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Abstract—Under the increasing complexity and time-to-market pres-
sures, functional validation is becoming a major bottleneck of smartphone
applications running on mobile platforms (e.g., Android, iOS). Due to the
GUI (Graphical User Interface) intensive nature, the execution of smart-
phone applications heavily relies on the interactions with users. Manual
GUI testing is extremely slow and unacceptably expensive in practice.
However, the lack of formal models of user behaviors in the design phase
hinders the automation of GUI testing (i.e., test case generation and test
evaluation). While thorough test efforts are required to ensure the con-
sistency between user behavior specifications and GUI implementations,
few of existing testing approaches can automatically utilize the design
phase information to test complex smartphone applications. Based on
UML activity diagrams, this paper proposes an automated GUI testing
framework called ADAutomation, which supports user behavior modeling,
GUI test case generation, and post-test analysis and debugging. The
experiments using two industrial smartphone applications demonstrate
that our approach can not only drastically reduce overall testing time,
but also improve the quality of designs.

I. INTRODUCTION

Along with the fast growing market of smart mobile devices such
as smartphones and tablet computers, the availability and popularity
of smartphone applications have drastically increased. It is reported
that, as of the end of October 2013, more than 1 million Apple iOS
applications were active, and their overall downloads had exceeded 60
billion times [1]. Similarly, for the Android applications, more than 1
billion downloads are being conducted every month [4]. Since more
and more people are relying upon smartphone applications to manage
their bills, schedules, emails, shoppings, and so on, it is required that
smartphone applications should be user-friendly and reliable.

GUI has become ubiquitous for interacting with today’s smart-
phone application software. Any GUI design flaw will not only jeopar-
dize user experience, but also cause some unimaginable catastrophes.
Due to the increasing complexity of software and hardware designs,
huge amounts of GUI testing efforts need to be done before the
shipping of products. However, with the fierce competition in the
smartphone device market, the time-to-market determines the success
of smartphone application products. Undoubtedly, manual GUI testing
is time-consuming and will cause the delay to market. Therefore, it
is urgent to develop automated testing techniques as an alternative.

Automated GUI testing requires accurate modeling of user behav-
iors to simulate the interactions between users and GUIs. In classical
top-down design flow, user behaviors are comprehensively defined
in the design phase. They specify all the desired user behaviors
which should be correctly reacted by smartphone applications. These
information will then be used to instruct the GUI implementation
as well as the following GUI testing. Currently, state-of-the-art GUI
testing approaches and tools [24], [25], [26] are mainly based on
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the event modeling using finite state machines (FSMs). Although
FSM-based models are promising in describing internal control flow
scenarios of GUI implementations, it cannot reflect the overall user
behaviors in a natural and compact manner. Therefore, it is hard for
FSM-based approaches to guarantee the precision and adequacy of the
automated GUI testing. The Unified Modeling Language (UML) is a
de facto modeling language that can specify, visualize and construct
various artifacts of software systems [5]. As a kind of behavior
specifications, activity diagrams are widely used to describe both
sequential or concurrent workflows of stepwise activities and actions.
The flexibility in describing various control flows makes activity
diagram a promising candidate for user behavior modeling to enable
the automated GUI testing for smartphone applications.

Aiming at reducing overall testing efforts as well as improving test
adequacy, this paper proposes an automated GUI testing framework
ADAutomation for smartphone applications, which supports user
behavior modeling and extraction, automated GUI test case generation
and automated test coverage analysis and debug. This paper makes
three major contributions: i) we extend the semantics of UML
activity diagrams to enable user behavior modeling for smartphone
applications; ii) we propose an effective approach for automated GUI
test generation and test adequacy analysis from the extracted user
behaviors; and iii) we implement the framework ADAutomation as a
tool chain which performs GUI testing and debugging automatically.

The remainder of the paper is organized as follows. Section IT
presents related research literatures on model-driven GUI testing
and automated GUI test case generation. Section III presents our
automated GUI testing framework ADAutomation in details. Sec-
tion IV shows the GUI testing results of two industrial designs using
ADAutomation. Finally, Section V concludes the paper.

11.
User behaviors play an important role in GUI testing of smart-
phone applications. During the GUI testing, a test case indicates a
complete user behavior which is a sequence of correlated events/ac-
tions. Figuring out dependence between events/actions of user be-
haviors is the key process of the GUI test case generation. As a
promising heuristic approach, genetic algorithms were widely studied
in user behavior exploration. Based on event-flow models, Rauf et al.
utilized genetic algorithm to search for the best possible test parameter
combinations according to some predefined test criterion [31]. Plan
generation [33] is another approach to derive GUI test cases in the
form of action sequences. For the plan generation approach, its input
is the goal of a specific GUI, and its output is sequences of actions
which can reach this goal. To enable the automation of GUI test case
execution, Chang et al. proposed a computer vision technique [28]. It
can specify which GUI components to interact with and what visual
feedback to be observed. However, all the above approaches do not
fully consider user behaviors for the test adequacy purpose [12].
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To guarantee the structural coverage of GUI applications [24],
proper design models and fault models should be considered during
test case generation. Model-based approaches [15] are widely inves-
tigated to enable the automation of GUI testing [20]. They can not
only improve the test efficiency and sufficiency, but also can check the
consistency between the specifications and implementations in a top-
down design flow [10], [8]. As a promising formal model, Finite State
Machine (FSM) is widely used in automated GUI test case generation.
To extract FSMs from GUI designs, various approaches were inves-
tigated. For example, Shehday et al. [17] proposed a technique that
transforms a given GUI into Variable Finite State Machine (VFSM)
model, which can then be converted into an equivalent FSM. In [19],
White et al. proposed a method that can transform a GUI into different
tasks in the form of reduced FSM models. Based on FSM models,
Belli [21] introduced a holistic view of fault modeling that can
improve the effectiveness of generated test cases. He proposed some
specific model-based coverage criteria on faulty interaction pairs and
complete interaction pairs. By exploring on the obtained reduced FSM
models using these coverage criteria, a set of GUI test cases can be
generated. Besides FSM models, several systematic techniques based
on graph models (e.g., event flow graph [30], [32], event interaction
graph [27], and event dependency graph [22]) for GUI modeling
have also been developed. In these graph models, nodes indicate GUI
events and paths represent event sequences, which can be processed
and converted into GUI test cases. Although FSM models and graph
models can enable automated GUI test case generation, achieving
them from complex GUI implementations could be tedious and error-
prone. Furthermore, FSM models and graph models focus on the
internal logic of GUI designs rather than external user behaviors,
which cannot fully explore all possible input event/action sequences.

