2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems

Efficient Two-Phase Approaches for Branch-and-Bound Style
Resource Constrained Scheduling

Mingsong Chen, Fan Gu, Lei Zhou, Geguang Pu* and Xiao Liu
Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China
Email: {mschen,fgu,lzhou,ggpu,xliu} @sei.ecnu.edu.cn

Abstract—In high-evel synthesis (HLS), the resource constrained
scheduling (RCS) tries to explore a time-minimum schedule for low-evel
hardware implementations under specific resource constraints. To achieve
such an optimal schedule quickly, branch-and-bound (B&B) approaches
are widely investigated to prune the fruitless search space. However, due
to the lack of approaches that can obtain a tight initial feasible schedule,
RCS generally starts with an incompact search space, which is not time—
efficient. This paper proposes an efficient two-phase approach, which
can quickly shrink the search space using a smaller upper-bound for
efficient B&B RCS search. The experimental results demonstrate that
our approach can drastically reduce the overall RCS time.

I. INTRODUCTION

High-Level Synthesis (HLS) enables the rapid generation of opti-
mized RTL (Register-Transfer Level) designs from ESL (Electronic
System Level) specifications [1], [2], [3]. In HLS, ESL specifications
are converted into Data Flow Graphs (DFGs), which are used as
an intermediate representation for the design exploration and perfor-
mance estimation purpose. As one of key tasks in HLS, scheduling
assigns each operation of a DFG with a control step (c-step) which
indicates the start execution time of the operation. This paper focuses
on the HLS scheduling under resource constraints, called Resource
Constrained Scheduling (RCS). Given a DFG and a pre-defined set
of functional or non-functional resources (e.g., function units, power,
area and etc.) with specified overheads, RCS tries to find a schedule
of operations with minimum overall c-steps.

Essentially, RCS is an NP-Complete scheduling problem with
constraints of computation precedence and resource limits. To avoid
forcefully enumerating all possible schedules, many approaches [4],
[13] are proposed to reduce the optimal schedule derivation time.
The basic idea is to remove infeasible or inferior schedules during
the HLS search as much as possible. The B&B RCS methods [4]
are widely investigated to prune the search space (i.e., the set of
all combinations of operation assignments). During the search, B&B
approaches update the upper-bound length of the optimal schedule
dynamically when encountering new better schedules. Such upper-
bound length information can be used to determine the inferior
schedules which are worse than the up-to-date best scheduling result.
Although B&B approaches are efficient in pruning these inferior
schedules, one major bottleneck is that they cannot guarantee a
tight initial feasible schedule to restrict the search range of each
operation, which in turn results in a huge search space. Furthermore,
current B&B approaches search the state space in a recursive manner.
When the remaining operations cannot be used to derive an optimal
schedule, the loose dispatch range of operations and deep recursive
search can easily cause the stuck-at-local-search problem, which is
the main reason for the long search time.

To avoid the stuck-at-local-search problem and achieve a tight
initial feasible schedule, we propose several promising partial-search
heuristics which can narrow down the search space as well as escape

This work was supported by NSF of China (61202103, 91118007), Inno-
vation Program of Shanghai Municipal Education Commission (14ZZ047),
Open Project of SW/HW Co-design Engineering Research Center of MoE
(2013001), and Shanghai Knowledge Service Platform Project (ZF1213).

* Corresponding author.

1063-9667/14 $31.00 © 2014 IEEE
DOI 10.1109/VLSID.2014.35

162

easily from the stuck-at-local-search. By coarsely exploring the state
space, our partial-search heuristics can obtain a tight upper-bound of
the schedule length with small overhead. Based on the results of the
partial-search heuristics, we present a two-phase approach which can
drastically reduce the overall RCS search time.

This paper is organized as follows. Section II introduces the related
works of HLS scheduling. Section III presents the preliminary RCS
notations. Besides introducing our partial-search techniques in detail,
Section IV proposes our two-phase B&B RCS framework. Section V
compares our approach to the state-of-the-art B&B approach. Finally,
Section VI concludes the paper.

II. RELATED WORKS

Unlike non-optimal HLS heuristics (e.g., list scheduling [4]), this
paper focuses on how to quickly achieve optimal schedules for RCS.
To improve the performance of HLS scheduling, various heuristic
approaches were proposed. One commonly used method in HLS
scheduling is the Integer Linear Programming (ILP) model [5].
However, the number of variables in ILP model increases very fast
with the size of DFGs. Therefore, solving tight resource constraint
problems with ILP models may need extremely large amount of time.

