
Spatio-Temporal Properties Analysis for Cyber-Physical Systems

Zhucheng Shao1, Jing Liu*1, Zuohua Ding2, Mingsong Chen1, Ningkang Jiang1

1 Shanghai Keylab of Trustworthy Computing, East China Normal University, Shanghai, China
shaozhucheng@ecnu.cn, jliu@sei.ecnu.edu.cn

2 Center of Math Computing and Software Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China

Abstract—Cyber-Physical Systems (CPSs) integrate comput-
ing, communication and control processes. Close interactions
between the cyber and physical worlds occur in time and space
frequently. Therefore, both temporal and spatial information
should be taken into consideration when specifying properties
of CPS systems for verification. However, how to formulate
properties specifying spatial together with temporal features
is still an unsolved problem in the CPS. In this paper, we
propose an approach to analyze the spatio-temproal properties
of CPS. A spatio-temporal logic is developed, including the
syntax and semantics of the logic. With that logic, properties
of both states, transitions and global systems could be specified,
paving the way for further verification. To show the efficiency
of the approach , a Train Control System is introduced as a
case study. Meanwhile, more details about how to specifying
properties of CPS systems with our method are elaborated.

Keywords-spatio-temporal logic, CPS, property, specification

I. INTRODUCTION

The Cyber-Physical Systems (CPSs) are envisioned as

heterogeneous systems of systems, which involve com-

munication, computation, sensing, and actuating through

heterogeneous and widely distributed physical devices and

computation components [5], [6]. Therefore, CPS requires

close interactions between the cyber and physical worlds

in aspects of both in time and space. There are some

research works on designing and modeling CPS, such as

a CPS event model, which incorporates the spatio-temporal

attributes and observer information into the event definition,

which has been proposed by Tan.Y and et al [4]. An

extended UML statechart, Spatio-Temporal UML statechart

for CPSs (STUML Statechart) has been proposed in [3]. This

statechart is based on the UML Profile for Modeling and

Analysis of Real-time and Embedded (MARTE) systems.

In STUML Statecharts, they unified the logical time and

the chronometric time variables, and extend the traditional

events to CPS events. However, those work does not involve

in formal verification for CPSs. Our work is try to specify

properties of CPSs, as the prerequisite for formal verifica-

tion.

Temporal logic is used to describe any system of rules

and symbolism for representing, and reasoning about propo-

sitions qualified in terms of time. It has found an important

* Corresponding Author

application in formal verification, where it is used to specify

requirements of real-time systems. Propositional temporal

logic (PTL) is one of the best known temporal logics which

has found many applications in CS and AI, e.g. program

verification and specification [1], [10], [19]–[21], distributed

and multi-agent systems [9] or temporal databases [8]. In [1],

Zahar Manna and Amir Pnueli gave a detailed methodology

for the specification, verification, and development of real-

time systems using the tool of temporal logic. However, the

existing approaches can not be used directly to specifying

properties of Cyber-Physical Systems. The reason is the

truth-values of spatial propositions can not be expressed.

Spatial logic is a number of logics suitable for quali-

tative spatial representation and reasoning, such as RCC-

8, BRCC, S4u and other fragments of S4u. The most

expressive spatial formalism of them is S4u, which extends

by S4 with the universal modalities [13]–[15]. S4 was

introduced independently be Orlov, Lewis and Gödel without

any intention about space [11], [12]. In [13]–[15], they gave

an interpretation of topological space. For modeling the

truth-values of spatial propositions, the spatial logic should

be taken into consideration in our constructed logic.

Spatio-temporal logic is the next apparent and natural

step by combining these two kinds of reasoning. There

have been attempts to construct spatio-temporal hybrids.

For example, in [16], Finger and Gabbay introduced a

methodology whereby an arbitrary logic system L can be

enriched with temporal features to create a new system

T (L). The new system is constructed by combining L with

a pure propositional temporal logic T . In [17], Wolter and

Zakharyaschev constructed a spatio-temporal logic, based

on RCC-8 and PTL, intended for qualitative knowledge

representation and reasoning about the behavior of spatial

regions in time. Nevertheless, RCC-8 is a fragment of S4u
and has rather limited expressive power [18]. The syntax

of RCC-8 only contains eight binary predicates. Nor can

RCC-8 represent complex relations between more than two

regions. Following their way, we will construct our spatio-

temporal logic by enriching PTL with S4u.

This paper is organized as follows. Section II gives

the existent propositional logics(e.g. S4, S4u, PTL) for

modeling the space and time. In section III, we develop a

spatio-temporal logic based on S4u and PTL, together with

the syntax and semantics of the logic. Section IV presents

2013 International Conference on Engineering of Complex Computer Systems

978-0-7695-5007-7/13 $26.00 © 2013 IEEE

DOI 10.1109/ICECCS.2013.23

101

the method for specifying properties of states, transitions

and global systems. In section V, we give an application

example of Train Control System, which shows the usage

of our method in specifying properties of CPS systems.

II. SPATIAL LOGIC AND TEMPORAL LOGIC

In this section, we introduce a spatial logic S4u and a

temporal logic PTL as preliminaries.

A. Spatial logic
S4u is the most expressive spatial formalism, which is

generated by extending the proposition modal logic S4 with

the universal and the existential quantifiers �∀ and �∃.