Based on the semantics of Petri-nets [13], UML activity dia-
grams are promising in describing both sequential and concurrent
events/actions. Therefore, the use of UML activity diagrams for
testing has been extensively studied [7], [8], [9], [10], [11]. In [16],
Vieira et al. utilized activity diagrams to describe the functional
GUI behaviors which need to be tested. However, for the UML
activity diagram based testing, few of existing researches considered
the hierarchal structures. As a high class of Petri-nets, Hierarchical
Predicate Transitions Nets (HPTN) can recognize and treat both
events (desirable and undesirable behaviors) and states (desirable
and undesirable conditions) equally. In [18], Reza et al. proposed
an HPTN based testing method to test the structural representation of
GUIs. Although Petri-net base approach can perfectly describe user
behaviors, none of them has been used in automated GUI testing.

The drastic increment of smartphone applications and correspond-
ing downloads creates an impetus for developing cost-effective testing
techniques to ensure the reliability [23]. In [38], [29], Hu and Neamtiu
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The overview of our ADAutomation Framework

performed a study to understand the nature and possible remedies for
bugs in smartphone applications, and constructed an automated testing
framework for Android applications. They presented techniques for
detecting GUI bugs by automatic generation of test cases, feeding the
application random events, instrumenting the VM, producing log/trace
files and analyzing them in post-run. In [14], Takala et al. presented
how model-based test automation were implemented with Android
GUI applications. However, most existing approaches focus on the
testing of a single GUI view rather than the overall user behavior
across multi-views.

To the best of our knowledge, our approach is the first one that
systematically adopts UML activity diagrams to support user behavior
modeling, automated GUI testing and GUI debugging for smartphone
applications. We have developed a tool chain ADAutomation to
support all these activities.

III. OUR ADAUTOMATION FRAMEWORK

Since UML activity diagrams are good at describing the relations
between actions, they naturally fit smartphone applications for GUI
testing purpose. In our approach, we adopt activity diagrams to model
user behaviors. By exploring all possible action sequences with a
specific bound of behavior length from activity diagrams, we can
generate a set of GUI test cases to validate GUI implementations.

Figure 1 shows the workflow of our automated GUI testing
framework ADAutomation. It has five major steps: user behavior
modeling, test script library construction, GUI test case generation,
test case execution and post-test analysis. During the early design
phase, UML activity diagrams derived from GUI specifications are
used as a semi-formal model for user behavior modeling. Here, user
behaviors are defined as sequences of user actions conducted on
GUI widgets of smartphone applications. User behavior modeling
tries to explore all possible user behaviors and proper coverage
criteria for the test adequacy evaluation. To enable GUI testing,
system configuration describes the target testing platform information,
and for each action configuration specifies the GUI widget layout
information (e.g., position, label, etc.), GUI widget layout information
(e.g., position, label, etc.), and the action-function mapping. By using
our XMI parser, all such information will be extracted and used
to construct a test script library (i.e., a set of GUI test functions).
Based on extracted action sequences from activity diagrams and
derived function libraries, the test script generator can translate user
behaviors into corresponding GUI test cases. During the test case
execution stage, a test engine will instruct the simulator to run the
test scripts on smartphone applications and log the execution and
coverage information. Finally, by analyzing the simulation logs, the
testing results (i.e., coverage and errors) will be reported. If there
are some inconsistent behaviors between GUI specifications and



implementations, the simulation logs of the error behaviors will be
fed into a replay-based debugger to figure out the reasons of the
inconsistencies. The following sub-sections will present the above
major steps of ADAutomation in details.

Based on our proposed framework, we create a tool chain that
integrates the UML front-end edit tool Enterprise Architect [36] for
activity diagram modeling. In the tool chain, we use the XCode
Instruments [37] from Apple and Android Robotium [3] to conduct
test case execution and post-test analysis for iOS and Android
application respectively. We developed the XMI parser and coverage
analysis tools, which support both automated test generation and post-
test analysis.

A. Behavior Modeling using Activity Diagrams

This section first presents the formal notations for UML activity
diagrams. Then it proposes three coverage criteria that can measure
the adequacy of generated user behaviors. Finally, it presents how to
extract all the user behaviors from activity diagrams for GUI test case
generation.

1) Notations: UML activity diagrams, with the Petri-net [13] like
semantics, are widely used to coordinate the execution of actions
and activities [5], [6]. We adopt UML 2.4 [6] as our specification
for user behavior modeling. In activity diagrams, an activity consists
of a set of actions connected by control flow edges to indicate the
execution order. For the purpose of GUI testing, an activity can be
considered as a view, and an action can be considered as external
operations that can make a state change of smartphone applications.
In our approach, we only adopt a subset of activity diagram elements
including activity nodes, action nodes, control nodes, and control flow.
We do not consider the object nodes and data flow, since GUI actions
are triggered by external events/operations rather than data.
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Fig. 2. Basic activity diagram constructs for GUI testing

Figure 2 shows the major constructs of UML activity diagrams
used in user behavior modeling. It includes:

e  Activity node: A smartphone application usually consists
of multiple GUI activities (views), where each activity is
a collection of correlated user actions. According to the
definition of activity diagrams in UML 2.4 [6], concurrent
actions and activities can preempt each other. However, this
is not allowed in our GUI modeling. In our approach, the
execution of a sequence of actions in an activity cannot be
interrupted by the actions of other activities. An activity node
can be refined as another activity diagram.

e  Action node: An action indicates an individual execution
step within an activity. In GUI testing, it can be considered
as a sequence of correlated external events (e.g., tap, pinch
or flick). Since the action is considered to be atomic, it
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cannot be preempted by other actions during the execution.
An activity node with only one action can be considered as
an action node. An action node cannot be refined further.

e  [nitial node: The initial node indicates the start of a flow,
i.e., a sequence of GUI actions.