The execution interval analysis approaches were widely studied
to scale down the complexity of HLS scheduling. The basic idea is
to narrow down the dispatching time estimation for each functional
operation, thus it can reduce the overall scheduling search space.
Based on the execution interval analysis, Shen and Jong [6] proposed
a stepwise refinement algorithm for resource estimation. It can
produce a tight bound in a reasonable computation time. However,
this method can only achieve a near-optimal solution rather than an
optimal one. To further reduce the complexity when using execution
interval analysis, various B&B approaches were proposed. In [4],
Narasimhan and Ramanujam gave an efficient B&B algorithm BULB
based on both lower-bound and upper-bound information. Hansen
and Singh [10] presented an efficient B&B approach to reduce
the scheduling time for asynchronous systems under multi-resource
constraints. Chen et al. [11] proposed an efficient pruning approach
based on the structural information of schedules. A parallel version
of BULB approach was also proposed to improve the RCS time
[12]. Although B&B approaches are promising in pruning inferior
schedules, most of them adopts the heuristics such as list scheduling
to achieve a feasible schedule first, which cannot always guarantee a
tight initial search space, thus it can easily cause a long search time.
Target to reducing the overall RCS time, this paper tries to reduce
the upper-bound length estimation of the initial feasible schedule.

IIT. PRELIMINARY KNOWLEDGE

HLS scheduling employs DFGs to describe its behavior. A DFG
is a DAG (Directed Acyclic Graph) G = (V,E), where V is a set
of vertices (nodes) designating functional operations with different
types, and E is a set of directed edges describing operation depen-
dencies. For any two nodes v;,v; € V, (v;, v;) € E means that the
operation of v; must be complete before the start of the operation of
vj. As the example in Figure 1, the DFG consists of 5 nodes and
5 directed edges. In an HLS DFG, each v; is bound to an operation

IEEE
computer
psouety



opi, where type(op;) indicates the functional unit type occupied by
opi and delay(op;) is used to denote time delay of op;. An operation
without any predecessors is an input operation, and an operation
without any successors is an output operation.

Resource: 1 adder, 1 multiplier

(1, 3]
levell
[2,5] level2
level3

Delay(+) = 1, Delay(x) = 2

Fig. 1. An example of an HLS DFG

Various graph theory notations are used to enable the HLS schedul-
ing analysis. In this paper, we use G’ = (V' E’) to represent a sub-
graph of G = (V,E) if both V/ CV and E’ C E. The sub-graph
including nodes v; and all its direct and indirect predecessors is
denoted by Gpe(v;). The sub-graph with v; as its source node is
denoted as G(v;). A path is a sequence of nodes, which starts from
an input operation and ends with an output operation. The size of a
path is the number of nodes along the path. We use P;(G) to denote
the size of a path in G with maximum nodes. The length of a path
is the sum of operation delays of the nodes along the path. The path
with the longest length is called critical path. We use CP,,(G) to
denote the length of a critical path of G.

In a DFG, each node v is associated with the level information,
which indicates the largest size of all sub-paths that start from input
nodes to v, i.e., Level(v) = P;(Gpre(v)). During RCS, the dispatching
order of operation op; is determined by the value of CP,(G pre(vi)).
Operations with smaller CP,,(G . (v;)) will be dispatched earlier. For
each node v, Lg(v) and L.(v) denote the indices of the first and
last dispatched operations within the same level of v respectively.
Assuming that opi,0pz,0p4,0p3,0ps is the dispatching order of
operations in Figure 1, we can get Lg(op3) = Ls(ops) = 4 and
L.(op3) = Le(ops) = 3, since opy is the first dispatched operation
and op3 is the last dispatched operation in level 2.

In RCS, the interval [ASAP(op;),ALAP(op;)] is used to denote
lower and upper bounds of the start c-step of operation op;. To
achieve a better RCS performance, it is required that the interval
needs to be as tight as possible. The following definition presents
two widely used approaches to calculate the initial ASAP and ALAP
values.

Definition 3.1: Let G be a DFG for RCS, and op; (i € [1,N]) be
the operation of node v; € V. ASAPg(op;) denotes the earliest time
when the operation op; can be dispatched, where

ASAPG(0pi) = CPy(Gpre(vi)) + 1 —delay(op).

And ALAPG(op;) indicates the latest time when the operation op;
can be dispatched. Let le(S) be the length of a feasible schedule S.
It can be calculated using

ALAPg(opi,le(S)) = 1e(S) —CP,(G(vi)). m

Note that /e(S) has to be determined before calculating the ALAPs
of operations. As an efficient method, the list scheduling algorithm
[4] can achieve such a feasible schedule quickly.

In HLS, the c-step is the basic time unit. An operation will
occupy a specific number of continuous c-steps for execution on
corresponding function unit during the scheduling. As described in

163

Definition 3.2, a schedule is an assignment function S which dis-
patches each operation op; at c-step S(op;) € Z". Here, the condition
(1) gives the precedence constraint posed by the given DFG, and
condition (2) indicates the resource constraints during the scheduling
of DFG operations at any time. Let S be a feasible schedule. Its
length le(S) is the largest finished time of all the operations, i.e.,
le(S) = max{S(op;) +delay(op;) | opi € V}. A schedule is optimal
if it is the shortest one among all the explored feasible schedules so
far. The global optimal schedule is the optimal schedule when all the
state space has been explored.