S4 was introduced independently by Orlov (1928), Lewis

(1932), and Gödel(1933) without any intention to reason

about space. The formulas of S4 can be defined as follows:

τ ::= p | τ | τ1 � τ2 | Iτ
where the p are variables. There are two modal operators

denoted by I(It is necessary or provable) and C(It is possible

or consistent). Cτ = Iτ .
Topological space is the intended interpretation for the

logics, which are suitable for qualitative spatial representa-

tion and reasoning. A topological space is a pair I = 〈U, I〉
in which U is a nonempty set, the universe of the space,

and I is the interior operator on U satisfying the standard

Kuratowski axioms:

I(X∩Y) = IX∩IY, IX ⊆ IIX, I ⊆ X, IU = U (X,Y ⊆ U)

The operator dual to I is called the closure operator and

denoted by C: CX = IIX = U−I(U−X), X ⊆ U . Thus,

IX is the interior of a set X , while CX is its closure. X
is called open if X = IX and closed if X = CX . The

complement of an open set is closed and vice versa. The

boundary of a set X is defined as CX − IX . In addition,

X and U −X have the same boundary.
S4 could be interpreted as a topological space: if we

interpret the propositional variables as subsets of a topo-

logical space, the Boolean connectives as the standard set-

theoretic operations, and I and C as the interior and the

closure operators respectively.
In detail, a topological model of S4 is a two-tuples

M = 〈I,U〉, where I = 〈U, I〉 is a topological space and

a valuation U is a mapping of every variable p onto a set

U(p) ⊆ U . Then we can get the following characters:

U(τ) = U−U(τ), U(τ1�τ2) = U(τ1)∩ U(τ2), U(Iτ) = IU(τ)

The spatial formulas of S4u can be defined as follows:

ϕ ::= �∀ τ | ¬ϕ | ϕ1 ∧ ϕ2

where the τ are spatial terms. Given a spatial term τ , we

write �∃τ to say that the part of space represented by τ is

not empty (sc. there is at least one point in τ); �∀ τ means

that τ occupies the whole space (all points belong to τ).

�∃τ = ¬�∀ τ .

B. Temporal logic

The temporal logic, which is intended to introduce, is the

propositional temporal logic PTL. PTL is interpreted in

various flow of time which are modeled by strict linear or-

ders T = 〈W,<〉, where W is a nonempty set of time points

and < is a connected, transitive and irreflexive precedence

relation on W . The set of PTL-formulas is defined in the

following way:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | ϕ1Sϕ2

where p is propositional variable, ¬ and ∧ are the Booleans,

U and S are the binary temporal operators.

PTL-models are two-tuples M = 〈T,U〉, where T =
〈W,<〉 is a flow of time and U is a map associating with

each variable p a set U(p) ⊆ W of time points (where p is

supposed to be true). The truth− relation (M, w) � ϕ is

defined as follows, where (u, v) denotes the open interval

{w ∈W |u < w < v}:
• (M, w) � p iff w ∈ U(p),

• (M, w) � ¬ϕ iff (M, w) � ϕ,

• (M, w) � ϕ1 ∧ ϕ2 iff (M, w) � ϕ1 and (M, w) � ϕ2,

• (M, w) � ϕ1Uϕ2 iff there is v > w such that (M, v) � ϕ2

and (M, u) � ϕ1 for all u ∈ (w, v),
• (M, w) � ϕ1Sϕ2 iff there is v < w such that (M, v) � ϕ2

and (M, u) � ϕ1 for all u ∈ (v, w).

III. SPATIO-TEMPORAL LOGIC

In CPS, the attributes of an event are application-

independent. All CPS events have time, locations and ob-

server attributes. Observer attributes include two kinds of

variables: 1) discrete variables with discrete values indepen-

dent on time.e.g.x = 1, 2, 3. 2) continuous variables which

can be represented as a continuous function dependent on

time(with its initial condition).e.g

F �
{

x = x(t)
x(0) = 0

where t is the current reading of specific clock. Therefore,

the logic, which will be defined, should own the ability of

expression on locations and observer attributes.

The syntax of our spatio-temporal logic is defined as

follows:

τ ::= s | τ | τ1 � τ2 | Iτ
ϕ ::= p | �∀ τ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | ϕ1Sϕ2

where

• p are normal propositional variables e.g. p0, p1, p2, . . .
in relation to observer attributes;

• τ are spatial terms in relation to location; τ is the

complementary terms of τ ;

102

• τ1 � τ2 is the intersection of spatial terms τ1 and τ2,

including any point which belongs to term τ1 and belongs

to term τ2 too;

• Iτ is the modal operator on spatial term τ ;

• ¬ and ∧ are the Booleans;

• �∀ τ means that τ occupies the whole space (all points

belong to τ). We write �∃τ to say that the part of space

represented by τ is not empty (sc. there is at least one

point in τ). Obviously, �∃τ = ¬�∀ τ .

• U and S are the binary temporal operators.

Certainly, the semantics of our spatio-temporal logic can be

interpreted by a topological temporal model. The topological

temporal model is a triple of the form

M = 〈T, I,U〉
where T is a flow of time, I is a topological space and a

valuation U, as an overloaded function, on the one hand, is

a map associating with every spatial term s and every time

point w ∈ W onto a set U(s, w) ⊆ U–the space occupied

by s at moment w; on the other hand, is a map associating

with each normal propositional variable p a set U(p) ⊆ W
of time points.

Then we can get the following characters:

U(τ , w) = U − U(τ, w), U(Iτ, w) = IU(τ, w)

U(τ1 � τ2, w) = U(τ1, w) ∩ U(τ2, w)

The truth-values of spatio-temporal logic are defined as

follows:

• (M, w) � p iff w ∈ U(p),

• (M, w) � �∀τ iff U(τ, w) = U ,

• (M, w) � ¬ϕ iff (M, w) � ϕ,

• (M, w) � ϕ1 ∧ ϕ2 iff (M, w) � ϕ1 and (M, w) � ϕ2,

• (M, w) � ϕ1Uϕ2 iff there is v > w such that (M, v) �
ϕ2 and (M, u) � ϕ1 for all u ∈ (w, v),

• (M, w) � ϕ1Sϕ2 iff there is v < w such that (M, v) �
ϕ2 and (M, u) � ϕ1 for all u ∈ (v, w).

