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Abstract—Aiming at minimizing service operating costs and
SLA (Service Level Agreement) violations, various resource
allocation strategies have been investigated to support Cloud
service providers’ decision making. However, due to the service
execution time variation, traditional optimal resource allocation
strategies cannot achieve the best performance in practice. To
address this problem, we propose an automated variation-aware
evaluation framework for resource allocation strategies based on
statistical model checker UPPAAL-SMC. Our framework can
systematically evaluate the performance of resource allocation
strategies under variations, and conduct complex queries on
the quality of service. The experimental results show that our
framework can not only filter inferior solutions efficiently, but
also can enable the tuning of requirement constraints. Since our
approach can be fully automated, the human efforts in resource
allocation strategy evaluation can be significantly reduced.

I. INTRODUCTION

Due to the fierce competition in today’s Cloud comput-
ing [1] market, to achieve increasing profit, Cloud service
providers should look into solutions that can minimize the
cost of infrastructure services without adversely affecting the
Quality of Services (QoS) [2]. In a Cloud workflow system,
a customer sends a workflow request with specified QoS
requirements. Such requirements usually contain the infor-
mation of expected price, response time, reliability (bearable
failure ratio), and etc. For example, customers would like to
ask the question “Is the reliability that the workflow can be
completed in x hours with a cost of y dollars larger than 7?”.
Since different underlying Virtual Machines (VM) offered by
different service providers (e.g., Amazon EC2, Microsoft Win-
dows Azure) may have different capacity (e.g., CPU, memory,
storage) and on-demand prices, Cloud service providers need
to figure out an allocation of VMs, which should be profitable
and can meet all the customer requirements.

Resource allocation is an NP-complete problem, because
it deals with the assignment of services to VMs considering
multiple constraints (e.g., service precedence, time, cost).
Various heuristic-based strategies are proposed to quickly find
a solution (i.e., a resource allocation instance) [16]. However,
due to the accumulated variations in time and cost, it is
hard for Cloud service providers to determine which resource
allocation strategy works best for a given workflow coupled
with QoS requirements. Therefore, quantitative evaluation of
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resource allocation strategies is becoming an important issue
to guarantee the QoS in Cloud computing. In order to satisfy
customer requirements and achieve an acceptable profit for
Cloud service providers, resource allocation strategy evalua-
tion must address following issues: i) How to accurately model
workflow-based services and customer requirements to enable
the quantitative evaluation? And ii) How to model the time
and cost variations caused by underlying infrastructures?

Although simplified probability-based approaches can be
used to model execution variation, few of them can accurately
model parallel service execution. Moreover, existing constraint
solving approaches can only answer yes or no for the given
workflow and user requirements. Few of them can be used
to quantitatively reason why the QoS cannot be guaranteed
and answer how to improve the QoS. Clearly, the bottleneck
is the lack of powerful evaluation approaches which can help
Cloud service providers to make choices among the candidate
resource allocation solutions.

Statistical Model Checking (SMC) [15], [8] is a technique
that relies on the monitoring of random simulation runs of
systems. The simulation results are analyzed using statis-
tical methods (i.e., sequential hypothesis testing or Monte
Carlo simulation) to estimate the satisfaction probability of
a specified property. Compared with formal model checking
approaches, SMC requires far less memory and time, which al-
lows high scalable validation approximation. Moreover, some
interesting quantitative performance properties which cannot
be expressed in traditional model checking can be analyzed
in SMC. Therefore, SMC is suitable for reasoning the QoS of
resource allocation strategies in Cloud computing. Based on
SMC, this paper makes two major contributions as follows.

o« We propose a novel framework that can evaluate re-
source allocation strategies by automatically converting
their solutions with variation information into a network
of priced timed automata and conducting quantitative
analysis against specified performance queries.

o We present three effective evaluation strategies that can
filter inferior resource allocation solutions and enable the
QoS constraint tuning.

The remainder of the paper is organized as follows. Sec-
tion II presents related works on QoS oriented resource
allocation strategies in Cloud and SMC-based evaluation ap-
proaches. After the introduction of the preliminary knowledge
of UPPAAL-SMC in Section III, Section IV describes our re-
source allocation strategy evaluation framework in details. To
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demonstrate the efficacy of our approach, Section V presents
various experimental results. Section VI concludes the paper.

