RSK 33 33 0 0 100.00
Total 348 343 3 2 99.42

Because of its structure characteristics, 5 out of 15 activity
diagram mutation operators can be applied to the java program
activity diagram. These operators generate 283 mutants and
Yices solves 176 which is shown in Table XI. After deleting
the duplicate test cases, we get 14 test cases and its mutation
score against the 348 mutants is 99.42% which is improved
about 21.6%. Table XII provides more details.

V. CONCLUSION

Activity diagrams support both low level behavior modeling
and system level process modeling with formal token flow se-
mantics. Therefore, we regard activity diagrams as a promising
modeling formalism for model-driven testing. Mutation based
test generation is considered as a powerful method on finding
defects. Recently, more and more researchers have applied
mutation ideas to their testing methods.

In the paper, we propose a test generation method based
on mutated activity diagrams. Our intention is to optimize the
derived test set towards finding defects rather than just cover-

280

ing certain syntactic structures. A set of mutation operators
are defined for activity diagrams. Test cases are generated
by solving mutated activity path constraints which include
conditions for weakly killing the relative mutants. Three ex-
periments have been conducted and the corresponding results
show that test cases with higher defect detection ability can be
derived. Although the test generation method is demonstrated
on code testing, it also can be applied to system level testing.
Corresponding experiments are under preparing.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers
for their comments and suggestions. This paper is partially
supported by the projects funded by the NSFC Trustworthy
Software Track 91318301, NSFC 91418203, NSFC 61502171
and NSFC Creative Team 61321064. The Shanghai Trustwor-
thy Computing Key Lab is supported by Shanghai Knowledge
Service Platform ZF 1213, NSFC Creative Team 61321064
and Shanghai Project (No.13511503100, No.012FU125X15).

REFERENCES

G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “The risks of
coverage-directed test case generation,” Software Engineering, IEEE
Transactions on, vol. 41, no. 8, pp. 803-819, 2015.

R. Baker and I. Habli, “An empirical evaluation of mutation testing
for improving the test quality of safety-critical software,” Software
Engineering, IEEE Transactions on, vol. 39, no. 6, pp. 787-805, 2013.
M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger of
coverage directed test case generation,” in Fundamental Approaches to
Software Engineering, 2012, pp. 409-424.

G. Fraser and A. Zeller, “Mutation-driven generation of unit tests
and oracles,” in Proceedings of the 19th International Symposium on
Software Testing and Analysis, 2010, pp. 147-158.

L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 435-445.

Omg, “Semantics of a foundational subset for executable uml models
v1.1,” 2013.

L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing,”
in Proceedings of the 2010 IEEE International Conference on Software
Maintenance, 2010, pp. 1-10.

P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, 2014, pp.
21-30.

'W. Wong, J. Maldonado, and et al., “A comparison of selective mutation
in ¢ and fortran,” in Proceedings of Workshop Validation and Testing of
Operational Systems Project, 1997, pp. 71-84.

E. F. Barbosa, J. Maldonado, and A. M. R. Vincenzi, “Toward the
determination of sufficient mutant operators for c,” Software Testing,
Verification and Reliability, vol. 11, no. 2, pp. 113-136, 2001.

A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation
operators for measuring test effectiveness,” in Proceedings of the 30th
international conference on Software engineering, 2008, pp. 351-360.

M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective mutation
testing for concurrent code,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, 2013, pp. 224-234.

W. E. Howden, “Weak mutation testing and completeness of test sets,”
IEEE Tran. on Soft. Eng., vol. 8, no. 4, pp. 371-379, 1982.

C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic test case
generation for uml activity diagrams,” in Proceedings of the 2006
International Workshop on Automation of Software Test, 2006, pp. 2—8.

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(91

[10]

[11]

(12]

[13]

[14]