A formula of spatio-temporal logic ϕ is said to be satisfiable

if there exists a topological temporal model M such that

(M, w) � ϕ for some time point w.

Theorem 1. The satisfiability problem for spatio-temporal
logic formulas in topological-temporal models based on
arbitrary flows of time is PSPACE- complete.

For proving the theorem, we can construct a PTL-

formula ϕ∗ by replacing every occurrence of subformu-

las �∀ τ and normal propositional variable p in ϕ with a

fresh propositional variable pτ . Then given a PTL-model

N = 〈T,U〉 for ϕ∗ and a time point w, we get the set

Φw = {�∀ τ |(N, w) � pτ , pτ
.
= �∀ τ}∪{p|(N, w) � pτ , pτ

.
= p}

It is easy to see that if Φw is satisfiable for every w ∈
T in a PTL-model, there is a topological-temporal model

satisfying ϕ based on the flow of time T. Then, we can use

the suitable algorithm [22], [23] for PTL-model to check

satisfiability of Φw, which can be done using polynomial

space.

Proof: Let ϕ be a formula of our spatio-temporal logic.

Based on the general proving frames(in [2], Lemma B.1 or in

[24], Theorem 10.36), we only extend those spatio-temporal

logical formula with the normal propositional variable p.

The corresponding valuation U and topological space on P
are added to the topological-temporal model M = 〈T, I,U〉
and the topological space I = 〈U, I〉. For any two ultrafilter

x1, x2 ∈ V (V is the set of all ultrafilters over U), put

x1Rx2 (R is a quasi-order on V) iff ∀A ⊆ U (IA ∈
x1 → A ∈ x2). Given an Aleksandrov topological-temporal

model R = 〈T,B,Q〉, where B = 〈V,R〉, Q(p, w) = {x ∈
V |U(p, w) ∈ x}. Such that, for all w ∈W and x ∈ V ,

(R, 〈w, x〉) � τ iff U(τ, w) ∈ x,

(R, 〈w, x〉) � p iff U(p, w) ∈ x.

Therefore, it is satisfiable in a topological-temporal model

iff it is satisfiable in an Aleksandrov topological-temporal

model based on the same flow of time T.

With every spatial subformula �∀ τ and normal proposi-

tional variable p, we rewrite them with a fresh propositional

variable pτ . The PTL-formula ϕ∗ could be obtained from ϕ
by replacing all its subformulas of the form �∀ τ and normal

propositional variables p with pτ .

We could claim that ϕ is satisfiable in an Aleksandrov

topological-temporal model on a flow of time T = 〈W,<〉
iff

• there exists a temporal model N = 〈T,U〉 satisfying ϕ∗;
• for every w ∈W , the set

Φw = {�∀ τ |(N, w) � pτ , pτ
.
= �∀ τ}

∪{p|(N, w) � pτ , pτ
.
= p}

is satisfiable.

It is not hard to see that the implication(⇒) is feasible. Con-

versely, suppose that we have a temporal model N = 〈T,U〉,
which could satisfy those conditions above.

Let the union of Φw: Γ =
⋃

w∈W Φw. For every satisfiable

Φ ⊆ Γ, construct a model based on a finite quasi-order

PΦ = 〈VΦ, RΦ〉 and satisfying Φ. Let n =max{|VΦ| : Φ ⊆
Γ,Φ is satisfiable} and P is the disjoint union of n full n-

ary trees of depth n whose nodes are clusters of cardinality

n. It is not hard to see that every PΦ is a p-morphic image

of P. Therefore, every satisfiable Φ ⊆ Γ is satisfied in an

Aleksandrov model based on P.

Thus there is a finite quasi-order P. Then, for every

w ∈ W , we can get 〈P,Uw〉 � Φw for some valuation

Uw. It is obvious that ϕ is satisfied in the Aleksandrov

103

topological-temporal model 〈T,P,U∗〉, where U∗(p, w) =
Uw(p), U

∗(τ, w) = Uw(τ), for every spatial term τ , normal

propositional variable p and every w ∈W .

Finally, we can design a decision procedure for our spaio-

temporal logic, which uses polynomial space , based on

the corresponding nondeterministic PSPACE algorithm [22],

[23] for PTL. We modify it as follows. Firstly the algorithm

constructs a temporal model N = 〈T,U〉 for the formula

ϕ∗. For every time point w ∈ W , it produces a state. In

addition, it checks that whether the set Φw is satisfiable.

Obviously, the extra check can also be performed by a

PSPACE algorithm, which doesn’t increase the complexity

of the complete algorithm.

Therefore, the satisfiability problem for spatio-temporal

logic formulas in topological-temporal models based on

arbitrary flows of time is PSPACE- complete.