Definition 3.2: Let G = (V,E) be a DFG , and OP be the set
of operations corresponding to V, where |V| = |OP| = N. Assume
that the target implementation supplies M types of functions, ¥ =
{my,...,mp}, and there are num(m;) units of m (1 <i<M). A
function S: OP — Z is a feasible schedule of G, iff all the following
conditions satisfy:

(1) If (opi,op;) € E, then S(op;) +delay(op;) < S(op;) holds.
(2) For any time t and any operation of type ;, [{op; | type(opi) =
7 A ([S(opi), S(opi) +delay(op;)|Nt,1]) # 0} < num(m;). =

In Definition 3.2, condition 1 indicates the precedence relation
between operations. And condition 2 asserts that, at any time, the
number of specific resource required by operations should be no more
than available ones. Let (op;,S(op;)) to denote the scheduling pair
for operation op;. The binary relation {(op,1), (op2,2), (op3,3),
(ops,5), (ops,7)} is a feasible schedule with length 8 for the DFG
in Figure 1. The binary relation {(op).,2), (op2,1), (op3,4), (0pa,2).
(ops,6)} is an optimal schedule with length 7.

IV. OUR TWO-PHASE APPROACH
A. Motivation

Besides [ASAP,ALAP] intervals which restrict the search range of
operations, B&B approaches [4], [10] use two other important data
structures to prune inferior schedules: i) Sy;r which keeps the best
schedule searched so far, and ii) S which indicates current schedule
with unscheduled operations.

LowerBound optimal ®

/"""\""‘\ /
St L l o ]

N o e e e - - y--—------ ’

UpperBound
lower
S L ) |
N
upper

Fig. 2. Pruning scenario in B&B approach

Figure 2 presents the scenario which shows how the B&B search
makes the pruning. Since it is impossible to determine the optimal
schedule length before all the enumerations are done, to restrict
search space, the upper-bound and lower-bound lengths of the optimal
schedule are estimated. We use ® to record the upper-bound length
of Spsr (i-e., UpperBound). Initially, ® equals to the length of a
feasible schedule determined by the list scheduling approach. Then
o decreases dynamically when a shorter feasible schedule is found
during the HLS scheduling exploration. LowerBound is the lower-
bound length of Sy ¢, which is calculated using the approach proposed
in [7]. In Figure 2, optimal indicates the length of the global optimal
schedule, which is in the range of [LowerBound, ®|. The current
schedule S, which is an incomplete enumeration, also has two bound
estimations. We use lower and upper to denote the lower- and
upper-bound of schedule lengths respectively based on the scheduled
operations of S.



In B&B approaches, if lower is larger than ®, the scheduling for
the unexplored operations can be terminated, since optimal should
be in the range [LowerBound,®]. We say that “the current schedule
can be pruned”. However, if upper is smaller than , it indicates
that a schedule better than Sy, is found. In other words, Sy,
will be replaced by the new schedule for further pruning. If ®
equals LowerBound, the whole B&B search can be terminated. Based
on the above discussion, we can find that ® plays an important
role in determining the performance of HLS scheduling. Before the
scheduling starts, its value equals to the length of a feasible schedule.
During the search, ® indicates the length of a best feasible schedule
explored so far. A wise use of ® can not only tighten the initial
[ASAP, ALAP] interval which in turn compact the search space of
operations, but also can reduce the chance of stuck-at-local-search
and accelerate the pruning of the inferior schedules.

In most B&B approaches, the initial ® value is calculated based on
the list scheduling approach, which often fails to get a tight value for
®. Based on Definition 3.1, the estimation of ALAP is derived from
the initial ® value. A large initial ® value will result in a huge initial
search space. As an example of an RCS problem, let ® and @' be two
feasible initial scheduling candidates, where ® > @'. The search space
SS corresponding to ® is much larger than SS’ corresponding to .
Since SS is larger than SS’, the chance of vain search in S is higher.
Consequently, the reduction rate of ® value is slower. Furthermore,
B&B approach counts all the DFG node intervals in the recursive
HLS searching, and the search space is huge in general. If the ®
value drops slowly, the search space will shrink slowly, which will
easily result it deep recursive procedure calls. In other words, a large
initial search space can disable the pruning efficiency due to the slow
 convergence to optimal value. Therefore, how to quickly get a tight
initial search space determines the HLS scheduling performance.

B. Two-Phase Search Space Reduction

In RCS, o plays an important role in determining the pruning
efficiency. The smaller the ® is, the faster the search is. However,
it is hard to achieve a tightest @ before the real scheduling starts.
Inspired by the observation in Section IV-A, we propose a two-
phase approach shown in Figure 3 which aims to improve the overall
searching performance.

partial search space

il

N
N

fully search space

a) BULB Searching

b) Two-phase Searching
Fig. 3.

Figure 3a) shows the searching using the classical B&B approach
algorithm. To improve the initial search space, we partition the B&B
approach algorithm into two phases: partial-search phase and full-
search phase. Partial-search indicates that the search tries to explore
a small part of the search space, and the full-search does the same
job as the original B&B approach. As shown in Figure 3b), partial-
search using blue dashed arrow line tries to quickly figure out a better
initial schedule (i.e., the schedule with length @'). And the following
full-search uses the red dashed arrow line.

