
Bound-Oriented Parallel Pruning Approaches for Efficient
Resource Constrained Scheduling of High-Level Synthesis

Mingsong Chen, Lei Zhou, Geguang Pu and Jifeng He
Shanghai Key Laboratory of Trustworthy Computing

East China Normal Univeristy, Shanghai, China
{mschen,lzhou,ggpu,jifeng}@sei.ecnu.edu.cn

ABSTRACT
As a key step of high-level synthesis (HLS), resource constrained
scheduling (RCS) tries to find an optimal schedule which can dis-
patch all the operations with minimum latency under specific re-
source constraints. Branch-and-bound heuristics are promising to
achieve such an optimal schedule quickly, since they can prune
away large parts of infeasible solution space during the exploration.
However, few of them are based on the prevalent multi-core plat-
forms. Based on the bound information, this paper exploits the par-
allel pruning potentials from different perspectives and proposes
various efficient techniques that can substantially reduce the over-
all RCS search efforts. The experimental results demonstrate that
our approach can reduce the RCS time drastically.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids—
automatic synthesis, optimization

General Terms
Algorithms, Performance

Keywords
Parallel Pruning, Branch-and-Bound, High-Level Synthesis, Re-
source Constrained Scheduling

1. INTRODUCTION
High-level synthesis (HLS) approaches [15] are being gradu-

ally adopted in more and more complex industrial hardware de-
signs [20, 5]. It enables rapid generation of register transfer level
(RTL) implementations from behavior descriptions, while taking
into account performance, cost, area and power requirements [7].

HLS involves three major steps: scheduling, allocation and bind-
ing. For a given behavior-level description, it can be partitioned
into a set of operations organized using the Data Flow Graphs
(DFGs). Based on such intermediate representations, scheduling
refers to the operation assignment to specific control steps (c-steps),
where each c-step can be performed in a single clock cycle in the
hardware. The allocation and binding associate the computation
operations in the DFGs to corresponding hardware components,
such as adders and registers. Generally, the scheduling problem
is a key challenge in HLS, since complex designs need to make
the trade-off among various constraints. To achieve an optimal
solution, a huge number of possible designs need to be explored
and evaluated, which is time-consuming. This paper only focuses
on the HLS scheduling under the resource constraints, termed Re-
source Constrained Scheduling (RCS) [17, 10]. Given a DFG of

a high-level description and a fixed number of hardware resources
with specified delays, RCS tries to find a schedule with minimum
latency to dispatch all the operations.

Essentially, RCS is an NP-Complete combinatorial problem with
constraints of computation precedence and resource limits [1, 25].
Instead of enumerating all possibilities, various heuristics [17, 28]
are proposed to efficiently prune infeasible or inferior schedule can-
didates. Branch-and-bound (B&B) approaches are [10, 17] promis-
ing in pruning the search space. By computing both the lower- and
upper- bounds of the optimal schedule, the B&B methods can ac-
curately estimate the possible c-steps of each operation, and the
fruitless search space (i.e., the schedules whose lengths are larger
than the upper-bound) can be discarded efficiently. Although B&B
approaches are promising in pruning search space, they only inves-
tigate the upper-bound and lower-bound information on a single-
core platform. Since more and more computers are supporting
multi-core and many-core computation, the pruning efficiency can
be improved further by utilizing the parallelism.

Assume that a given HLS scheduling problem needs time t to
achieve an optimal solution. The search time on n identical cores
can be reduced to t/n when the whole search can be fully paral-
lelized. However, this reduction cannot be guaranteed for the B&B
algorithms, since the upper-bound estimation of the optimal sched-
ule changes during the scheduling which strongly affects the search
performance. In B&B approaches, when a smaller upper-bound is
achieved, the pruning rate will be accelerated. In other words, more
inferior schedules will be identified and an optimal result will be
achieved quickly. As an alternative, assume that the search space
can be equally divided and assigned to n cores. If the pruning of
B&B heuristic methods does not take effect in one of the parallel
parts, the overall search will be delayed. In this case, the schedul-
ing time could be much larger than t/n. Adversely, if some part can
find better schedules quickly, and such information can be informed
globally to other search tasks, the overall search performance could
be much smaller than t/n. Therefore, designing an efficient parallel
RCS approach needs to figure out the following two questions.