II. RELATED WORK

With the advancement of web technology, resource alloca-
tion is becoming a key issue in distributed application deploy-
ment [9]. Unlike traditional market-based resource allocation
methods which are non-pricing-based [10], in Cloud, various
SLA- or QoS-based profit maximization resource allocation
approaches were proposed [2], [3], [4]. Popovici and Wilkes
investigated the profit-aware schedulers with resource uncer-
tainty [11]. They studied multiple uncertainty factors that influ-
ence service providers’ profit, including load, user impatience,
number of resources, price, and etc. Based on a novel pricing
model for Clouds, Lee et al. [12] investigated the profit driven
service request scheduling for workflow. In [14], Song et al.
presented a priority-based resource flowing algorithms named
RFaVM to optimize resource allocations amongst services.
To manage the dynamic change of customers, Wu et al. [6]
proposed resource allocation algorithms for SaaS providers
who want to minimize infrastructure cost and SLA violation.
To enable efficient dynamic application scaling, Gambi and
Toffetti [5] proposed a performance modeling approach that
can predict the system performances of different resource
allocations. However, most existing approaches focus on the
modeling and optimization rather than the quantitative evalu-
ation for resource allocation with variations.

Due to the efficacy in quantitative query of performance
metrics, SMC [15] is promising in evaluating system designs.
In [19], Du et al. adopted UPPAAL-SMC [8] to conduct
quantitative evaluation on project schedules. Their approach
supports various evaluation queries for the schedule compari-
son. In [17], David et al. extended the semantics of UPPAAL-
SMC to enable the modeling of networks of hybrid systems.
Based on stochastic hybrid automata, their approach can be
used to perform modeling and evaluation of objects in vari-
ous domains, including biology and energy-aware buildings.
Moreover, by exploiting the stochastic semantics together with
simulation, their approach can achieve best values for model
parameters to enable design optimizations [18]. However,
SMC-based approaches are seldom used in the modeling and
evaluation of resource allocation strategies in Cloud.

Different from traditional Cloud simulators (e.g., CloudSim
[13]) which conducts the full-fledged simulation of Cloud
computing systems and application provisioning environments,
our approach focuses on the resource allocation strategy eval-
uation using light-weight simulation provided by UPPAAL-
SMC. To the best of our knowledge, our work is the first SMC-
based approach that can evaluate resource allocation strategies
under variations for Cloud.

ITI. PRELIMINARY
Our approach adopts the Priced Timed Automata (PTAs)
[7], [8] to model the behaviors of services. A Network of Price
Timed Automata (NPTA) comprises a set of correlated PTAs
that communicate via broadcast channels and shared variables.
As an example, Figure 1 shows an NPTA with two PTAs A
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(id=ida) and B (id=idb), where each PTA has four locations
and two local clock (e.g., ¢ and C, in A) respectively. In PTAs,
clocks can evolve with different rates in different locations.
The value of a primed clock indicates the rate of the clock. For
example, C, ==2 is used to record the cost spent in location
A3 with a rate of 2. Unprimed Clocks has a rate of 1 by
default. In this example, we use an array of broadcast channels
msg|id] for the purpose of synchronization, where id indicates
the target PTA of the message. While using message-based
synchronization, we adopt the non-deterministic selections to
filter useless messages. In Figure 1, on the outgoing edge of
location Bj, the selections e:msg_t and the guard condition
e==idb are used to filter messages which are not sent to B.
Ca'==0

c1<=t1 && Ca'==2 Ca'==0

() M)
@ t=dist(ida) & c1=0 & ci==l O
A0 Al A2 msglidb]! A3
Cb'==0 e:msg_t 027212 && Cb'==0
= @ e==idb msg[idb]? 92;:4 —
@12=distr(idb) N4 c2=0 U c2>=12
BO B1 B2 B3

Fig. 1. An NPTA, (A | B)

Since we focus on the evaluation of resource allocation
instances, we need to model the stochastic behaviors of
PTAs. Currently, UPPAAL-SMC only supports the normal
and exponential distributions explicitly, which cannot cover all
complex scenarios in practical designs. To enable the modeling
of different kinds of stochastic behaviors, we adopt the pattern
shown in Figure 1. By proper programming using the built-
in function random(), the self-defined function distr() can
produce values following a large set of commonly used
distributions. For example, the Box-Muller method can be used
to generate normally distributed random delays for PTAs. In
the pattern, since location A, sets an upper bound for clock
c; (i.e., ¢y <=1ty) and its outgoing transition sets a guard
condition ¢; >=1t;, PTA A can stay in location A, with a
delay of #; (randomly generated by distr(ida)).