In addition, for describing truth values of relations be-

tween spatial terms, there are some basic binary or ternary

predicates on spatial terms in Fig.1, such as

• DC(X,Y)—spatial terms X and Y are disconnected,

DC(X,Y) = ¬�∃(X � Y)

• EC(X,Y)— X and Y are externally connected,

EC(X,Y) =�∃(X � Y) ∧ ¬�∃(IX � IY)
• EQ(X,Y)— X and Y are equal,

EQ(X,Y) = �∀ (X � Y) ∧�∀ (Y � X)

• PO(X,Y)— X and Y overlap partially,

PO(X,Y) =�∃(IX � IY)∧¬�∀ (X � Y)∧¬�∀ (Y � X)

• TPP(X,Y)— X is a tangential proper part of Y ,

TPP (X,Y) = �∀ (X � Y)∧¬�∀ (Y � X)∧¬�∀ (X � IY)

• NTPP(X,Y)— X is a nontangential proper part of Y,

NTPP (X,Y) = �∀ (X � IY) ∧ ¬�∀ (Y � X)

• PO3(X,Y,Z)— spatial terms X, Y and Z overlap partially,

PO3(X,Y, Z) =�∃(IX � IY ∧ IX � IZ ∧ IY � IZ) ∧
¬�∀ (X � Y ∨X � Z ∨ Y � Z ∨

Y � X ∨ Z � X ∨ Z � Y ∨)
• EC3(X,Y,Z)— spatial terms X, Y and Z are externally

connected,

EC3(X,Y, Z) =�∃(X � Y ∧X � Z ∧ Y � Z) ∧
¬�∃(IX � IY ∨ IX � IZ ∨ IY � IZ)

Without doubt, there are many other complex predicates,

which could be expressed using our spatio-temporal logic.

Figure 1. Basic binary or ternary predicates

IV. MODELING CPS AND ANALYZING PROPERTIES

In this section, we will illustrate the use of our spatio-

temporal logic for specifying properties of cyber-physical

systems. To introduce some structure in the extensive set of

program properties, properties are clarified into six types:

safety properties, guarantee properties, obligation properties,

response properties, persistence properties, reactive proper-

ties.

Firstly, we provide the system description language, which

is appropriate for expressing the behavior of system. The

properties of single states and transitions are described at

the same time.

A. CPS state models

A CPS state model is used to describe the behavior

of system. The behavior of a system is abstracted to the

transitions between various states. The states are classified

to several modes satisfying specific constraints. The mode

is one of the basic units of the CPS state model. The

system execution is considered as traveling among these

modes. Time flow only exists in modes, not including any

transitions.

A CPS state model is a tuple [3],

M = (n, V ar, Sub,E, avt, init, inv, elf)

where

• A unique name n which identifies itself. Given a CPS state

model, we use a set Modes to collect all mode names.

• A set of variables V ar is governed by this mode. It in-

cludes a set of discrete variables dV ar, a set of continuous

variables cV ar, a set of clock variables ckV ar and a set

of signals S.

• Sub is a set of names of its immediate submodes. This

attribute reflects the hierarchical structure of the CPS

state model. Given a CPS state model, we define a

global function Children : Mode → 2Mode to repre-

sent the relationship between a mode and its immediate

submodes. The function subjects to the constraints of

the tree structure and every mode has one father or

none. If a mode has no children, it is called an atomic

mode. Otherwise, it is called a composite mode. In each

104

submode (mode), we use a location function to record the

location of these modes. Location : Mode → L where

L = {(x, y, z)|x, y, z ∈ R}. The function Location
records at the current reading of global clock r, the

location situation of all the submodes.

• E is a set of edges connecting its submode in

Sub. The labels marked on edges specify the trigger

events(evt), guard conditions(grd) and actions of a tran-

sition behavior(act).

• avt is called the activity of a mode which is the conjunc-

tion of several Differential Expressions. The activity

specifies the varying patterns of continuous variables de-

pendent on time within the mode. It is the main constraint

to the continuous variables in a mode.

• init is the initial requirement of the mode. It restricts the

variables to the appropriate values which guarantees the

valid execution. The execution flow is permitted to enter

the mode if its initial requirement is satisfied.

• inv is an invariant condition which must hold in this

mode. The invariant specifies the global constraints to the

variables. Whenever the invariant condition is violated, the

execution flow must exit this mode. If there is no valid

transition for the mode, i.e. the inv of target mode is not

satisfied, system will transfer to a halt.

• elf is a special guard condition. When elf is satisfied,

it will trigger a self transition of this mode, and within

this transition an event can be generated. This is used to

describe the situation that some changes are caused by

the changes of continuous activity.

The behavior of a mode is formalized as a labeled transition

system.
A labeled transition system S is a tuple

(States, Labels,→, S0)

where States is a set of states, S0 is the set of initial states

and S0 ⊆ States, Labels is a set of labels which identify

the transitions, →is a ternary relation over States specifying

the transitions between states.
In the CPS state model, a state of a system can be

formalized as a structure [3]

(m, v,�γ, ι)

where

• m ∈ Modes is a mode name. It specifies the execution

flow is currently in mode m.

• v : V ar → V alue is a function representing the evalua-

tion for every state variable of the system. V alue stands

for the evaluation set of V ar. For S → V ar, when a

signal s is generated, we add s into the set S; if signal s
is expended, we drop the s from the set S.

• �γ : the sequence of default physical clock whose reading

is converted by current clock defined within the transition.

• ι : ι�γ,m = Location�γ(m). ι records the location of mode

m with respect to default physical clock �γ. For each

reading in γ, function will record a system location.

In the single states and transitions, there are some equation

or inequation expressions acting as predicates for observer

variables. The predicates on spatial terms could be expressed

as shown in Section III. Spatial terms could be generated

from the location variables by giving a radius as a brief

method or generated by curvilinear equations based on lots

of locations.

• A(x) is an algebraic expression in terms of either an equa-

tion or inequation over algebraic objects. The expression

is satisfied when the evaluation of every discrete variable

makes the equation or inequation hold.