Figure 4 analyzes the time performance of our two-phase approach.
For a given RCS problem, assume that B&B approach needs time
T to get a global optimal solution. If we can find some partial-
search heuristic that can coarsely search on a reduced search space

Comparison between B&B and 2P approaches

164

or backtrack in a non-chronological way, due to the reduction of
stuck-at-local-search scenarios, the time cost 77 of the partial-search
is generally smaller than 7', i.e., 7y < T. If a smaller o is found during
the partial-search, the time cost 7, of full-search will be drastically
reduced, ie., 7o << T. Consequently, we may have 71 + 7> < T.
On the other hand, if the partial-search fails to find a better ®, 7
will be approximate to 7. Consequently the overall cost 71 + 75
will be worse than the cost of B&B approach algorithm (i.e., 7).
Therefore it is required that 77 should be as small as possible. The less
overhead spending in the partial-search phase, the better the overall
performance we can achieve.

Traditional single-phase method

B&B < >
T
Partial search Full search
2-Phase 4= - - -p- ¢—>

T1 T2

Fig. 4. Performance analysis of our 2P approach

C. Fartial-search Heuristics

Since the partial-search time 7| has a dominant effect on the overall
performance, it should be as small as possible. Therefore, how to
quickly find a small ® in partial-search phase is becoming a key
problem in B&B search. By our observation, for the B&B search, the
long-time search is mainly caused by the lack of pruning chances.
When @ € [lower, upper], the remaining unscheduled operations need
to be investigated. Especially when the search goes deep down, the
backtrack will become difficult. In other words, stuck-at-local-search
needs a long time to hit a better schedule. To ease the escape from
the stuck-at-local-search, this subsection will introduce three kinds of
partial-search heuristics which can quickly find a tight upper-bound
length for the following full-search.

1) Bounded Operations: To enable the efficient partial-search, it
is required that a schedule whose upper-bound estimation upper < ®
can be found quickly. However, due to the stuck-at-local-search, the
value of ® cannot be reduced quickly. The delay of the ® update will
cause the long search time. Generally, less DFG nodes involved in the
recursive enumeration will lead to a quicker termination of partial-
search, since this can efficiently avoid the deep recursion. Moreover,
in B&B approach algorithm, the checking of operation dependence
and resource allocation (i.e., Precedence and ResAvailable in Algo-
rithm 2) in each iteration is very costly. If such checking can be
optimized, 77 can be further reduced.

Based on the above observation, our bounded operation based
partial-search (B.O.) tries to avoid the deep recursive search by
limited the number of the operations enumerated in the recursive
search. It does not mean that we do not consider all operations for
the scheduling. In our approach, the unenumerated operations will
be estimated in an incomplete way. We adopt the list scheduling
method to find a feasible schedule based on the enumeration of the
bounded operations. Our approach sets the input operations to be
the bounded operations. In other words, during the partial-search,
only the input nodes are investigated in the recursive enumeration.
The other non-input nodes will be involved in the estimation of the
upper-bound and lower-bound lengths of optimal schedules. Due to
the incomplete enumeration during the search, the partial-search will
be much smaller than the original complete search.

As an example shown in Figure 1, assume that the operations
are dispatched in the order opi, opa, op3, ops, and ops. In the
bounded operation based partial-search, only the input operations
(i.e., op; and op;) are involved in the recursive B&B search. For
the remaining operations, we adopt the list scheduling method to
achieve a feasible schedule based on the enumeration of dispatching



time of op; and op;. As aforementioned, the optimal scheduling
needs 7 c-steps. This happens only when the dispatch time of op;
equals to 2. It means that, when the c-step of op; does not equal to
2, the search is unfruitful. Even if the B&B pruning is used, it needs
quite a long time when S(op;) equals to 2. In our approach, we only
incompletely search the bounded operations, i.e., op; and op;. The
estimation of the upper-bound schedule length can be quickly reduced
to 7 when op; dispatched at c-step 2. The whole partial-search can
be terminated quickly as well. In the following full-search phase, the
initial feasible schedule with an upper-bound 7 can make the tightest
search space, and the full-search performance on this space can be
improve drastically.

2) Non-Chronological Backtrack: In B&B approaches, operations
are sorted and scheduled in a specific order. When the pruning
happens, the exploration of the unscheduled operations will be
terminated. Assume that the operations are dispatched in the order
op1, 0p2, 0p3, opa, and ops in the example shown in Figure 1 and
the initial ® value is 8. Let S’ = {(op1,1),(0p2,2)} be the current
incomplete schedule. By using the list scheduling method on §', we
can estimate that the upper-bound length of S’ equals to ® (i.e.,
8). Then the enumeration will be continued from op3, and the new
incomplete schedule will be S” = {(op1,1), (0p2,2), (0p3,3)}. In this
case, the search is stuck-at-local-search, since the following recursive
search based on S” will be unfruitful.