1. How to efficiently decompose an HLS scheduling task for
parallel processing?

2. What kind of learning can be shared between parallel sub-
tasks to enable faster convergence to an optimal schedule?

To address above two questions, this paper makes two major con-
tributions based on the bound information: i) it proposes promising
space partitioning and bound speculation approaches that can ef-
ficiently decompose the overall search task into a set of parallel
sub-tasks; and ii) it proposes a cooperation framework that shares
the minimum upper-bound information among parallel sub-tasks to
enable efficient pruning.

978-1-4799-1417-3/13/$31.00 ©2013 IEEE

This paper is organized as follows. Section 2 introduces the re-
lated work of HLS scheduling. Section 3 presents the preliminary
notations for HLS scheduling. Besides introducing our parallel
techniques in detail, Section 4 proposes a cooperation framework
that can share the bound information between sub search tasks.
Section 5 presents the experimental results using our parallel prun-
ing approaches. Finally, Section 6 concludes the paper.

2. RELATED WORKS
Unlike non-optimal HLS heuristic methods (e.g., list schedul-

ing [17], force directed scheduling [19]) which can achieve a near-
optimal scheduling with less overhead, this paper focuses on how
to quickly obtain an optimal RCS result in HLS. As an early pop-
ular approach, Integer Linear Programming (ILP) models [12] are
widely used in HLS scheduling. Gebotys and Elmasry [9] proposed
efficient formulas that can reduce the execution time of the ILP
method. In [23], Rim and Jain derived lower-bounds of operations
using a relaxed ILP formulation together with a greedy algorithm.
Langevin and Cerny [14] improved Rim and Jain’s algorithm by
adopting a fast recursive technique for estimating lower-bound per-
formance of data path schedules. However, the number of variables
in ILP models increases very fast with the size of DFGs. Conse-
quently, solving tight resource constraint problems using ILP mod-
els may need an extremely large amount of time.

The execution interval analysis approach is another way to deal
with the HLS scheduling. By relaxing precedence constraints in
designs’ behavioral descriptions, Timmer and Jess [26] proposed a
unified approach of lower-bound functional area and cycle budget
estimations under resource constraints. By calculating the minimal
overlap among different execution intervals of operations, Sharma
and Jain proposed an approach to estimate architecture resources
and performance [24]. In [18], Ohm et al. presented a compre-
hensive technique for lower-bound estimation. In addition to func-
tional resources, their cost model also takes storage resources into
account. Tiruvuri and Chung [27] improved the method in [24] by
efficiently estimating completion time of partial schedules.

To effectively avoid unnecessary search in RCS, Narasimhan and
Ramanujam presented a B&B algorithm called BULB [17] using
both lower-bound and upper-bound lengths of an optimal sched-
ule to prune the search space. It can efficiently prune away the
schedules which are longer than the upper-bound estimation in an
early stage. In [10], Hansen and Singh proposed an efficient B&B
approach to reduce the scheduling time under multi-resource con-
straints. To enhance the performance of B&B approaches, Chen
et al. [3] proposed a level-bound method that can prune the fruit-
less search space which cannot be detected by traditional B&B ap-
proaches. In [28], Wu et al. presented a novel In-Place search
algorithm based on a systematic children-generating algorithm. It
only requires a constant storage space during the traversal of the
search tree. However, so far, most RCS optimization methods only
use a single-core to figure out the solution.

Parallelism is widely investigated in behavior synthesis. In [6],
Cordone et al. presented a methodology that can extract inherent
parallelism from the control and data flow graphs of a sequential
program. To reach optimal solutions in a reasonable time, Cher-
roun and Feautrier [4] tried to exploit parallelism and locality of
a program. They proposed a B&B algorithm, where each evalua-
tion is accelerated by both maximal and greedy clique computation.
However, most of them focused on the parallelism inside behavior
specifications themselves rather than the HLS scheduling. Our ap-
proach proposed in this paper is based on the B&B style BULB ap-
proach [17] with additionally various parallel pruning techniques.
Although parallel B&B approaches have been successfully adopted

in many domains [8], few of them were considered in HLS. To the
best of our knowledge, our approach is the first attempt to utilize
both B&B and parallel pruning approaches based on the bound in-
formation to further reduce the RCS efforts.