• F (x, dx
dt) is a differential expression with its initial

condition describing the properties involving continuous

variables(x) dependent on time. w(t) is a continuous

variable, the differential expression is satisfied when w(t)
is a solution of F (x, dx

dt) = 0, and acts on the domain of

continuously differentiable function.

• Giving a radius r, for the location ι, we can get the area

occupied by them, named τ = (ι, r). For the location

attributes ι1 and ι2, we can get the area occupied by them,

spatial terms τ1, τ2. The relation between of them can

be described using basic binary predicates or some other

predicates which are expressed by our spatio-temporal

logic, such as PO(τ1, τ2), TPP (τ1, τ2), NTPP (τ1, τ2).

Those predicates are used to describe properties of single

states and transitions in Cyber-Physical systems.

B. Classified properties of CPS
After introducing the method that describes properties of

single states and transitions, based on the system description

language, we proceed to study more complex properties that

can be expressed by formulas.

• Safety Properties

Safety property claims that all positions in a computation

satisfy some properties. We define a basic safety formula

to be a formula of the form

¬(� U ¬ϕ)
where � is the logical constant ’true’, ϕ is a spatio-

temporal logical formula, the same below. A safety for-

mula is any formula that is equivalent to a basic safety

formula. A property that can be specified by a safety

formula is called a safety property.

An example of safety property is the formula

¬(� U ¬DC(X,Y))

which specifies that spatial terms X and Y are disconnect-

ed in all states of the system. For the normal propositional

variables, there is an example

¬(� U ¬(x ≥ 0))

105

which specifies that x is nonnegative in all states of the

system.

• Guarantee Properties

We define a basic guaranteeformula to be a formula of

the form

� U ϕ

This formula claims that at least one position in a compu-

tation state satisfies ϕ. A guarantee formula is any formula

that is equivalent to a basic guarantee formula. A property

that can be specified by a guarantee formula is called a

guarantee property.

An example of guarantee property is the following for-

mula

� U PO(X,Y)

which specifies that spatial terms X and Y overlap

partially in some state of the system.

• Obligation Properties

Some properties cannot be expressed by either safety

or guarantee formulas alone and must be expressed by

a boolean combination of such formula. We therefore

consider the class of such properties.

A basic simple obligation formula is a formula of the form

¬(� U ¬ϕ1) ∨ (� U ϕ2)

where ϕ1 and ϕ2 are spatio-temporal logical formulas.

This formula claims that either ϕ1 holds at all positions

of a computation or ϕ2 holds at some position. A simple

obligation formula is any formula that is equivalent to

a basic simple obligation formula. A property that can

be specified by a simple obligation formula is called a

simple obligation property.

Another normal form of obligation formulas is

(� U ϕ3)→ (� U ϕ2)

which claims that if some state satisfies ϕ3 then some

state satisfies ϕ2. For example, if spatial terms X and

Y are disconnected in the initiation, they will eventually

become external connected. This can be described by the

obligation formulas

(� U DC(X,Y))→ (� U EC(X,Y))

• Response Properties

Usually, response properties ensure that some event hap-

pens infinitely many times. They can express the property

of a system, stating that every stimulus has a response. A

basic response formula is a formula of the form

¬(� U ¬(� U ϕ))

It claims that infinitely many positions in the computa-

tion satisfy ϕ. A response formula is any formula that

is equivalent to a basic response formula. A property

that can be specified by a response formula is called a

response property.

Another form of response formula is

¬(� U ¬(ϕ′ → (� U ϕ)))

The formula claims that every ϕ′-position is followed by

a ϕ-position. Thus, ϕ is a guaranteed response to ϕ′.
For example, considering the following situation, a system

S includes variable v, spatial terms X , Y , and statuses p,

q. In the status p, the variable v is more than 10 noted as

v > 10. Spatial terms X and Y are disconnected noted as

DC(X,Y) in the status q. When each status p appears,

the status q will be occur as a respond to p. This can be

described by the respond formula

¬(� U ¬((v > 10)→ (� U DC(X,Y))))

• Persistence Properties

Usually, persistence formulas are used to describe the

eventual stabilization of some state or past property of

the system. They allow an arbitrary delay until the sta-

bilization occurs, but require that once it occurs it is

continuously maintained.

A basic persistence formula is a form of the form

� U ¬(� U ¬ϕ)
The formula claims that all but finitely many positions

in the computation(all positions from a certain point on)

satisfy ϕ. A persistence formula is any formula that is

equivalent to a basic persistence formula. A property that

can be specified by a persistence formula is called a

persistence property.

Another form of persistence is

¬(� U ¬(ϕSϕ′))

which specifies the eventual stabilization of ϕ as being

caused by ϕ′.
For example, consider a system S with an input variable x
and an out put variable y. Consider a stronger requirement

than respond Properties, by which once y is set to 1 in

response to x > 5, it remain so permanently. The property

can be expressed by the persistence formula

¬(� U ¬((y = 1)S(x > 5)))

• Reactive Properties

A basic simple reactivity formula is a formula formed

by a disjunction of a response formula and a persistence

formula

¬(� U ¬(� U ϕ1)) ∨ (� U ¬(� U ¬ϕ2))

This formula claims that either the computation contains

infinitely many ϕ1-positions or all but finitely many of

its positions are ϕ2-positions. A reactivity formula is any

formula that is equivalent to a basic reactivity formula. A

106

property that can be specified by a reactivity formula is

called a reactivity property.

Usually, we specify such properties using another formula

of the form,

¬(� U ¬(� U ϕ3)) → ¬(� U ¬(� U ϕ1))

which is obviously equivalent to the basic simple reactiv-

ity formula.