° Final node: When the final node is reached, the entire
flow of the activity in which the final node resides will be
terminated.

e Decision/Merge node: The diamond represents a decision or
merge node, which is a kind of control nodes to determine
the sequences of actions. Decision nodes choose one outgo-
ing flow according to the constraints labeled on the outgoing
edge. Merge nodes select only one incoming flow to deliver
to the next activity node.

e  Arrow line: Arrow lines indicate the execution order of
actions. In the control flow, the incoming arrow line indicates
the start of an action, and the outgoing arrow line represents
the completion of the action.

e Fork/Join: Fork or join flows are used to describe concurrent
behaviors of a system. They are shown by multiple arrows
leaving or entering a synchronization bar respectively. In
GUI-based smartphone applications, concurrent behaviors
are not necessary since only one external action can be
triggered at a time. We adopt fork/join flows, since they
can describe the interleaving of actions.

Figure 3 presents the workflow of a GUI-based download appli-
cation using an activity diagram. In this example, users must login
to their accounts (the flow is described by the activity Login) before
downloading files. If a user taps the download button (i.e., action c)
without login, an error message will be prompted. The nested Login
activity in the diagram has three actions (i.e., actions e, f, and g).
During the processing of actions in Login activity, the activity cannot
be disrupted by any other actions outside the activity. However, when
handling actions a, b or c, users could try to login to their accounts.

act Download

Initial

as logged in?

Fig. 3. The activity diagram for a file download application



As a semi-formal specification, UML activity diagram itself can-
not be automatically analyzed. To accurately describe user behaviors,
we extend the Petri-net as an intermediate formal model for UML
activity diagrams, since Petri-net based semantics can capture both
sequential and concurrent behaviors. Definition III.1 describes the
relation between actions and control flow edges with a quasi-Petri-net
semantics. It does not model the full features of activity diagrams,
but just formally depicts the static abstracted structure of activity
diagrams. Unlike the definitions in [8], definition III.1 considers
nested activities based on the depth of activity hierarchy. In our
approach, the actions in the current view cannot be preempted by the
actions from other views. This extension enables smooth description
of user events across multiple GUI views in smartphone applications.

Definition IIL.1. An activity diagram is a directed graph described
by a five-tuple (A, T, F, aj, ar) where

o A={ay,ap,...,an} is a set of m action nodes. depth(a;) €
N indicates the activity hierarchy depth of a;, and ID(a;) € N
indicates the ID of a;.

o T ={1,0,....14} is a set of k completion transitions.

o FC{AXT}U{T xA}isa set of flow edges between activity

nodes and completion transitions.

e aj €A is the initial node, and ar € A is the final node. There

is only one completion transition t € T and c € C such that
(aj,t) €F, and for any t' € T, (t',a;) ¢ F and (ap,t') ¢ F.
[ ]

In this definition, we only focus on the relations between actions.
We unroll all the nested activities by removing all the activity
hierarchies and making the initial/final nodes of nested activities as
dummy control nodes with no delay. Note that the initial and final
nodes of the topmost activities are kept. We associate each action «;
with a parameter depth(a;) to indicate the depth of activity hierarchy.
The depth of actions in the topmost activity is 0, and the depth
of actions in nested activities will be increased according to their
hierarchy levels. As an example shown in Figure 3, the depth of a is
0, and the depth of e is 1. It is important to note that the initial/final
nodes have the same depth as their enclosing activities. For example,
the depth of action Activitylnitial in activity Login is O rather than 1.

To simplify the definition of control flows, we use the completion
transition and flow edge to model system behaviors. In Defini-
tion III.1, actions are connected by flow edges associated with a
completion transition. In Figure 3, there is a completion transition
tp between the actions a and ¢, corresponding two flow edges (a,
1p) and (fp, ¢). Because activity diagrams allow concurrent flows, the
completion transition also can be used to perform synchronization. If
a completion transition has multiple active incoming flow edges, it
will do the join operation. If there are multiple outgoing flow edges
and all the incoming flows are active, it will do the fork operation.
For example, 71 indicates a join operation, which has two input flows
(¢, t10) and (ActivityFinal, t19), and one output flow (¢, h). Note that
in our definition the decision nodes are abstracted.

For the testing purpose, we need to enumerate all the possible user
behaviors from activity diagrams. When analyzing dynamic behaviors
of an activity diagram, we use the state to model the status of a
system. The current state (denoted by CS) of an activity diagram
indicates the set of actions which are ready for execution.

Definition IIL.2. Let D = (A,T,F,ar,ar) be an activity diagram. The
current state CS of D is a subset of A. For any transition t € T,

e °t denotes the preset of t, i.e, *t={ al(at) € F}. 1*
denotes the postset of t, i.e., 1* ={a| (t,a) € F}.
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e enabled(CS) denotes the set of completion transitions that
can be triggered, i.e., enabled(CS) = { t | *t C CS A Vact €
°t. (Vn € CS. depth(act) >=depth(n))}.

e firable(CS) denotes the set of completion transitions that can
be fired from CS , then firable(CS)={ t | t € enabled(CS) )\
°t are all completed \ 3 ne€A. (CS—"°t)Nt® =0}. After
some t is fired, the new current state CS' = fire(CS,t) =
(CS—"°r)ure. ]

Definition III.2 slightly changes the semantics of activity dia-
grams. Although an activity diagram can fire multiple concurrent
transitions simultaneously, our approach only allows to fire one
transition at a time. In our approach, only the transition associated
with the deepest actions can be fired. In Figure 3, {a, e} is the current
state of the activity diagram shown in Figure 3. Although there are
two outgoing transitions for the current state, only the transition from
e to f is enabled, since the action e is a non initial/final action that
resides in a nested activity with the largest depth. If the transition
is fired, the next state will be {a, f}. It is important to note that the
concurrent semantics of activity diagrams enables the interleaving
between actions and activities.