3. PRELIMINARY KNOWLEDGE

3.1 Graph-based Notations of RCS Problem
HLS scheduling employs DFGs as its intermediate format. A

DFG is a DAG (Directed Acyclic Graph) G = (V,E), where V de-
notes a set of vertices (nodes) designating functional operations,
and E is a set of directed edges describing operation dependencies
between nodes. G′ = (V ′,E ′) is a sub-graph of G = (V,E) if both
V ′ ⊆ V and E ′ ⊆ E. The sub-graph with vi as its source node is
denoted as G(vi). The sub-graph including nodes vi and all its pre-
decessors is denoted by Gpre(vi). In a DFG, the length of a path
is the sum of operation delays along the path, while the delays are
determined by the types of nodes. The path in G with the longest
length is called its critical path. We use CP(G) to denote the length
of the critical path of G.

For RCS, DFGs are used to describe the dependencies between
operations. Assume that there are M different types of functional
units (e.g., adders and multipliers). We use Σ = {π1, ...,πM} to
denote the set of function types. The number of available functional
unit resources of type π j is denoted by num(π j). In an HLS DFG,
each node vi is assigned with an operation opi, and type(opi) ∈ Σ

indicates the type of functional unit that will be occupied by opi.
We use delay(opi) to denote time delay of opi.

In HLS, the control step (c-step) is the basic time unit. An opera-
tion may occupy a fixed number of continuous c-steps for execution
on corresponding function units. Like scheduling on task graphs, a
feasible scheduling for a DFG tries to dispatch operations under the
constraints of data dependence posed by the DFG and the limited
resources posed by the implementation requirements. A schedule
for a DFG is an assignment function S which dispatches each op-
eration opi at c-step S(opi) ∈ Z+. Let S be a feasible schedule. Its
length le(S) is the largest finished time of all the operations, i.e.,
le(S) = max{S(opi)+delay(opi)−1 | opi ∈V}.

+

+

X

X[1, 5] [1, 6]

[3, 6]

[5, 8]

e1 e2 e3

e4

v1 v2 v3

v4

v5

Resource: 1 +, 1 x; Delay(+) = 1, Delay(x) = 2

X[1, 4]

Figure 1: An example of an HLS DFG

The interval notation [ASAP,ALAP] plays an important role in
RCS. It denotes the earliest and latest possible start time for each
operation respectively. Generally the narrower the interval [ASAP,
ALAP] is, the better RCS performance can be achieved. Before
RCS, the initial interval [ASAP, ALAP] for each operation opi can
be estimated as follows: ASAP(opi) =CP(Gpre(opi))−delay(opi)
+1, and ALAP(opi, le(S)) = le(S)−CP(G(opi))+ 1. It is impor-
tant to note that a feasible schedule S needs to be obtained first
before calculating the ALAP time of operations. As an efficient
method, the list scheduling algorithm [17] can be used to achieve
such a feasible schedule. Since our approach only focuses on enu-
meration of operation c-steps within different [ASAP,ALAP] inter-

vals, it can be applied on various designs, including chaining and
pipelining problems [19].

As an example in Figure 1, the DFG consists of 5 nodes and 4
edges, and we assume that the resource of the target platform in-
cludes only one adder and one multiplication unit. In the DFG,
there are two types of operations, i.e., addition (denoted by the
symbol “+”, with a delay of 1 c-step) and multiplication (denoted
by the symbol “×”, with a delay of 2 c-steps). The notation [m,n]
1 ≤ m ≤ n indicates the execution interval for each operation. Let
(opi,S(opi)) be the pair for the scheduling of operation opi. The
binary relation {(op1,1), (op2,3), (op3,4), (op4,6), (op5,8)} in-
dicates a feasible schedule with length 8 for the DFG in Figure 1.
The binary relation {(op1,1), (op2,1), (op3,3), (op4,5), (op5,7)}
is one of the optimal schedules with length 7.