This formula claims that if the computation contains

infinitely many ϕ3-positions it must also contain infinitely

ϕ1-positions. It is used to describe a response of a more

complicated type, which does not guarantee a response

to single stimuli. It is only when we have infinitely many

stimuli that we must respond by infinitely many responses.

This is a convenient abstraction to a situation in stimuli,

but not specify a bound on how many stimuli may happen

before the eventual response.

For example, for the variables x, y and spatial terms X , Y ,

if x > 200 ∧ y > 150 exists in infinitely many positions,

DC(X,Y) will also exists in infinitely many positions.

This can be described by the reactive formulas

¬(� U ¬(� U (x > 200 ∧ y > 150))) →
¬(� U ¬(� U DC(X,Y)))

V. CASE STUDY: TRAIN CONTROL SYSTEM

Intelligent Transportation System is the development di-

rection of future transportation system. It integrates Elec-

tronic sensor technology, Data communication transmission

technology, System control technology and Computer tech-

nology to manage the transportation system. It is a real-time,

accurate, efficient and integrated transportation management

system. In this section, we will only illustrate a preliminary

Intelligent Transportation System, an communication based

train control (CBTC) system [7] as a case study.

Communication Based Train Control System is the trend

of development of rail train control system in the future.

The core of CBTC system is Vehicle On Board Controller

(VOBC) subsystem, which mainly achieves three functions

on control: Automatic Train Protection (ATP), Automatic

Train Supervision (ATS) and Automatic Train Operation (A-

TO). ATP is the core subsystem of VOBC system. The train

functions on acceleration, coasting, deceleration, stopping,

and door opening are supervised by the ATP system. But its

most important responsibility is to protect the system from

over speed and avoid crashing, that is what we will discuss

in the follow.

A. Requirements

In this system we focus on two trains, which construct a

global system. The ATP devices of these two trains are used

to protect the train from over speeding and avoid train crash.

Therefore, there are two components: speed supervision unit

(SSU) and distance supervision unit (DSU) in this system.

The behavior and interaction of them can be described as

follows:

• After the train finishes self-detection, ATP device is

initialized.

• At the same time, distance supervision unit is initialized

to observe global events on the location of trains.

• After every fix period, speed-sensor sends current speed

to the speed supervision unit .

• According to the current driving mode and speed curves

sent by wayside equipment, the speed supervision unit

calculates the current limit speed.

• Then, SSU calculates the difference between the limit

speed and the current speed DiffSpeed.

• 1) If DiffSpeed is less than a critical speed

CriticalSpeed and more than zero, SSU will send a

warning message to the Train Operation Display(TOD)

to inform the driver of deceleration. After warning, SSU

will send a normal brake message to Braking Equipment

(BE). Then the BE will apply the normal brake until the

speed is more than CriticalSpeed. All these operations

should be done in 150ms.

2) If DiffSpeed is less than zero, SSU will send an e-

mergency message directly to BE. Then BE will apply the

emergency brake until velocity v = 0. These operations

should be done in 100ms.

• As the trains moving in their tracks, location related events

of trains are observed by distance supervision unit (DSU),

i.e. locations ι1 and ι2, the distance between T1 and T2

Dis.

• 1) If SDU observers that the distance is more than

a emerge distance EmergeDistance and less than a

safe distance SafeDistance, SDU will send a warning

message to the T1 and T2 to inform the driver of de-

celeration. After warning, SDU will send a normal brake

message to Braking Equipment (BE). Then the BE will

apply the normal brake until the distance is more than

SafeDistance. All these operations should be done in

150ms.

2) If SDU observers that the distance is less than

EmergeDistance, SDU will send an emergency message

directly to BE. Then BE will apply the emergency brake

until velocity v=0. These operations should be done in

100ms.

B. Behavior of system

Based on the syntax and semantics of CPS state model ,

we can model the behavior of the Protection functions of AT-

P system. The most important components are Component

SSU, Component DSU and Component BE . We use CPS

state machines to model the behavior of them as follows.

107

Figure 2. Behavior of Speed Supervision Unit

Fig.2 describes the behavior of speed supervision unit.

The unit is responsible for calculating data and sending pro-

tection commands. The unique clock of them is IdealClock.

In the following transition system we all refer the cur-

rent IdealClock as c for convenience. For lack of space,

we only give a transition from BrakingNoRequired to

BrakingRequired as an example.

evt(tr) ∧ grd(tr)= ε ∧ (DiffSpeed < CriticalSpeed),
act(tr) = IdealClock := 0,

When v, c, ι |= grd(tr) and (v, c, ι, v, 0, ι′) |= act(tr),
tr � (BrakingNotRequired, v, c, ι)

→ (BrakingRequired, v, 0, ι′) ,

λ(tr) = (ε,DiffSpeed < CriticalSpeed, IdealClock :=
0).
When braking is required, no matter what kind of braking,

the braking duration should be less than 150 ms. Hence in

this mode

inv(BrakingRequired) = (IdealClock < 150) ∧
(DiffSpeed < CriticalSpeedDif)

Figure 3. Behavior of Distance Supervision Unit

Fig.3 describes the behavior of distance supervision u-

nit(SDU). SDU observers the system events after it has

initialized. It could protect the components in the system

from crashing by capturing the information from events. The

transition system of SDU begins from the initial mode. At

once, observer got an event of train T1 and an event of train

T2 at the same time, where

E1 = (L1;< attr1; t; (x1, y1, z1) >)

E2 = (L2;< attr2; t; (x2, y2, z2) >).

SDU calculates spatial terms occupied by trains based on

two events and ensures the distance between these two trains.