Definition II1.3. A run p of an activity diagram D is a sequence of
states and transitions, let

T 1 In—1
P=150 =5 = ... s,
where so = {ar}, sp = {ar}, and siy1 = fire(si,t;) for any i (0<i<
n). P=<ay, ayy, aip, ..., Gi1, Giy, ..., ag > is a path of p if
si—si—1 ={ai1, ..., aix} (1 <i<n, k>0) where a;y is sequentially
ordered by ID(aj ) when the completion transition t;_y is fired. Let
P=<ay.ay, ..., ay,ar > be a path of length m. P is a simple path
if there is no action repetition, i.e. Vi,j (0<i<j<m), aj#a;. ®

The dynamic behavior of an activity diagram can be represented
by a sequence of actions. We call it a path of the activity diagram.
Due to the concurrency and loops, it is impossible to determine how
many paths exist in a given activity diagram. Therefore, we adopt
the simple path, which is a path without any loops, to reduce the
overall size of the path set. When exploring a path in a UML activity
diagram, we do not consider non-action nodes (i.e., control nodes)
or initial/final nodes in the path length calculation. As an example
shown in Figure 3, < ay,a,c,e, f,g,h,ar > is a simple path with a
length of 6.

2) Test Adequacy Criteria: Testing adequacy criterion specifies
the requirement of a particular testing. Unlike the traditional testing
which is based on the source code coverage, during the activity
diagram based GUI testing, we need to consider all the structural
artifacts as well as the dynamic behaviors of activity diagrams. To
measure the effectiveness of test cases derived from activity diagrams,
we propose three types of coverage metrics as follows.

e Action Coverage Criterion requires that all the actions to be
covered. The action coverage equals to the ratio between the
tested actions and all the actions in an activity diagram.

e  Transition Coverage Criterion requires that all the com-
pletion transitions to be covered. The transition coverage
equals to the ratio between the checked transitions and all
the transitions in an activity diagram.

o Simple Path Coverage Criterion requires that all the simple
paths to be covered. The simple path coverage equals to the
ratio between the traversed simple paths and all the simple
paths in an activity diagram.



The action coverage criterion checks the reachability of the spec-
ified actions in activity diagrams. The transition coverage criterion
tests all the branches along the control flow. Due to the existence
of loops, it is hard to determine how many paths in a given activity
diagram. We adopt the simple path coverage since all the simple
paths should be all feasible during the execution. Note that transition
coverage is stronger than the action coverage. However, since simple
paths may not consider some actions/transitions in the loop, the simple
path coverage criterion may not cover all transitions or actions.

In practice, achieving 100% coverage of the above categories still
cannot guarantee the test adequacy. The above coverage criteria are
only used to describe basic scenarios that should be investigated.
According to Definition III.3, the simple path does not consider
loops, and the order of actions associated to fork transitions is fixed.
Therefore, a simple path may correspond to a large set of possible
event sequences in real executions. In this case, just checking one
representative from this set is not enough, though 100% simple path
coverage can be achieved. In other words, only when a sufficiently
large set of possible user behaviors (random or directed) is tested, the
above coverage criteria can really reflect the test adequacy.

3) User Behavior Extraction: As described in Section ITI-A, UML
activity diagrams can be used to model user behaviors. For the ade-
quacy of GUI testing, it is necessary to figure out as many as possible
user behaviors. However, due to the loops in activity diagrams, it
is impossible to enumerate all such information. Therefore, during
the user behavior extraction, we restrict the length of paths within
a limited bound. Since the fork operation triggers outgoing actions
simultaneously by semantics, during the behavior extraction, we fix
the execution order of the adjacent actions of fork transitions. For the
other non-adjacent actions in the parallel flows, different interleavings
will be considered as different behaviors.

Algorithm 1: Our Path Exploration Algorithm

Input: i) G is the activity diagram for path exploration;
ii) L is the max length of user behaviors set by tester;
iii) CS indicates the current state;
iv) path indicates the incomplete run till CS;
v) Paths stores the complete user behaviors found so far;
Output: A set of user behaviors Parhs starting from CS
1 pathExploration(G,L.CS, path, Paths) begin
2 if path.length > L then
3 | return o;
4 end
5 firableTrans = firable(CS);
6 it |firableTrans| == 0 then
7 Paths.add(path);
8 return Paths;
9

end
10 foreach tran € firableTrans do
1 preSet =° tran;
12 postSet = tran®;
13 CS' = (CS — preSet) U postSet;
14 segment = ordered(postSet — preSet);
15 path’ = path.append(segment);
16 pathExploration(G,L,CS', path’, Paths);
17 end
18 return Paths;
19 end

Algorithm 1 presents the procedure to obtain all the user behaviors
whose lengths are no larger than a given bound. Unlike the algorithm
proposed in [10], [8], our approach considers both the hierarchy
information presented in Section III-A and the bound information.
The algorithm searches the user behaviors in a depth-first way. In
this algorithm, lines 2 —4 handle the case when the searched path
is longer than the specified length limit. Line 5 calculates the firable
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transitions of the current state CS according to the Definition II1.2.
If none of the transition can be fired, that means a new complete
path has been found. In this case, lines 6 —9 record the new path
and abort the following recursive search. Since GUI testing can only
trigger one action at a time, when there are multiple firable transitions,
we need to fire each of them individually. Lines 11 and 12 figure out
the preset and post of a firable transition. Lines 13-15 calculate the
new state and new incomplete path when the fire of the transition
is triggered. Line 16 continues to explore the remaining part of the
paths recursively. Finally, line 18 reports all the explored paths.

B. Test Script Library Construction

When all the action sequences are extracted from a given UML
activity diagram, we need to translate them into corresponding GUI
test cases. In our approach, each action in a given activity diagram has
one associated GUI test function. A GUI test case is described using
a sequence of test functions. Therefore, it is necessary to set up a test
script library consisting of test functions of all user actions, where
each function in the library can describe a set of strongly correlated
GUI events. As well, a one-to-one mapping from the actions of
activity diagrams to the functions in the test script library should also
be provided. Consequently, the GUI test case generation is a process
to transform a sequence of actions to a test script that consists of a
sequence of test functions. Such a script can be fed into some test
engine to control the GUI test process.