After each decision of an NPTA, the shortest delay will
be executed and all continuous variables will be updated
accordingly. Meanwhile, the PTA with the shortest delay will
attempt to take a transition. Note that if there is a PTA process
in a commit or urgent location (i.e., a location marked with
the symbol “C” or “U”), the process will have a zero delay
in this location, and the next transition must involve an edge
from one of the commit or urgent locations (commit locations
have higher priority).

Assume that PTAs A and B follow the normal distribution
N(3,1%) and N(6,2%) respectively. The following run is a
possible transition sequence of the NPTA (A|B).

Ao,Bo),[c1 = 0,7 =0,C, =0,C, = 0]) >

A1,B)),[e1 =0,¢, = 0,C, =0,C, = 0]) >

et = 0,02 = 0,Cy = 0,C, = 0]) 23 7!l
A3,B2),[c1 =2.5.¢5=0,C, =5,Cp = 0]) 24
.B3), |

A3,B3),[c1 =7.6,c) =5.1,C, =5,C, = 20.4]) =5 ...



The example demonstrates that the composite location
(A3,B3) is reachable within 7.6 time units with a total cost
20.4. Assuming that there is no correlation between clocks
n; and np, while more runs are simulated, we can find that
the time of reaching composite location (Asz,B3) will be in
a normal distribution N(9,1% +22). By using the message-
based synchronization among parally running PTAs, arbitrarily
complex stochastic behavior can be modeled.

Based on the stochastic semantics, SMC models enable the
generation of random runs which are bounded by either time,
cost or a number of discrete steps. During SMC, all these
derived runs have to be monitored with some specified prop-
erties in the form of cost-constraint temporal logic [7]. At the
end of the SMC, the probability range of each property with
a specified confidence will be reported. Currently UPPAAL-
SMC can handle following three kinds of queries:

o Qualitative check: Pr [time <= bound] (<> expr) >= p.

« Quantitative check: Pr [time <= bound] (<> expr).

o Probability comparison: Pr [timel <= boundl] (<> exprl)

>= Pr [time2 <= bound2] (<> expr2).

In above query definitions, bound is a constant value, and
properties are evaluated using random runs which are bounded
by time. The expression <> expr asserts that the state pred-
icate expr will happen eventually. The qualitative check can
be used to check whether the probability of property <>expr
is at least p. Such check can be used for SLA negotiation
by Cloud service brokers. The quantitative check can be used
to conduct the interval estimate for the success ratio of the
given property. In our approach, it can be used to evaluate the
performance of different resource allocation strategies. The
property comparison can be used to filter inferior strategies.

IV. OUR APPROACH

In this section, we formulate the variation-aware resource
allocation strategies for Cloud (Section IV-A). We propose
a novel framework (Section IV-B) based on UPPAAL-SMC
which can conduct modeling and evaluation of resource allo-
cation strategies (Section IV-C).

A. Problem Definition

Our approach only considers the unit price, time variation
and QoS (i.e., the success ratio of completing service workflow
on time) during the resource allocation. Since unit price can
be considered as a kind of special resources (e.g., power),
our approach can be easily extended to solve the problems in
other domains. To simplify the modeling of resource allocation
problem, our approach assumes that the profit ratio required
by Cloud service providers is a constant (e.g., 20%). In other
words, regardless of profit, the cost information in our model is
the maximum budget of Cloud service providers that can spend
on VMs. In practice, proper optimization in some resource
allocation strategy can further save part of this cost as the
margin profit. Since directed acyclic graph (DAG) is widely
used in describing Cloud workflows [20], the problem studied
in this work is formulated as follows. Given
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o A DAG G = (V,E) indicating a service workflow, where
each node in V = {vq, ...,v,} represents a service. E is
a set of directed arcs which represent dependence rela-
tions between services. Virtual machine set VM = {vm,
...,vmy} denotes all the available VMs that can serve at
least one element in V.

e A unit runtime cost function U : V x VM — R, where
U(vi,vm;) represents the unit runtime cost of the iy,
service running on the j;, VM. If U (v;,vm ) = oo, it means
that the i, service cannot be assigned to the j;; VM.