τ1 = ((x1, y1, z1), r1)

τ2 = ((x2, y2, z2), r2)

where r1 and r2 are radiuses, which can be generated based

on the environment. Then spatial terms τ1 and τ2 will be

used to calculate the guard and then SDU will control the

signal generate through the statechart model.

Figure 4. Behavior of component Braking Equipment

Fig.4 describes the Braking Equipment state machine

under the condition of velocity v ≥ 0. We list a transition

for a short specification as follows.
evt(tr) ∧ grd(tr)= Emerge? ∧ TRUE,

act(tr) = IdealClock := 0,

When v, c, ι |= grd(tr) and (v, c, ι, v, 0, ι′) |= act(tr),
tr � (initial1, v, 0, ι)→ (EmergeBraking, v, 0, ι′)
Edge tr is fired immediately after entering submode

Emergency.

inv(EmergeBraking) = (IdealClock < 100) ∧ (v � 0)

avt(EmergeBraking) =

{−fW = W
g · dvdt

v |t=0= v0
.

If f is a solution of equation avt(EmergeBraking), f
satisfies

inv(EmergeBraking)[f/v] = TRUE ∧
avt(EmergeBraking)[f/v, ḟ/v̇] = TRUE.

In the submode EmergeBraking, the continuous vari-

able v is changing when time passes, following the

avt(EmergeBraking). According to Newton second law

of motion, fW is the external force to brake, W
g is the

weight of the train and dv
dt is the acceleration of the train.

108

C. Properties of system

There are some properties in single states or transitions

about speed such as follows.

ϕ1 = diffspeed ≤ 0

ϕ2 = diffspeed ≥ CriticalSpeed

ϕ3 = diffspeed < CriticalSpeed ∧ diffspeed > 0

ϕ3 = ¬ϕ1 ∧ ¬ϕ2

where ϕ1 states that the current speed is more than the

speed limit. The train is in a serious dangerous condition

and need to apply the emergency bark until velocity v = 0;

ϕ2 states that the difference between the speed limit and the

current speed is more than the limited value CriticalSpeed.

When a state or a transition satisfies ϕ2, the train is in

the safe condition; ϕ3 states that the speed is less than

the speed limit and more than the safe speed. So SSU will

send a warning message to TOD and send a normal brake

message to Braking Equipment to apply the normal brake

until satisfying ϕ2.

In the train control system, every train has their own

location (x, y, z) at a certain time instant. Giving a radius

r of the location, we think the location occupied a spatial

term τ = ((x, y, z), r), i.e. r is half of the distance between

two trains.

Therefore, we can specify the properties in single states

or transitions about location as follows.

ϕ4 = DC(τ11, τ21)

ϕ5 = PO(τ12, τ22)

ϕ6 = DC(τ12, τ22) ∧ PO(τ11, τ21)

where

τ11 = ((x1, y1, z1), SafeDistance/2),

τ21 = ((x2, y2, z2), SafeDistance/2),

τ12 = ((x1, y1, z1), EmergeDistance/2),

τ22 = ((x2, y2, z2), EmergeDistance/2),

ϕ4 states that spatial τ11 and τ21 are disconnected. It also

means that the distance of train T1 and T2 is more than

SafeDistance. ϕ5 states that τ12 and τ22 partially overlap.

It also means that the distance of train T1 and T2 is less

than EmergeDistance. Component SDU need to send an

emergency message directly to BE. Then BE applies the

emergency brake until velocity v = 0. ϕ6 states that τ11 and

τ21 partially overlap and τ12 and τ22 are disconnected. It

also means that the distance of train T1 and T2 is less than

SafeDistance and more than EmergeDistance. SDU

should send a warning message to T1 and T2. Then the BE

will apply the normal brake until satisfying ϕ4.

• Safety Properties

In the train control system, SDU must ensure the trains

are not able to collide during all the states. Therefore, we

can get the following system properties.

¬(� U ¬ϕ)
where ϕ = DC(τa, τb), τa = ((x, y, z), 0), τb =
((x′, y′, z′), 0).
The speed v of a train can not more than a limit speed LS
too much. Therefore, there is a safety property on speed

as follows.

¬(� U ¬ϕ′)

where ϕ′ = ε < diffSpeed, ε < 0, which is equivalent

to ε < LS − v.

• Guarantee Properties

In the system, the train should at a safe speed and at a

safe distance in most instances. Therefore, we can get the

following guarantee property.

� U (ϕv ∧ ϕp)

where ϕv = ϕ2, states that the difference between the

speed limit and the current speed is more than the limited

value CriticalSpeed. the train is moving at the safe

speed; ϕp = ϕ4 states that spatial τ11 and τ21 are

disconnected. It also means that the distance of train

T1 and T2 is more than SafeDistance. The trains are

moving with the safe distance.

• Response Properties

As the increase of speed, the braking distance will also be

increased. Therefore, the control system should ensure the

distance of trains longer. Giving a special speed sSpeed
of train T1, the distance of train T1 and T2 (T1 is behind

the T2) is more than dis. Then the spatial terms occupied

by T1 and T2 can be described as follows

τ1 = ((x1, y1, z1), dis/2), τ2 = ((x2, y2, z2), dis/2)

where (xi, yi, zi), i = 1, 2 is the location of train T1

and T2. In the status p, the variable v is more than

sSpeed noted as v > sSpeed. Spatial terms τ1 and τ2 are

disconnected noted as DC(τ1, τ2) in the status q. When

each status p appears, the status q will be occur as a

respond to p. The properties of system can be described

using the following response formula

¬(� U ¬((v > sSpeed)→ (� U DC(τ1, τ2))))

There are more properties can be described using our

spatio-temporal logic. For lack of space, we do not list all

of them in the paper. Though the case study, we only try

to show the usage of our method on specifying properties

of CPS. For the method on how to verify those properties,

we can consider the following three ways: one is using

the existing model checking tools verify those properties

without spatial features; another way is transforming spatial

related proposition to non-spatial proposition and using

the existing model checking tools verify those properties,

109

which are own simple spatial terms(e.g. point set, circle or

rectangle) with limited predicates; the final and the most

efficacious way is developing a new tool, which can support

modeling arbitrary spatial terms and checking the truth-value

of various predicates in the future work.