At present, there are only a few test engines that support behavior-
level GUI test automation for smartphone applications. The most pop-
ular ones are: i) Apple XCode Instruments which uses UlAutomation
JavaScript library to conduct black-box GUI testing; and ii) Android
Instrumentation, which uses Robotium to do black-box GUI testing
on APK-packaged applications. These tools enable users to write
test scripts for GUI testing. Due to the space limitation, this sub-
section will only introduce the automated GUI test case generation
with examples using XCode Instruments and its UIAutomation library
for i0OS applications. The same process can be easily applied to the
test case generation for Android applications.

1) Activity Diagram Annotation: Since UML activity diagrams
only focus on the GUI action flow modeling, they do not contain any
details of target operating systems, GUI layout or user actions. To
ensure that the derived GUI test cases can be applied on different
smartphone platforms, when modeling activity diagrams, testers need
to specify the target testing platform (e.g., iOS or Android) and
provide the layout information of both manipulated GUI widgets
and corresponding GUI operations for each activity diagram action.
Such configuration information will be saved in XML format and
integrated into the XMI (XML Metadata Interchange) files of UML
activity diagrams. During test case generation, these information will
be extracted to construct test script libraries for different smartphone
platforms.

<Platform>
<Name>10S</Name>
<Version>6.0</Version>
<TestEngine>
<Name>Xcode Instruments</Name>
<Version>4.6</Version>
<Delay>
<Unit>second</Unit>
<Value>0.2</Value>
</Delay>
</TestEngine>
</Platform>

Listing 1. An example of system configuration for PicFlick



Our approach uses the system configuration as a top level de-
scription for the whole activity diagram, which specifies the target
test platform of the smartphone applications as well as the parameters
(e.g., name, version, delays between GUI events, etc) for the corre-
sponding test engine. Listing 1 shows a system configuration for the
activity diagram of the application PicFlick presented in Section IV.

To enable automated test function derivation, the relation between
an action and corresponding GUI operations should be clearly speci-
fied. We created the action configuration to specify such relation. For
each action, the configuration contains following information.

b

Widget features specify the attributes of corresponding
GUI widgets, including ID, position, size, and etc.

2)  GUI operations describe consecutive user operations con-
ducted on the associated GUI widgets.
3)  Test logs instrument proper log information based on the

results of GUI operations.

Listing 2 shows an action configuration example for the action
“Choose Photos in the Album” in PicFlick.

<UserActions>
<FunctionName>selectPhotos</FunctionName>
<Log>"Select, Photos"</Log>
<Operation>
<OPIndex>0</OPIndex>
<Object>
<Type>TableView</Type>
<OBIndex>0</OBIndex>
<Log>
<Cond>NotEqualNULL</Cond>
<Pass>"TableView_0_exits"</Pass>
<Fail>"TableView, 0, does_not_exit"</Fail>
</Log>
</Object>
<action>Tap</action>
<!--AccessMode can be ALL, RAND,
<AccessMode>ALL</AccessMode>
<ScreenShot>Enabled</ScreenShot>
</Operation>
<Operation>
</UserActions>

and SELECT-->

</Operation>

Listing 2. An action configuration example of PicFlick

To achieve widget features, testers should figure out the GUI
layout and design information for smartphone applications. Such
information can be obtained from GUI designers if the smartphone
application has not been developed yet. If the smartphone GUI design
is ready and the code is available, many existing tools can be used
to figure out the GUI layout. For example, based on the Apple
UlAutomation library, each GUI component of an iOS application
can be accessed as a UIAElement object using Javascript. By calling
logElementTree() function provided in UIAutomation library, we can
obtain the corresponding hierarchy tree of all the UIAElements of
the current view. For Android platform, the similar hierarchy tree of
GUI layout could be obtained by using HierarchyViewer contained in
Android Developer Tools (ADT).

Based on widget features, test functions can get references to
GUI widgets to perform various operations. Generally, there are three
major ways to achieve references to GUI widgets: by name, by
layout and widget index, and by the coordinate of screens. Although
our action configuration supports all these three approaches, we
do not suggest to access widgets directly using the coordinate of
screens. This is because the location calculation of widgets can be
very complex in many scenarios (e.g., rotation of screens, different
zoom-levels of screens). Listing 2 shows an example which access
a TableView widget using the layout and index information. The
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associated first operation (with OPIndex 0) will tap all the elements
of the first table (with OBlIndex 0) in the current view.

In addition to describing user operations on GUI widgets, our
action configuration allows to specify the instrumentation of log
information as well as ScreenShot operations for GUI test design.
Such configuration items enable the automated post-test analysis
and debug. During the test case execution, our derived test cases
support the log of both successful and failed testing scenarios. The
log operations are triggered by specific conditions or events to record
the success points and failure points during the simulation. As an
example in Listing 2, no matter whether the TableView exists or not,
a corresponding log information will be reported. Since various log
functions have been widely used in GUI test automation on both iOS
and Android systems, during the test script library construction, the
log specifications in the action configuration can be easily transformed
and instrumented into test script functions.

2) Script Library Construction: In ADAutomation, we use the
Enterprise Architect as our front end activity diagram edit tool.
By using this tool, we can attach the activity diagram with the
system configuration as well as action configurations to enable the
automated function library generation. By using the XMI parser in
our framework, the test script library can be generated automatically.