From the above example, we can find that current B&B methods
cannot quickly approach to an optimal schedule due to the vain deep
recursive search. To avoid such scenario and find a better schedule
in the neighborhood of the current incomplete search, we adopt the
non-chronological backtrack which can jump back to a non-adjacent
operation during the recursive search. Our non-chronological partial-
search (N.C.) is based on the DFG level structure. During the partial-
search, when all the nodes of a DFG level has been scheduled, a
check of backtrack condition (called level check condition) will be
triggered. Assume that the current incomplete schedule is " and the
current i level has the operations opj,,opi,, ...,0pj, in a sorted
order. After the dispatching of op; , we need to check whether for
all the operations op;; (1 < j < k) such that Sysr(opi;) < S’(op,-/).
If the level check condition is satisfied, a distant backtrack will

be conducted. In original B&B approach, we will stay at op;, if

ALAP(op;,) > S'(op;,) or backtrack to the last dispatched operation
otherwise. In the non-chronological approach, we will jump back
to the first dispatched operation of this level, i.e., op;,. Assume
that the schedule {(opi,1), (0p2,2). (0p3,3), (ops,5), (ops,7)}
is a feasible schedule in Figure 1. When the current incomplete
schedule is &' = {(op1,1),(0p2,2)}, the search will backtrack to opy,
and the new incomplete schedule will be S” = {(op1,2),(op2,1)}.
Therefore, the search of the optimal schedule {(op;,2), (op2,1),
(op3,4), (0p4.2), (ops,6)} will be accelerated.

3) Search Space Speculation: The operation dispatching interval
[ASAP,ALAP] plays an important role during the search space explo-
ration. Although the methods defined in Section III are promising to
achieve tight [ASAP,ALAP] intervals, generally it is hard to determine
the tightest ASAP and ALAP values for each operation. During the
B&B search, one major reason for the stuck-at-local-search is that
it tries to enumerate all the c-step combinations of undispatched
operations. If the interval for an undispatched operation is large,
then the search time will be intolerant. Adversely, if the search
range of some operation can be reduced to a half, the overall search
space will be reduced half too. Based on this observation, our search
space speculation based partial-search (S.S.) tries to speculate better
schedules by halving the search range of each operation on-the-fly.
By adopting a greedy strategy, our speculation approach assumes that

165

the global optimal result will be always located in the first half of
the range of the current dispatching operation.

Our speculation process is as follows. During the B&B search,
the ASAP value of each operation can be changed. As an example
in Figure 1, assume that S’ = {(opy,1), (op2,2)} is the current
incomplete schedule. Since the dispatching of opsz, ops and ops
depends on the execution of op;, their ASAP values can be updated
to be 3, 3, 5 respectively. Assume that op; is dispatched first. Since
op is the current dispatching operation, during the recursive search,
we restrict its search range to be the first half of the range [1,3], i.e.,
[1,2]. Similarly, the dispatch of the second operation (i.e..op>) will be
within the range [1,2]. Since op2 finishes at c-step 2, the execution
range of ops will be changed to [3,5]. During the partial-search, we
will only investigate its first half of the range, i.e., [3,4]. Since the
search range will be always halved, the overall search work will be
much smaller than the complete B&B search. If one shorter schedule
can be hit, it will be beneficial to the overall B&B search.

D. Our Two-Phase Scheduling Approach

Algorithm 1 describes the skeleton of our partial-search based B&B
algorithm. It has three inputs: i) an RCS DFG whose operations
are sorted using the approach described in Section III, ii) resource
constraints for operations, and iii) the partial-search strategy. In
Algorithm 1, step 1 computes the initial ASAP values for each
operation of D based on the Definition 3.1. Step 2 tries to achieve an
initial feasible scheduling S by applying the list scheduling method.
Step 3 uses the reduced length of S to update the initial ALAP values.
Steps 4 conducts the partial-search. Steps 5-6 deal with the full-search
on the compact search space based on the reduced ALAP values.
It is important to note that both partial-search and full-search use
the same procedure BBM. Finally the algorithm reports one global
optimal scheduling for D under constraints C.

Algorithm 1: Two-Phase RCS Exploration

Input: i) An RCS DFG D = (V,E), where V has been sorted;
ii) Resource constraints for all kind of operations, C;
iii) The partial-search strategy type 7.

Output: An optimal scheduling Sy, for D and its length

TwoPhase(D, C, T) begin

1. Computelnitial ASAP(D) ;

2. (S, ) = ListScheduling(D,op1) :

3. ComputelnitialALAP(D,le(S));

[*partial-search*/

4. (8'.le(S")) = BBM(D,C.T,(S,le(S)), 1,true);

/*full-search*/

5. UpdateALAP(D.le(S'));

6. (Spsss1e(Spsf)) = BBM(D,C, T, (S',le(S)), 1, false);

Return (Sb.\.f,le(Sb.\.,»)).

end

Algorithm 2 presents our B&B approach for both partial-search and
full-search. It is important to note that the function ResAvaible can
be used for checking the availability of various kinds of resources
(function units, power, area, etc.). Therefore our approach can be
applied for both functional and non-functional resources.