« An execution time function 7, : V x VM — R, where
T,(vi,vm;) indicates real execution time of service v
running on VM vm; in a random simulation run.

¢ An end time function ET :V x VM — R, where
ET (v;,vm;) indicates the real end time of service v;
running on VM vm; assuming that the workflow starts
from time 0.

« An execution time variation function VAR : V x VM —
DIST, where VAR(v;,vm;) indicates the execution time
distribution of service v; running on VM vm;, such that
T, (vi,vm;) follows the distribution VAR(v;,vm;).

o A resource allocation function AL : V — VM, where
AL(v;) = vm; indicates that services v; is binded to VM
vm;. A resource allocation instance is a binary relation
S={(vi.AL(w)), ..., (vn,AL(vy,)}, which corresponds to
a specific resource allocation function.

o The customer defined constraint R(C,T,SR), where C
indicates the maximum cost for the resource allocation;
T is the required deadline of the workflow and SR is the
success ratio indicating the required percentage of the
successful workflow execution before the deadline.

To achieve a feasible resource allocation instance RAI, it
is required that the probability of successful workflow ex-
ecution which meets the requirement X | (U (v;,RAI(v;)) X
Tr(vi,RAI(v;))) < C and Max!_|ET (v;,RAI(v;)) < T is equal
to or larger than SR.

B. Framework of Our Approach

Figure 2 presents our UPPAAL-SMC-based framework
that can help Cloud service providers to make decisions
on resource allocation. Firstly, based on the Cloud service
workflow and customer requirements extracted from some
SLA contract, the Cloud service provider needs to search
for candidate VMs that can carry out all the services in the
given workflow. Meanwhile, the unit cost, expected execution
time and variation information of services will be queried
from the Cloud service provider itself or other Cloud service
providers. Since no existing approaches can always generate
best resource allocation instances under time and cost vari-
ations, to obtain a near-optimal resource allocation instances
in a reasonable time, our evaluation framework supports the
comparison between different resource allocation strategies.
It is important to note that our framework does not provide
any suggestions on which resource allocation strategies should
be selected. They are selected by Cloud service providers
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Fig. 2. Our resource allocation strategy evaluation and SLA negotiation framework

for different purposes (e.g., time optimization, cost optimiza-
tion). By using our defined mapping rules, the generated
resource allocation instances and user requirements can be
automatically converted into NPTA models and property-based
queries respectively. Based on the capability of UPPAAL-
SMC model checker, our framework can automatically analyze
and evaluate the generated resource allocation instances. If
the customer requirement can be satisfied, the best resource
allocation instance will be reported. Otherwise, if none of
the resource allocation instances can meet the customer’s
requirement, the Cloud service provider needs to negotiate
with the customer based on the evaluation results by tuning
constraint parameters. Since the model and property generation
as well as UPPAAL-SMC-based model checking can be fully
automated, the evaluation process can be conducted without
human intervention. The following sub-sections will introduce
the major steps of our framework in details.

1) NPTA Model Generation: When analyzing a resource
allocation instance, it needs to be automatically translated
into an executable NPTA model first. To simplify the NPTA
model construction, our approach decouples the syntax and
semantics of a workflow with binded resources. In our ap-
proach, we divide the NPTA model for a service workflow
into two parts: front-end model and back-end configuration.
All the workflows share the same front-end model. The only
difference between workflows is the back-end configuration
which describe both the concurrent semantics of workflows
and the execution variation information. Such configuration
information can be achieved from resource allocation instances
automatically.

In the DAG of a workflow, the dependence between services
is indicated by edges. It is required that a service can be
executed if all its precedent services have been finished.
Based on the observation, the front-end model only needs
to model the behavior of a workflow service rather than the
whole workflow structure. This is because that all the services
in the workflow share the same behavior template. In our
approach, the back-end configuration is used to describe the
structure and behavior (i.e., DAG structure and dependence
relations between services) of a workflow and the details (i.e.,
the execution time with variation for each services) of the
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corresponding resource allocation instance.