1 var target = UIATarget.localTarget();
2 |wvar app = target.frontMostApp () ;
3 |var win = app.mainWindow () ;
4
5 | function selectPhotos ()
6 |{
7 UIALogger.logMessage ("Select Photos");
8 target.delay(0.2);
9 var tView = win.tableViews() [0];
10 if (tView==null) {
11 UIALogger.logFail ("TableView_0_does_not_exist");
12 } else {
13 UIALogger.logPass ("TableView_0_exists");
14 }
15 var widgetID = 0;
16 while (widgetID<tView.visibleCells (), length) {
17 tView.visibleCells () [photoID].tap();
18 widgetID = widgetID + 1;
19 }
20 screenShot () ;
21 |}
22 | function choosePhotoAlbum /()
23 | {
24 UIALogger.logMessage ("Choose_a_photo_album") ;
25 .
26 screenShot () ;
27 |}
28 | function photoViews () {...}
29 | function dragPhoto() {...}
30
Listing 3. An overview of the test script library for PicFlick (i0S)

Listing 3 presents the iOS version of the test script library
derived using our XMI parser for the PicFlick design presented in
Section IV. The library consists of two parts: global variables and test
function definitions. Global variables are used to declare some system
variables shared by all test functions, and test function definitions
describe the user operation details for each action. Since we adopt
the UlAutomation tool for GUI testing, the whole function library is
constructed in the form of Javascript. There are totally 30 functions
in this library. Due to the space limit, we only present 4 of them.
To enable the following debug and error analysis, each function is
instrumented with log information. As specified in Listing 2, the line
7 of Listing 3 indicates the log action start; lines 11 and 13 are used
to record null object reference exceptions during the execution; and
line 20 shoots the GUI screen to record the action result.



C. Automated Test Script Generation
Generally, a GUI test case contains three major parts:

1y}

Initialization includes the functional library and initializes
the global data structure.

2)  Body dispatches each user action in the same order as the
sequence of user actions.
3)  Finalization ends current test and print log information.

For the same smartphone application, the initialization and the fi-
nalization parts of the test cases are same. Therefore, we can use
the same template for these two parts in all derived test cases.
Since the relation between actions and functions is a one-to-one
mapping (see the annotation <FunctionName> in Listing 2), the
translation from a user behavior to the corresponding GUI test case
is straightforward. For example, let a; —Go to Photos View— Choose
Album— Choose Photos in the Album—ar be a complete sequence
of user actions. Based on the extracted action-function mapping from
the UML activity diagram, we can generate the iOS test script in the
form of Javascript as follows.

1 | #import "picflick.js"
2 | UIALogger.logStart ("Testing_starts");
3 | photoViews () ;
4 | choosePhotoAlbum() ;
5 | selectPhotos();
6 | UIALogger.logPass ("Testing_ends!");
Listing 4. A translated GUI test script for PicFlick (10S)
D. GUI Testing and Error Diagnosis

Test engines (e.g., XCode Instruments) play an important role
during the testing. It can not only start the simulator to set up the
testing environment, but also can trigger external events to interact
with the GUI implementations using generated test scripts. During
the simulation, we need to validate each test case against the GUI
implementation. If a test case can be simulated successfully, it will be
used to calculate the accumulative coverage information. Otherwise,
the failed test cases as well as the failed scenarios will be recorded
for the following error diagnosis.

Algorithm 2: Calculation of Simple Path Coverage

Input: i) SP is the set of simple paths of an activity diagram;
ii) P is the set of the paths associate with the passed test cases;
Output: Simple path coverage for P over SP
1 SPCoverage(SP.P) begin

2 SP_Size = |SP|;

3 while P # & &SP # & do

4 p = Pelement(0) in the form < xj.x2,..., %, >;

5 P=P—{p}h

6 foreach sp € SP do

7 [*sp is in the form < yj.,va,...,y, >%/;

s it {y1.y2,---. 90} C {x1,%2,....xm} & p can be simulated
on the activity diagram then

9 | SP=5SP—{sp};

10 end

1 end

12 end

13 return (SP_Size — |SP|)/SP_Size:

14 end

Calculating the GUI coverage is a major task during the test case
simulation. In our approach, we only deal with three kinds of coverage
criteria introduced in Section III-A2. Generally, the action coverage
and the transition coverage are easier to be obtained than the simple
path coverage, since it only needs to record which action/transition
is covered. For the simple path coverage, we need to figure out the
matching between a simple path and the traversed paths by the passed
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test cases. Algorithm 2 describes our approach for calculating the
simple path coverage. This algorithm firstly extracts one path from
the set P (line 4). Then the algorithm iteratively compares this path
with each simple path in the set SP (lines 6-11). If such two paths
match (line 8), then the compared simple path will be removed from
the set SP. When either P or SP becomes empty, the whole matching
process will be terminated. Finally, line 13 reports the simple path
coverage information.

For the failed test cases, we need to figure out the reasons for
errors. In our framework, we log various information during the
execution of each test case. MDAutomation can record GUI actions
and their timestamps, user-defined events and suspected screens.
Based on the capture-playback function provided by existing tools
(e.g., XCode Instruments), we can replay the fail scenarios for the
debug purpose.

IV. CASE STUDY

By using our proposed framework ADAutomation, we did exper-
iments on two smartphone applications: PicFlick [34] and Newsyc
[35]. All the experimental results were obtained on a MacBook Pro
machine with Intel Core i5 2.4GHz processor and 4 GB RAM.

A. Experiment 1: PicFlick

PicFlick is a free Wi-Fi based remote picture print management
application developed by Eastman Kodak Company. It allows reg-
istered users to access, edit photos and send them over a wireless
connection to any supported KODAK All-In-One Printer. In this
experiment, we did the GUI testing on the beta versions of its both
i0OS and Android applications. Since the layout and design of both
iOS and Android versions of PicFlick are almost same, they can be
tested using the same UML activity diagram.

Fig. 4. Eight views of PicFlick and their relations in the iOS version

Figure 4 shows all the eight GUI views of PicFlick on iOS and the
corresponding view switches indicated by the arrow lines. The view
1 presents the entrance of the application, where users can access and
select pictures for the following processing. View 2 enters the view
Tools in which we can set the configurations of pictures (e.g., size,
quality and etc.) and remote devices (e.g., printers or digital frames).
View 3 shows one of the selected pictures. View 4 is used to collect
the user feedback (i.e., usage data) of the product. View 5 displays
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the product version information. View 6 creates a new picture frame,
while view 7 edits an existing frame. By entering the view 8, we
can check the status of various lists of processing/processed pictures,
including pending list, failed list, and etc.