In Algorithm 2, steps 1 and 2 check whether the bounded operation
based partial-search is adopted or not. If yes, only the input nodes
will be investigated in the partial-search as shown in step 1. Steps 3
and 4 deal with the search space speculation based partial-search. If
the partial-search is applied, step 3 will half the range of the current
searching operation. Since our approach adopts the dynamic ASAP
update, we need to save the original ASAP values of all operations of
G(op;) first in step 5. Steps 6 and 7 calculate the lower and upper for
current schedule. If upper is smaller than @, then @ and Sy, will be
updated in steps 8 and 9. Changing ® value will trigger the checking
of early termination condition in step 10 followed by the runtime



space shrinking (step 11). If op; is the last dispatched operation
of some level and the level check condition holds, when the non-
chronological backtrack is enabled, steps 12 and 13 will backtrack to
the first dispatched operation in the same level. If the lower bound of
current schedule (i.e., lower) is smaller than ®, the current operation
will be scheduled. After the new c-step assignment of operation op;
in step 14, step 15 updates all the ASAP values of the operations
in G(op;). Step 16 takes resources required by the operation op;.
Then opjy is processed recursively in step 17. When the search
backtracks, the resource occupied by op;; is released in step 18.
Steps 19 and 20 check whether the non-chronological backtrack has
finished or not. When the search of S(op;) is done, step 21 restores
the ASAP values of G(op;) saved in step 5. Finally, step 22 reports
the results when the recursive search is complete.

Algorithm 2: Our B&B Pruning Algorithm

Input: i) An RCS DFG D = (V,E), where V has been sorted;
ii) C, resource constraints for operations;
iii) 7', partial-search strategy;
iv) (Spsr,®) = a feasible schedule and its length;
v) i, index of the current operation in search;
vi) PS indicates if partial-search should be conducted.
Output: A schedule and its length
BBM(D, C, T, (Spsr, W), i, PS) begin
if PS & T==B.0. then
| 1. N = |input operations of D|;

else

| 2.N=1V];
end
if i <N then

if PS & T==S.S. then
| 3. ALAP = (WM];
else -
| 4. ALAP = ALAP(op;);
end
5. SaveASAP(D,op;);
for step = ASAP(op;) to ALAP do
if Precedence(op;) N\ ResAvaible(step, res(op;)) then
6. lower = LBound(op;);
7. upper = le(ListScheduling(D.op;));
if upper < ® then
8. = upper;
9. Spsy = ListScheduling(D,op;);
if ® == LowerBound(D) then
| 10. Terminate(Sy7. ©);
end
11. UpdateALAP(D,®);
end
if PS & T==N.C. & i==L.(opi) & i # Ls(opi)
& LevelCheck(op;) then
12. return_id = Ls(op;);
13. Return (Spsf, ©);
end
if lower < ® then
/* Dispatch the current operation */
14. S(op;) = step;
15. UpdateASAP(D,op;);
16. ResOccupy(step,type(op;),delay(op;));
17. BBM((D.C.T,(Spsr.le(Spsr)), i+ 1,PS);
18. ResRestore(step,type(op;),delay(op;));
if return_id # —1&return_id # i then
| 19. Return (Sy7, 0);
else
| 20. return_id = —1;
end

end

end
end
21. RestoreASAP(D,op;);

end
22. Return (Sp,7, ).

end

166

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approaches, we collected the
benchmarks ARFilter, Cosinel, Collapse, and Feedback from the
MediaBench benchmark [8], which is a standard DSP benchmark
suite. And we got the benchmark FDCT from [14]. We implemented
our approaches using the C programming language. For comparison,
we generated and solved the ILP models for each benchmark items
using IBM ILOG CPLEX CP Optimizer [9], which utilizes the non-
naive branch-and-cut for efficient ILP solving. All the experimental
results were obtained on a Linux machine with Intel Xeon 3.3GHz
processors and 8GB RAM.

In this experiment, we only consider the constraints of functional
units and the non-functional constraints (i.e., power and area). Table I
lists the corresponding settings for all different types of functional
operations used in the experiment.