3.2 BULB Algorithm
The BULB algorithm proposed in [17] is a typical B&B heuris-

tic, which can efficiently prune fruitless search space.

Algorithm 1: BULB Algorithm
Input: i) An HLS DFG D with resource constraints;

ii) Operation set OP = {op1, . . . ,opN} in dispatching order;
iii) Sbs f , which is a feasible schedule for D and its length is ω;
iv) S, which stores the current incomplete schedule;

Output: An optimal schedule and its length for D
BULB(D, N, i, S, Sbs f , ω) begin

if i≤ N then
for step = ASAP(opi) to ALAP(opi) do

if Precedence(opi) ∧ ResAvaible(step, type(opi)) then
1. lower = le(LBound(S));
2. upper = le(UBound(S));
if upper < ω then

3. ω = upper;
4. Sbs f =UBound(S);
if ω == globalLow then

5. Return (Sbs f , ω);
end
6. U pdateALAP();

end
if lower < ω then

/* Dispatch the current operation */
7. S(opi) = step;
8. ResOccupy(step,type(opi),delay(opi));
9. BULB(D,N, i+1,S,Sbs f ,ω);
10. ResRestore(step,type(opi),delay(opi));

end
end

end
end
Return (Sbs f , ω).

end

Algorithm 1 presents the implementation of BULB algorithm in
a recursive way. In this algorithm, Sbs f keeps the best feasible
schedule searched so far with the length ω. S denotes the current
incomplete search schedule; and globalLow indicates the lower-
bound estimation of ω’s length. Initially, Sbs f equals to a feasible
schedule derived using the list scheduling approach. Before an op-
eration can be dispatched, the precedence and resource constraints
of the operation should be checked. In the BULB method, the pro-
cedure Precedence(opi) checks whether all precedents of operation
opi are finished already, and the procedure ResAvailble(step, type)
checks whether the resources required by opi are available at the
given c-step. If all such constraints hold, steps 1 and 2 try to sched-
ule the undetermined operations in two different ways. LBound(S)
[27] dispatches the unscheduled operations by ignoring the resource
constraints, thus it can be used to get the lower-bound length lower
for S. By adopting the list scheduling method [17], UBound(S) can
obtain a feasible schedule for the undecided operations, thus it can
be used to estimate the upper-bound length upper of S. If upper is

smaller than ω, it means that UBound(S) is better than Sbs f . There-
fore, in steps 3 and 4, the Sbs f and ω will be updated. If the upper
equals to globalLow, the whole BULB procedure will be returned
in step 5 since an optimal schedule has been found. Otherwise, step
6 updates the ALAP for each operation, since ω becomes smaller. If
lower is smaller than ω, steps 7-10 will dispatch a new operation,
since it is impossible to determine the relation between S and Sbs f .
Otherwise, if lower is not smaller than ω, the current schedule S
can be pruned. Finally, the algorithm reports an optimal result.

It is important to note that the BULB approach can be easily ex-
tended to solve the scheduling with multiple kinds of constraints
(e.g., area, energy, power, etc.) [10]. For example, when we want
to incorporate power constraints in Figure 1, during the searching
we only need to put a checker for the power availability in the pro-
cedure ResAvaible(step, type(opi) of Algorithm 1. Section 5.2 will
present two examples of such non-functional constraints.

4. PARALLEL PRUNING APPROACHES
From Algorithm 1, we can find that there are two key factors that

strongly affect the performance of B&B RCS approaches: i) the
[ASAP, ALAP] intervals, which are lower-bound and upper-bound
estimations of the start time of operations; and ii) the lower-bound
length and upper-bound lengths (i.e., globalLow and ω in Algo-
rithm 1) of the optimal schedule Sbs f . In fact, based on the defi-
nition, the ALAPs of operations rely on the value of ω = le(Sbs f).
If we can achieve a smaller ω, the size of the search space will be
drastically reduced.