Before GUI test case generation, we need to model the user
behaviors based on GUI specifications (e.g., views provided in
Figure 4, and corresponding action information). Since this case
study was conducted on an existing industrial design, we can easily
achieve its GUI specification from its user manual. To evaluate the
effectiveness of our approach, we reinterpret the GUI specification
using an activity diagram. Some people may argue that the drawing
of UML activities is time-consuming. However, these kind of formal
or semi-formal behavior modeling work should be done in the early
design phase anyway. Although we spent around three hours to
construct the activity diagram, such time cannot be accounted into
the overall testing time.

Figure 5 shows the workflow of the PicFlick using a UML
activity diagram, which models the GUI-oriented user behaviors for
the PicFlick application. For each external user input, we model
it using an action. For correlated actions inside a GUI view, we
group them within in an activity. Since PicFlick has 8 individual
views, there are totally 8 activities in the activity diagram. Our user
behavior modeling approach allows nested activities, which can merge
correlated activities together. As shown in Figure 4, the views 4, 5, 6,
and 7 can only switch from and return to the view 2. Therefore, we
can make them as nested activities inside the activity labeled view
2 in Figure 5. The modeling of view 3 is subtle, since view 3 can
switch to view 2 at any time. Therefore, in the activity of view 3, each
action can terminated and quit the activity of view 1 immediately.

By using our XMI parser, we achieved two script libraries for
both iOS and Android GUI testing respectively. Both libraries contain
around 500 lines of code. In this experiment, we set the time interval
between two consecutive input actions to 0.2 seconds. We extracted
all the possible user behaviors from Figure 5 with a limited number of
actions. Based on the derived test script library for PicFlick, our tool
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can automatically translate the user behaviors into concrete GUI test
cases. Table I shows the result of GUI testing for iOS-based PicFlick.
In this table, column 1 presents the limited number of actions for each
test case. As an example, the last row indicates the test result of all
the derived test cases whose length is no larger than 18. Columns
2 and 3 indicate the number of generated test cases and the failed
test cases during the testing. Columns 4 presents the overall testing
time (test case generation time + execution time). The last 3 columns
present the proposed coverage metrics using the generated test cases.

TABLE 1
TESTING RESULT FOR PicFlick (i0S) USING ADAutomation
Bound Test Failed Testing Action Trans. S. P

| Size | # | # | Time(s) Coverage | Coverage | Coverage
1 1 0 8.02 6.67% 6.98% 0.10%
2 2 0 16.06 13.33% 13.95% 0.21%
3 4 0 32.15 26.66% 27.91% 0.42%
4 13 0 103.37 43.33% 46.51% 1.05%
5 30 0 231.01 66.67% 66.28% 1.89%
6 59 0 438.57 66.67% 67.44% 2.62%
7 111 2 797.56 66.67% 67.44% 3.67%
8 176 5 1207.15 83.33% 82.56% 5.03%
9 277 11 1832.30 93.33% 97.67% 6.39%
10 432 14 2773.44 100% 100% 8.07%
11 624 17 3848.24 100% 100% 12.16%
12 881 22 5231.80 100% 100% 19.71%
13 1352 39 3.33.48 100% 100% 31.24%
14 2224 83 13235.72 100% 100% 45.60%
15 3653 127 21627.05 100% 100% 63.21%
16 5784 331 33481.70 100% 100% 81.66%
17 8786 411 49429.83 100% 100% 95.07%
18 12776 993 70217.14 100% 100% 98.95%

To measure the test adequacy, we explored all the coverage
elements on the UML activity diagram. We obtained 30 actions, 86
transitions, and 955 simple paths in total to evaluate the test coverage.
From this table, we can find that when using all the test cases with
a bounded length of 10, we can get 100% activity coverage and
transition coverage. The simple path coverage increases more slowly
than the other two coverages. Although increasing the bound of the
user behaviors can further improve the simple path coverage, the
number of generated test cases will be increased exponentially. Since



the maximum length of all simple paths of the activity diagram in
Figure 5 is less than 19, we do not consider user behaviors whose
lengths are larger than 18. This is because that they will not improve
the simple path coverage any more.

For the i0OS version, when the bound of test case length equals
to 18, the test case generation will cost 1896.14 seconds, and the
test simulation will cost 68321 seconds. The overall time is 70217.14
seconds. In practice, such testing time can be further reduced by
running GUI testing on multiple computers in parallel. However,
if all these test cases are generated and run manually, for such a
complex smartphone application, it will cost around 2-3 man months.
Additionally, due to the lack of user behavior models, it is hard for
testers to enumerate all the possible user behaviors. In this case, the
test adequacy is mainly determined by the expertise and experiences
of testers, which is not objective. During the execution of the 12776
generated test scripts, 11783 of them passed, but 993 of them resulted
in application crashes. By checking the simple path coverage and
scanning the logs generated during the test case execution, we found
5 suspected bugs in the application.

TABLE II
DETAILS OF BUGS FOUND IN PicFlick (iOS) TESTING

Index| Failure Scenarios Failed Reasons of the failures
| | Test #

1 If the picture is too 121 Due to the limited resource for the
large, then the drag of smartphone application, the drag of
the picture may crash. big pictures will use up all the allo-

cated CPU and memory resources.

2 If users send pictures 806 The implementation of the task
to digital frames and scheduling between sending list and
printers at the same pending list is wrong.
time, the application
will crash.

3 Fail to delete tasks 40 The implementation of the delete op-
from pending list. eration of the pending list is wrong.

4 Fail to tap the send- 12 After selecting devices to send pho-
ing list button in the tos, the sending list button is disabled
Queute view. by mistake.

5 Fail to find printers 14 The implementation of the connec-
which appear in the tion between PicFlick and the drivers
Tools view. of printers is wrong.

Table II lists the details of the bugs found in the iOS version.
In the table, column 1 indicates the index of the errors. Column 2
presents the failure descriptions. Column 3 presents how many test
cases failed during the simulation because of the same fault. We had
reported all these failures to the developers of the application, and all
of them are confirmed as bugs which need to be fixed. Based on the
developers’ confirmation, the last column presents the reasons for all
these failures.