TABLE 1
THE SETTINGS OF THE FUNCTIONAL UNITS

Functional Operation Delay Power | Energy Area

| Unit | Class (unit) (unit) (unit) (unit)
Add/Sub +/- 1 10 10 10
Mul/DIV X[+ 2 20 40 40
MEM LD/STR 1 15 15 20
Shift <</>> 1 10 10 5
Other 1 10 10 10

Table II presents the experimental results carried out with different
functional unit constraints on the five benchmarks. The first column
of the table indicates the name of the benchmarks. The second column
presents the functional unit constraints for the design. As an example,
“2a, 3m” denotes that two adders and three multipliers are used for
the given design. Due to the space limit, we do not give the number
of other functional units. The third column gives the lower and upper
bound estimations of the optimal schedule before the scheduling, and
the fourth column presents the lengths of global optimal schedules
achieved by the scheduling. The fifth column presents the ILP solving
time using the CPLEX CP Optimizer. The sixth column presents
the scheduling timing using the BULB approach [4]. The columns
7-9 present the results of our two-phase search using the bounded
operation based partial-search. The column 7 presents the time spent
in the partial-search. The column 8 indicates the tightest bound
found during the partial-search. The column 9 gives the total time
for the whole two-phase search. The columns 10-12 and columns
13-15 present the results using our non-chronological and space
speculation partial-search heuristics respectively. Since most modern
computers have multiple cores, to achieve the maximum speedup over
BULB, we can run two-phase methods with different partial-search
heuristics as well as BULB approach on different cores in parallel.
If one approach stops first, then the whole RCS can be terminated.
By using this strategy, we can achieve the maximum speedup (i.e.
Min(cnluanfzi;Iun)z’;?]2,cnlumn15)) as shown in the last column.

It can be found that our approaches outperform both the state-of-
the-art ILP and the BULB approaches. Especially when the initial
length of the feasible schedule can be reduced by the partial-search,
our approaches can drastically reduce the RCS time (i.e., 20000
times improvement over BULB in Collapse design with the constraint
“2a,Im”). Generally, it is hard to distinguish which partial-search
heuristic is the best, since the performance is mainly determined by
the design itself. For example, the bounded operation method works
best for the FDCT design, but the space speculation method does
best for the Collapse design. Although the non-chronological method
cannot achieve the best results in most collected benchmark items,
it can solve the RCS problems that the other heuristics cannot solve
(e.g., Feedback with “4a,5m”). It is important to note that the tighter
the initial bound can achieve, the shorter the full-search time will be.




TABLE II
RCS RESULTS UNDER FUNCTIONAL UNIT CONSTRAINTS

Design [[ cp BULB [[  Bounded Operation || Non-Chronological [[ Space Speculation  [[  Max
[ Name [ a,m# [ LU [ le. [| [9] 41 [[ Ti [T 0 [ Tea [| Tt [ & [ T [[ Tt [ 0 | T [| Impr
[, 3 [14,16] 16 TO 0.16 0.08 16 0.22 <0.01 16 0.16 0.10 16 0.25 1.00
ARFilter 1,4 [14,16] 16 TO 0.40 0.13 16 0.49 <0.01 16 0.40 0.27 16 0.62 1.00
1,5 [14,16] 16 TO 0.38 0.14 16 0.49 <0.01 16 0.38 0.26 16 0.62 1.00
2,3 [14,15] 15 1.40 0.01 <0.01 15 0.02 <0.01 15 0.01 <0.01 15 0.01 1.00
Collapse 2,1 [22,23] 22 TO TO 162.20 22 162.20 TO 22 TO 0.18 22 0.18 >2.00e4
D 2,2 [21,23] NA TO TO TO NA TO TO NA TO TO NA TO NA
1,2 [28,29] 28 TO 63.51 <0.01 28 <0.01 0.06 28 0.06 20.94 28 20.94 1.59¢4
Cosinel 2,2 [20,23] 20 TO 377.58 15.66 20 15.66 0.03 22 330.23 21.70 20 21.70 24.11
3,3 [16,17] 16 TO <0.01 <0.01 16 <0.01 <0.01 16 <0.01 <0.01 16 <0.01 1.00
1,2 [26,27] 26 TO 20.30 <0.01 26 <0.01 18.56 26 18.56 0.26 26 0.26 5.08e3
2,2 [18,22] 18 TO 113.92 0.07 18 0.07 19.87 18 19.87 0.65 18 0.65 1.63e3
2,3 [14,17] 14 TO 11.17 0.63 14 0.63 1.94 14 1.94 2.03 14 2.03 17.73
FDCT 2,4 [13,15] 13 TO 249 0.03 13 0.03 0.23 13 0.23 3.76 13 3.76 83.00
2,5 [13,14] 13 TO 0.48 <0.01 13 <0.01 0.12 13 0.12 0.16 13 0.16 120.00
3,4 [11,13] 11 TO 0.34 0.21 11 0.21 0.03 11 0.03 0.14 11 0.14 11.33
4,4 [11,12] 11 TO 0.07 0.01 11 0.01 0.06 11 0.06 0.02 11 0.02 7.00
4,4 [13,14] 13 TO 85.74 77.63 13 77.63 77.84 13 77.84 18.38 13 18.38 4.66
Feedback 4,5 [13,15] 13 TO TO TO NA TO 265.30 13 265.30 TO NA TO >13.60
5,5 [13,14] 13 TO 2.72 248 13 2.48 2.45 13 2.45 0.58 13 0.58 4.70

* All scheduling time is measured in seconds. “TO” means that the scheduling time is larger than 3600 seconds. “NA” indicates that the result is not available.