Assume that there are N services in a workflow and the
distribution of services follows the normal distribution. To
identify each node in the workflow DAG and specify its
execution time, the back-end configuration assigns each node
with an ID together with an execution time distribution which
specifies the expected execution time and its standard deviation
for the corresponding service. The distribution is described
using one two-dimension array distribution/N+1][2], which
represents the expected time (saved in distribution[i][0] )
and the standard deviation (saved in distribution[i][1] ) for
the allocated i, service respectively. Moreover, each node is
associated with a clock cost to record the execution cost of
the service. The clock rate saved in the array clock_rate[N+1]
indicates the unit price information for each service.

In service workflow, edge information is used to describe
the dependence relations between services. According to the
workflow semantics, in the back-end configuration, we need to
figure out all the predecessors and successors for each node.
Since our approach only cares about the service dependence
to model the concurrent behaviors of a workflow, for each
service we need to record how many predecessors have been
finished and how many successors that need to be notified.
Therefore, we define two arrays receive_count[N+1] and
send_count[N+1] to indicate how many predecessors have
completed their services, and how many successors need to
be notified after the completion of the current service. A
service without any predecessors is called initial service, and
a service without any successors is called final service. Since a
workflow may have multiple final services, to ease the property
generation (see Section IV-B2), we added a dummy service
with ID 0 in the workflow which merges all the final services.

To update receive_count[N+1] and send_count[N+1], we
adopt the broadcast synchronization to model the end-to-
end message-passing mechanism between services. In our
approach, each edge in DFGs can be considered as a private
channel working only for two adjacent services. We encode
the message that is sent from the service with id, to the service
with id, as follows:

encode_msg(idy,idy) = idy X (N+ 1) +id,.



This encoding consists of the ID information of both senders
and receivers. By using this encoding, when a listener service
(i.e., service waiting for the notifications from predecessor
services) receives a broadcast message m, it will decode the
message using m%(N + 1) to check whether this message
is sent to itself or not. If yes, the service will decrease its
receive_count by 1.

When a service finishes, it will send notifications to all its
successors. After sending a message, the sending service will
decrease its send_count by 1. In the back-end configuration,
we use a matrix (i.e., a two-dimensional array) msg to keep
all the messages of the workflow, which implicitly represent
the workflow edges. Instead of constructing a matrix of size
(N+1)x (N+1), we use a matrix with size (N + 1) x
MAX (deg(vy),...,deg(vy)), where deg(v;) indicates the num-
ber of output edges incident to the service node. Similar to the
data structure adjacent table, the value in msgli][j] indicates
that the message is sent from the i, service. If msgli][j] ==
—1, it means the message has no destination. Otherwise the
message will be sent to the (msg[i][j]%(N + 1)) service.
After the completion, the iy, service will check send_count[i]
and find the corresponding message entry msg[i][] to notify its
successors via broadcasting.

free

©

rcount=receive_count[nid],
scount=send_count[nid]
rcount==0
© © \
e:message_t reount==0
c%N==nid _ time=distr(nid),
count>0 newmsgle]? clk=0,
rcount-- cost[nid] =0
C/ rcount>0
receiving clk<=time &&
cost[nid]'==0 cost[nid]'==cost_rate[nid]
cost[nid]'==0 running

newmsg[send]!

clk>=time

scount>0
send=msg[nid][scount-1],
scount--

cost[nid]'==0
0 finish
Y}

scount==|

&
sending
cost[nid]'==

Fig. 3. Front-end model template for a workflow service

In our front-end model, we utilize the end-to-end communi-
cation to model the dependence between services. Only when
the service collects all the messages sent by its predecessors,
the current service can start. When the current service com-
pletes, it will notify all its successors one by one. Assume that
the ID of current service is nid. Figure 3 shows the template
of our front-end model. The model has five major states:

1) Free state indicates the beginning of a service. It
initializes the dependence information of the service.
Since it requires no time, we set it as a commit state.

2) Receiving state is used to listen all the broadcast
messages and tries to obtain all the notification messages
from predecessor services.
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3) Running state means all the predecessor services are
finished, and the current service is executing. In this
state, the cost of the service will be calculated using the
unit price cost_ratelnid]. The execution time generated
by distr follows the specified distribution.

Sending state tries to notify all the successive services
about the completion of the current service. Since the
sending process is conducted instantly, the sending state
is set to be an urgent state.

5) Finish state indicates the completion of a service.