Similar to the approach presented in [29], we also conducted the
random testing using the Monkey event generator Ul AutoMonkey
[2] for random GUI test case generation. Unlike [29], we performed
the random black-box GUI testing without instrumenting any code
to observe event activations. By using XCode Instruments, all the
random execution results were recorded for coverage analysis and
debugging. Table III shows the random testing results using Ul
AutoMonkey on the iOS version of PicFlick. For each case with
different numbers of actions, we conducted the random testing for
one day individually. Here, unlimited means that a test case will
be generated as long as possible on-the-fly until it fails. Due to
the randomness, we can find that the case with the bound of 20
achieves the worst coverage. This is because that the random event
sequences are so short that can hardly hit GUI widgets in different
views. Therefore, the simple path coverage is lower than 1%. When
adopting larger bound test cases, we can find that all actions and
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transitions can be covered. Although the random approach use more
time (24 hours) than our approach (19.5 hours with the bound size 18),
our approach can achieve better simple path coverage (98.95%) than
the random approach with unlimited bound (93.89%). From this table,
we can find that the random approach only found three bugs which
have been reported in Table II. No extra new errors were detected by
using the random approach.

TABLE III
RANDOM TESTING RESULTS FOR PicFlick (i0S)

Bound Action Transition Simple Path Bugs
| Size | Coverage | Coverage Coverage | Found
20 47.22% 59.34% 0.93% 0
50 97.22% 97.80% 65.60% 1
100 97.22% 97.80% 85.80% 2
200 97.22% 97.80% 85.80% 2
400 100% 100% 93.89% 3
unlimited 100% 100% 93.89% 3

Since we adopted the same UML activity diagram, when we
tested the Android version of PicFlick and set the bound of test cases
to 18, we get the same test set with 12776 test cases. Running all
these test cases using ADT together with Robotium needs 55226.31
seconds (test case generation time + test case execution time). During
the test case execution, 925 test cases failed. We checked the crash
reports, and found that the Android version reported fewer failure
types than the iOS version. All the 925 failures are caused only by
the faults 1 and 2 listed in Table II. The failure scenarios 3, 4 and 5 did
not appear in the Android implementation. We also did the random
testing for the Android version of PicFlick using the same random
test case set. The test case execution time and coverage results are
similar to to the results shown in Table IIl. The random testing did
not find any new faults.

B. Experiment 2: Newsyc

Newsyc is an open-source Hacker News client for iOS devices.
Besides reading hacker news, users can post or share news to other
people. The GUI implementation Newsyc has four GUI views (i.e.,
news list view, news browsing view, comment view, and system
setting view). Therefore, the corresponding design activity diagram
has 4 activities and 10 actions in total. Table IV shows the testing
results for Newsyc using our ADAutomation framework.

TABLE IV
TESTING RESULT FOR Newsyc USING OUR APPROACH

Bound | Test Case | Test Time Action Transition Simple Path
Size # (s) Coverage Coverage Coverage
2 1 8.48 25.00% 29.41% 6.67%

3 3 26.11 33.33% 35.29% 20.00%

4 7 62.45 33.33% 47.06% 20.00%

5 11 99.66 33.33% 47.06% 20.00%

15 4995 47463.04 33.33% 47.06% 20.00%

From Table 1V, we can find that when the bound size of test
cases exceeds 4, all the investigated coverage results won’t change any
more. We checked the log information collected by ADAutomation,
and found a fault in the GUI implementation. When users enter the
news browsing view for the first time, they cannot bookmark the news,
share the news, or modify the font size. This is because the buttons
in this view were all mistakenly disabled during the first entrance of
the view. However, all these buttons will be enabled when the users
enter the view again later. This certainly is an unacceptable bug, since
this scenario is not user-friendly. Consequently, in this case, most of
the automatically derived test cases will fail due to the incomplete



execution of the derived test cases (i.e., action sequences). In our
approach, if one action of a test case fails, the execution of the test
case will be aborted.

We also did the random testing on the newsyc design using the
tool UI AutoMonkey. Table V shows the results. For different bound
size, we applied the random tests on newsyc for 12 hours respectively.
Surprisingly, although we can achieve 100% coverage in all categories
when the bound size is larger than 50, the aforementioned bug
cannot be detected. This is because in the random testing, we applied
the method proposed in Algorithm 2 for the simple path coverage
calculation. For the ease of comparison, we only consider valid GUI
actions in the execution of a random test case. The invalid GUI
events (e.g., click of disabled buttons) are not considered during the
comparison. Therefore, although all simple paths are covered, the
matching method in Algorithm 2 cannot accurately reflect the actual
action executions. It is important to note that for random testing, the
low coverage ratio can indicate the test adequacy and sometimes can
be used to infer bugs. However, the high coverage ratio cannot fully
guarantee test adequacy as well as lack of bugs.

TABLE V
RANDOM TESTING RESULTS FOR Newsyc

Bound Action Transition Simple Path Bugs

| Size | Coverage Coverage Coverage found |
10 100.00% 97.06% 53.33% 0
20 100.00% 100.00% 80.00% 0
50 100.00% 100.00% 100.00% 0
100 100.00% 100.00% 100.00% 0
200 100.00% 100.00% 100.00% 0

V. CONCLUSIONS

The GUl-intensive nature makes the reliability and maneuver-
ability of GUI be two most important issues during the design of
smartphone applications. Due to the increasing complexity, to achieve
these two goals, a large quantity of testing efforts are required. To
alleviate time-to-market pressure coupled with the stringent validation
requirement, this paper proposes the framework ADAutomation that
can enable automated GUI testing for smartphone applications from
user behavior models established in the design phase. Based on UML
activity diagrams, ADAutomation supports user behavior modeling,
automated GUI test case generation, test case simulation and error
diagnosis. A tool chain based on this framework has been developed.
To demonstrate the efficacy of our approach, we did experiments on
two industrial designs. The results show that our approach can not
only reduce the overall test time, but also can effectively detect fatal
faults in complex GUI implementations.
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