For the ARFilter design, since the length of optimal schedule equals
to the initial upper-bound, the performance is a little worse than the
BULB approach. However, all the other benchmarks benefit from our
partial-search heuristics since the coarse partial-search can locate the
global optimal result with significantly small overhead. Note that,
in the Cosinel design with “2a,2m”, we can find that although the
non-chronological method can find a tighter bound (i.e., 22), the full-
search still needs a long time since the initial upper-bound is not the
tightest (i.e., 20).

EBULB B Non-chronological O Space Spec. B Bounded Op.
10000

- 1000
n
2
§ 100
2
o
2 10
o
E 1
£
4 0.1
3
0.01
40 50 60 70
Power Constraints
Fig. 5. RCS Results with an area of 100 Units
HBULB B Non-chronological O Space Spec. B Bounded Op.
100
E 10
2
o
2
o
) 1
o
£
Fooa
0
1%}
3
0.01
60 80 100 120

Power Constraints

Fig. 6. RCS Results with an area of 140 Units

The power and area are two key non-functional constraints of
the hardware design. Figure 5 and Figure 6 show the RCS results
for FDCT design under different power and area constraints using
different partial-search heuristics. Under the area constraints of 100
units and 140 units, we conduct the RCS with different power
constraints (from 40 to 70 with an increment of 10 power units, and
from 60 to 120 with an increment of 20 power units respectively). In
Figure 5, when the area is 100 units and the power equals to 40 or 50
units, we cannot obtain the RCS results using the non-chronological
backtrack based approach due to the timeout (i.e., 3600 seconds).
Although we set 3600 seconds as the RCS time for these scenarios
in Figure 5, in fact they cannot be compared with other approaches.
Overall, from the above two figures, we can find that our two-
phase approach using different partial-search heuristics outperforms

167

the BULB approach significantly. It can achieve several orders of
magnitude improvement compared to state-of-the-art BULB approach
[4]. The bounded operation heuristic achieves the best performance
in FDCT design, which is consistent with the results in Table II.

VI. CONCLUSION

This paper presents an efficient two-phase B&B approach that can
quickly achieve optimal solution for resource-constrained scheduling
problems. By adopting various partial-search heuristics with small
overhead, the first phase of our approach targets to get a more accu-
rate estimation of the upper-bound length for the optimal schedule.
Due to the compact search space derived from the result of the first
phase, the performance of the full-search in the second phase can
be drastically improved. Consequently, the overall RCS time can be
saved. Experimental results show that our method can achieve better
performance than the state-of-the-art B&B method BULB by several
orders of magnitude.

REFERENCES
[
2

G. Martin and G. Smith, “High-level synthesis: past, present, and future”, Design
& Test of Computers, 26(4):18-25, 2009.

P. Coussy, D. Gajski, M. Meredith and A. Takach, “An introduction to high-level
synthesis”, Design & Test of Computers, 26(4):8—17, 2009.

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers and Z. Zhang,
“High-level synthesis for FPGAs: from prototyping to deployment”, /EEE TCAD,
30(4):473-491, 2011.

M. Narasimhan and J. Ramanujam, “A fast approach to computing exact solutions
to the resource-constrained scheduling problem”, ACM TODAES, 6(4):490-500,
2001.

F. Su and K. Chakrabarty. High-level synthesis of digital microfluidic biochips.
ACM JETC, 3(4), 2008.

Z. Shen and C. Jong, “Lower bound estimation of hardware resources for
scheduling in high-level synthesis”, Journal of Computer Science and Technology,
17(6):718-730, 2002.

G. Tiruvuri and M. Chung, “Estimation of lower bounds in scheduling algorithms
for high-level synthesis”, ACM TODAES, 3(2):162—180, 1998.

Media Benchmarks. Available at: http://express.ece.ucsb.edu/benchmark/.

IBM ILOG CPLEX CP Optimizer V12.3. Available at: http://www-01.ibm.com
/software/commerce/optimization/cplex-cp-optimizer/index.html.

J. Hansen and M. Singh, “A fast branch-and-bound approach to high-level synthesis
of asynchronous systems”, in Proc. of ASYNC, 107-116, 2010.

M. Chen, S. Huang, G. Pu and P. Mishra, “Branch-and-bound style resource
constrained scheduling using efficient structure-aware pruning”, in Proc. of ISVLSI,
2013, accepted.

M. Chen, L. Zhou, G. Pu and J. He, “Bound-oriented parallel pruning approaches
for efficient resource constrained scheduling of high-level synthesis”, in Proc. of
CODES+ISSS, 2013, accepted.

C. Yu, Y. Wu and S. Wang, “An in-place search algorithm for the resource
constrained scheduling problem during high-level synthesis”, ACM TODAES,
15(4), 2010.

H. Steve and B. Forrest, “Automata-based symbolic scheduling for looping DFGs”,
IEEE Trans. on Computers, 50(3):250-267, 2001.

3]

14]

[5]

[6]

7

(8]
[9]

[10]

[11]

[12]

[13]

[14]