It is important to note that, to record the cost of each service,
only the running state has a cost rate greater than 0. In all the
other states, the cost of the service will always be 0. Based on
the front-end model in Figure 3 and back-end configurations,
the derived NPTA model from a resource allocation instance
can exactly mimic the behavior workflows. Therefore, we can
conduct the query of performance on it using the statistics-
based approaches.

2) Property Generation: When NPTA models are generated
from different resource allocation instances, we need to com-
pare the QoS between them. Based on customer requirements,
we can generate various properties to conduct performance
queries using the model checker UPPAAL-SMC. Since our
approach focuses on the QoS evaluation and SLA negotiation,
customers would like to figure out “what is the probability
that the workflow can be completed using a time of x with a
cost of y?”. Since this is a safety property-based query about
the QoS, our approach adopts the property in the form of
A<>p to check whether the customer requirement described
as p can be fulfilled eventually. In UPPAAL-SMC, we analyze
the above requirement using the following property

4)

Pri<=x](<> (cost[1]+...4+cost[N]) <=y && Sp.done),

where So.done indicates the completion of the whole work-
flow, and cost[1] +. ..+ cost[N] represents the overall cost of
the workflow execution. In UPPAAL-SMC, property works as
a monitor to check whether a run of a given time length satisfy
the property p. When the check finishes, the distribution of the
probability of successful simulations will be reported to enable
the quantitative analysis.

C. Resource Allocation Strategy Evaluation

Since cost, response time, and success ratio in the customer
requirement are often conflicting with each other, it is very
difficult to guarantee the optimality for all these three aspects
at the same time, especially under the circumstance of service
execution time variations. Given a specific requirement, Cloud
service providers and customers may prefer to use different
resource allocation strategies, since they do have different
demands. For Cloud service providers, if the price and success
ratio are satisfied, lower cost spent on IT infrastructures (e.g.,
VMs) will lead to larger margin profit. For customers, if they
care about real-time services, under the same cost and success
ratio constraints, they will prefer shorter response time.

Due to the lack of existing approaches that can always
find a resource allocation instance with best performance



with respect to the cost and response time, it is practical
for Cloud service providers to conduct the comparison among
multiple resource allocation strategies. Therefore, for a given
set of resource allocation strategies, the purposes of resource
allocation strategy evaluation is to filter inferior ones and select
an instance with the best performance.

To support Cloud service providers’ decision making on
resource allocation, our framework provides three kinds of
resource allocation strategies by default: 1) time-constraint
cost minimization (TCCM), 2) cost-constraint time minimiza-
tion (CCTM), and 3) x;,-round feasible instance (XRFI). All
these strategies produce resource allocation instances using
the expected execution time. Note that the time variation in-
formation is considered in the evaluation stage rather than the
stage of resource allocation instance generation. Here, TCCM
is a strategy that searches for a cost optimal instance while
the time constraint is satisfied, and CCTM is a strategy that
searches for a time optimal instance while the cost constraint
is not violated. Since TCCM and CCTM search for optimal
solutions, they need to enumerate all the feasible solutions.
Though a given resource allocation problem may have multiple
feasible instances, a typical exhaustive search will terminate
when finding the first feasible solution. To investigate more
feasible schedules, we adopt the xRFI approach which returns
the x,;, feasible resource allocation instance encountered in the
exhaustive enumeration. It is important to note that, due to the
independence between generation and evaluation of resource
allocation instances, other resource allocation strategies can be
easily integrated into our framework.

Based on our framework, we can conduct the automated
analysis using different evaluation strategies as follows.

1) Single Requirement Multiple Strategies (SRMS): For a
specified requirement, evaluate different resource allo-
cation instances generated from different strategies re-
spectively. SRMS can be used to select the best instance
for the requirement.

Multiple Requirements Single Strategy (MRSS): Tune
the parameters of the customer’s requirements, and
evaluate multiple resource allocation instances generated
from different tuned requirements using the same strat-
egy. MRSS can be used to figure out proper requirement
parameter values for the resource allocation instance.
Multiple Requirements Multiple Strategies (MRMS):
Tune the parameters of the customer’s requirements,
and generate one resource allocation instance for each
combination of the strategies and requirements. MRMS
can be used to compare the performance of different
resource allocation strategies.