VI. CONCLUSION

There are logics for expressing spatial or temporal charac-

teristics respectively e.g. S4 , S4u, PTL. For unified mod-

eling spatial and temporal characteristics, a spatio-temporal

logic was constructed based on S4u and PTL semantics.

Then the spatio-temporal logic was used to describe proper-

ties of states, transitions and global systems after modeling

system behavior of CPSs using the CPS state model. Finally,

a Train Control System is employed as a case study to show

a workflow of modeling systems behavior with a CPS state

model and specifying properties of CPS systems with our

spatio-temporal logic.

In the future, the related algorithms on satisfiability prob-

lems should be considered. Moreover, we will work on the

verification and tool support of our spatio-temporal logic.

ACKNOWLEDGMENT

We would like to thank the reviewers for their valu-

able comments. This work is partially supported by the

projects funded by the 973 program 2009CB320702, NS-

FC 61170084, Zuohua Ding is supported by the NSFC

No.61170015. The Shanghai Key Lab is supported by

Shanghai Knowledge Service Platform ZF 1213, NSFC

Creative Team 61021004 and 863 Project 2011AA010101.

REFERENCES

[1] Z. Manna, A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems Specification. Springer-Verlag, 1992.

[2] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, M. Za-
kharyaschev. Combining Spatial and Temporal Logics. Journal
of Artificial Intelligence Research, pages 167-243, 2005.

[3] Z. Liu, J. Liu, J. He, Z. Ding. Spatio-Temporal UML Stat-
echart for Cyber-Physical Systems. IEEE 17th International
Conference on Engineering of Complex Computer Systems,
pages 137-146, 2012.

[4] Y. Tan, M. C. Vuran, S. Goddard, Y. Yu, M. Song, S. Ren. A
concept lattice-based event model for cyber-physical systems.
in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems, pages 50-60, 2010.

[5] E. A. Lee. Cyber-physical systems-are computing founda-
tions adequate. in Position Paper for NSF Workshop On
Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap, pages 1-9, 2006.

[6] E. A. Lee. Cyber Physical Systems: Design Challenges. 11th
IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), pages 363-369, 2008.

[7] IEEE, IEEE Recommended Practice for Communications-
Based Train Control (CBTC) System Design and Functional
Allocations, IEEE Std 1474.3-2008, 2008.

[8] J. Chomicki. Temporal query language: a survey. Temporal
Logic, Lecture Notes in Computer Science, Volume 827, pages
506-534, 1994.

[9] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[10] Z. Manna, A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, 1995.

[11] I. E. Orlov. The calculus of compatibility of propositions.
Mathematics of the USSR, Volume 35, pages 263-286, 1928.

[12] C. I. Lewis, C. H. Langford. Symbolic Logic. Appleton-
Century-Crofts, New York, 1932.

[13] T. Chen. Algebraic postulates and a geometric interpretation
of the Lewis calculus of strict implication. Bulletin of the AMS,
Volume 44, pages 737-744, 1938.

[14] M. H. Stone. Application of the theory of Boolean rings to
general topology. Transactions of the AMS, Volume 41, pages
321-364, 1937.

[15] J. C. C. McKinsey. A solution of the decision problem for
the Lewis systems S2 and S4, with an application to topology.
Journal of Symbolic Logic, Volume 6, Issue 4, pages 117-134,
1941.

[16] M. Finger, D. M. Gabbay. Adding a temporal dimension to
a logic system. Journal of Logic, Language and Information,
Volume 1, Issue 3, pages 203-233, 1992.

[17] F. Wolter, M. Zakharyaschev. Spatio-temporal representa-
tion and reasoning based on RCC-8. Proceedings of the 7th
Conference on Principles of Knowledge Representation and
Reasoning (KR2000), pages 3-14, 2000.

[18] M. J. Egenhofer, J. R. Herring. Categorizing topological
relationships between regions, lines and points in geographic
databases. Tech.rep, University of Maine, 1991.

[19] P. Wolper. Expressing interesting properties of programs in
propositional temporal logic. Proceedings of the 13th ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 184-192, 1986.

[20] M. Zhang, D. Hung and Z. Liu “Verification of Linear
Duration Invariants by Model Checking CTL Properties” UNU-
IIST report 396 , 2008 .

[21] M. Zhang, Z. Liu, C. Morrssets, and A. P. Ravn, ”Design and
verification of fault-tolerant components”, Methods, Models,
and Tools for Fault Tolerance 09, pages 57-84, 2009.

[22] M. Reynolds. The complexity of the temporal logic with until
over general linear time. Journal of Computer and System
Sciences, Volume 66, Issue 2, pages 393-426, 2003.

[23] A. P. Sistla, E. M. Clarke. The complexity of propositional
linear temporal logics. Journal of the ACM, Volume 32, Issue
3, pages 733-749, 1985.

[24] C. Alexander, M. Zakharyaschev. Modal Logic. Clarendon
Press (Oxford and New York), Vol.35 of Oxford Logic Guides,
1997 .

110