2)

3)

V. CASE STUDY

This section presents the evaluation details on a securities
exchange workflow for the Chinese Shanghai A-Share Stock
Market [21]. In the experiment, we use UPPAAL-SMC (7], [8]
as the evaluation engine of our framework. During the evalu-
ation using UPPAAL-SMC, we set the probability uncertainty
(i.e., €) to be 0.02, and set the probability of false negatives
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(i.e., a) to be 0.02. All the experiments were conducted on a
machine with 2.8GHz Intel i7 CPU with 4 GB RAM.

A. Workflow Description

The securities exchange workflow is a typical instance-
intensive workflow process which involves a large number of
transactions and each of them is a relatively short workflow
instance with only a few steps. Some steps of the workflow
instance are executed concurrently. The example illustrated in
Figure 4 is the securities exchange workflow for the Chinese
Shanghai A-Share Stock Market [21].

Stage 1 ’ 1. Entrust ‘ ’ 2. Entrust ‘
Stage 2 3. Fit And Make Deal
4. Stock Exchange
Stage 3
’5, Share Variation ’6. Share Variation
Stage 4 ’ 7. Transfer Data ‘
8. Generate Transfer Details
Config. 1 Config. 2 9. Generate Transfer Details
Config. 1 Config. 2
Stage 5 10. Check Balance
Config. 1 | Config. 2 11. Transfer Details
Config. 1 Config. 2
12. Transfer Capital
Config. 1 [ Config. 2
13. Produce Clearing File
Stage 6

’ 14. Receive Data And Details ‘

Fig. 4. A securities exchange workflow

The workflow shown in Figure 4 consists of 14 nodes
which represent the major workflow activities. As introduced
above, a securities exchange workflow is a typical instance
and computation intensive process. Therefore, it is suitable to
be deployed on a Cloud computing platform where the com-
puting resources are provisioned by Cloud service providers
according to customer’s request and budget. Taking Stage 5 of
the securities exchange workflow as an example, nodes 8-12
are all provided with multiple options under different price.
In this experiment, we assume that there are two options for
all these services with different cost and duration. Table I
shows the service configuration in details. For each node,
we list two VM configurations including the unit price, mean
service execution time and corresponding standard deviation.
Intuitively, a faster and more stable VM has a higher price. It
is important to note that in this experiment we focus on the
evaluation of resource allocation strategies for the stage 5 in
the securities exchange workflow. We only consider the time
variation for the nodes 8-12. We assume that the other nodes
in the workflow have fixed cost and execution time with no



variation. In next subsections, we will evaluate the different
resource allocation strategies based on the above securities
exchange workflow and corresponding configurations.

TABLE I
CONFIGURATIONS FOR THE SECURITIES EXCHANGE WORKFLOW

[ [ Config. 1 [ Config. 2 |
Node | Price | M.T.(u) | S.D.(6) | Price | M.T.(w) | S.D.(c)
8 70 5 0.4 50 6 0.7
9 45 10 0.8 60 8 0.5
10 40 10 0.5 30 12 0.8
11 100 7 0.6 80 8 0.9
12 60 12 0.4 40 15 0.7

B. Strategy Evaluation

In this example, we assume that the customer wants the
5. step of the securities exchange workflow to be completed
within 45 time units and 2550 cost units, and the success
ratio to be no lower than 80%. We evaluate the securities
exchange workflow using the self-contained default strategies
(i.e., TCCM, CCTM, and xRFI) in our framework.

Cumulative Probability Distribution

Probability of Success

0
26 28 30 32 34 36 38 40 42 44
Response Time

Fig. 5. CPD for R(2550, 45, 80%)

As soon as receiving a customer request, our framework will
firstly apply the SRMS approach on the generated instances to
check whether such requirement can be satisfied or not with
our default strategies. Since we set x to be 3 for XRFI, we
obtained 5 resource allocation instances using the strategies
TCCM, CCTM, 1RFI, 2RFI, and 3RFI respectively. Figure 5
presents the Cumulative Probability Distribution (CPD) of the
response time of successful simulation runs. Interestingly, we
can find that TCCM and CCTM did not achieve the best
performance in this case, though their targets are to find
cost-optimal and time-optimal solutions respectively. Since the
workflow needs to be completed with a success ratio no lower
than 80%, the instances generated by TCCM, CCTM and 2RFI
need to be discarded. It can be found that the success ratio of
the 1RFI instance (i.e., probability of success has a confidence
of 0.98 within [0.85, 0.89]) is higher than the success ratio of
the 3RFI instance (i.e., probability of success has a confidence
of 0.98 within [0.79, 0.83]). Due to the higher probability of
success, the 1RFI instance will be selected.

To investigate the effects of different requirement constraint
parameters, we applied the MRMS approach. Based on the
example shown in Figure 5, we tune the cost (increased by 50
cost units) and time (increased by 3 time units) respectively
as shown in Figure 6 and Figure 7. In Figure 6, due to the
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increase of price, the workflow can get better VMs in their
resource allocation instances. Therefore, CCTM can achieve
better success ratio. It is important to note, though the success
ratio of 2RFI does not change at time 45 in Figure 6, the
response time performance is improved. We can find that 2RFI
can get a success ratio of 70% at time 35 in Figure 6, while
2RFI needs at least of a time of 38 to achieve such a ratio
in Figure 5. From Figure 5 and Figure 6, we can find that
increasing the cost by 50 does not make any obvious change
for the instances TCCM, IRFI and 3RFI, since the instances
TCCM, 1RFI and 3RFI shown in Figure 5 and Figure 6 are
the same. However, when the user relaxes the time limit to
48 as shown in Figure 7, we can see the significant increase
of success ratio for the instances TCCM and 2RFI. This is
because that the resource allocation instances TCCM and 2RFI
in Figure 5 suffer from the tight response time constraints.
In Figure 7, if customers care about short response time,
then the 2RFI instance will be a better choice, since it can
reach the required success ratio 80% within 35 time units,
while the instance 1RFI, 3RFI and TCCM need around 39, 41
and 47 time units respectively. If the customer does not care
more about the response time, due to the higher probability of
success, the 1RFI instance will be selected.
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MRSS approach can be used to investigate the performance
of single strategy under different requirements. Figure 8 and
Figure 9 show the application of MRSS for both TCCM
and CCTM strategies respectively. In Figure 8, the legend
item C 2550(2540), T 41(40) means that the requirement
provided by the customer is R(2550, 41, -). But by using
the TCCM strategy, we can get an optimal instance which
needs 2540 cost units and 40 time units based on the expected



service response time in the workflow. For TCCM strategy,
the minimum overall cost cannot be tuned. Therefore, in
Figure 8, we create different requirements with the same cost
but different response time. Similarly, for CCTM strategy, the
minimum overall execution time cannot be tuned. Therefore,
Figure 9 shows the results of different requirements with the
same response time but different cost.

Cumulative Probability Distribution
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Fig. 8. CPD for TCCM Strategy
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Fig. 9. CPD for CCTM Strategy

From Figure 8, we can find that when relaxing the time con-
straint, the expected cost can be reduced accordingly. However,
this does not help the strategy to improve its probability of
success drastically for the first 3 of 5 presented legend items.
This is because that, when the time limit is smaller than or
equal to 47, the expected time of each generated instances
is almost same as the time limit, which strongly affects the
success ratio due to the execution time variation. When the
time limit is increased to 52 , we can get a resource allocation
instance with an expected response time of 47. Due to the
big gap between the time limit of the requirement and the
expected response time, the success ratio can be drastically
improved. From Figure 9 we can observe that the increase
of cost can lead to the reduction of workflow response time.
This is because more high-end VMs are used in the newly
generated resource allocation instances.

VI. CONCLUSIONS

Due to the increasing demand of QoS in Cloud, variation-
aware resource allocation is becoming an important issue.
For Cloud service providers, an effective allocation strategy
can not only reduce overall operating costs, but also reduce
SLA violations. However, due to the inherent complexity of
accumulative variations caused by individual services in a
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workflow, there is no strategy that can always guarantee the
best performance in practice. Therefore, to reduce the decision
making efforts of Cloud service providers, it is necessary to
develop an approach that can automatically compare and tune
the performance of different resource allocation strategies.
To address this issue, we propose an UPPAL-SMC-based
evaluation framework. Our framework can not only support
the complex QoS queries to filter inferior resource allocation
solutions, but also enable the tuning of QoS constraints to
achieve the required customer satisfaction. Comprehensive ex-
perimental results based on an industry example demonstrated
the effectiveness of our framework.
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