optimal

lower

upper

S

globalLow

ω

bsfS

Figure 2: The analysis of pruning in B&B RCS

Figure 2 analyzes the pruning scenarios of the B&B RCS ap-
proaches. The notations Sbs f and S are the same as the ones de-
fined in Algorithm 1. We use ω to indicate the upper-bound length
of Sbs f . Initially, ω equals to the length of a feasible schedule.
Then ω decreases dynamically when a shorter feasible schedule
is found during the RCS exploration (i.e., steps 3 and 4 in Algo-
rithm 1). globalLow is the lower-bound length of Sbs f , which is
calculated using the approach proposed in [27]. Here, optimal in-
dicates the position of a global optimal schedule, which is in the
range of [globalLow,ω]. The current schedule S, which is an in-
complete enumeration, also has two bound estimations lower and
upper (i.e., steps 1 and 2 in Algorithm 1). In BULB, if lower is
larger than ω, the schedule S can be safely discarded, since optimal
should be in the range [globalLow,ω]. In the other hand, if upper is
smaller than ω, a schedule which is better than Sbs f has been found.
Consequently, the ALAPs of each operation will be updated, and the
whole search space will be dynamically compacted [21].

From the above discussion, we can find that ω plays an important
role in determining the performance of HLS scheduling. A wise
use of ω can not only tighten the [ASAP, ALAP] intervals which in
turn prunes the search space of operations, but also enable the fast
pruning of inferior schedules during the RCS searching. However,
existing B&B RCS approaches do not fully investigate the usage of
ω. Consequently, loose estimations of ω can easily result in large

search space and long search time. Furthermore, current B&B RCS
approaches only employ a single process to handle the “branch”
and “bound” work, which is not time-efficient.

To quickly locate a tight upper-bound for ω, we developed two
novel decomposition heuristics that can search the minimum ω

value in parallel. We also developed a cooperation framework that
can synchronize the smallest searched ω value so far among the
sub-tasks. The following sub-sections will present them in detail.

4.1 Search Task Decomposition
To investigate the potential of the parallel search, this section

presents two efficient approaches to decompose an entire search
work into a set of sub search tasks and run them in parallel in order
to achieve a better search performance.

4.1.1 Search Space Partitioning
During the search of optimal schedule using BULB approach

[17], when the difference between the upper-bound and lower-bound
of the schedule length (i.e., |globalLow−ω|) is small, the RCS can
be easily stuck-at-local-search, i.e., the RCS is trapped in the deep
recursive search. This is because the less frequent update of the
upper-bound length will result in less pruning opportunities.

b) With 4 partitions

optimal result optimal result

core 2

core 3 core 4

core 1

a) Without partitioning

Figure 3: RCS search without and with partitioning

To overcome the stuck-at-local-search problem, we can divide
the search space into several smaller parts. Figure 3 shows an ex-
ample of RCS search with and without the space partitioning. As-
sume that the length of an optimal schedule equals to globalLow;
the search time in Figure 3a) is Tl ; and the search time in Figure 3b)
is Tr. Without partitioning, the RCS search gets stuck at the left part
of the search space because of no reduction of the ω value. Con-
sequently, the search time Tl can be extremely long, since all the
possible schedules should be enumerated. However, if we can di-
vide the search space into 4 small disjoint pieces and check each
of them using a different CPU core, the effect of local search can
be drastically relieved. Assuming that we can get a new ω′ such
that ω′ = globalLow at time Tr in the 4th partition, the whole RCS
search can be terminated since an optimal schedule has been found.
If the search of the small partition terminates quickly, the overall
search can be benefited and the search time can be drastically re-
duced. In other words, we can get Tr << Tl/4. However, before
the scheduling starts, it is hard to obtain a tight lower-bound esti-
mation for the optimal schedule Sbs f such that the length of Sbs f
(i.e., le(Sbs f)) is equal to globalLow. If le(Sbs f) == globalLow
does not hold, the whole search should wait for the termination of
all the sub search tasks.

In our search space partitioning approach, we only divide the op-
erations which are dispatched at the early stage of the search. In our
approach, the operations are dispatched in a non-ascending order
according to the length of the critical paths. As an example shown
in Figure 1, the operations are dispatched in the order <v1, v2, v4,

v3, v5>, since CP(G(v1)) = 5, CP(G(v2)) = 4, CP(G(v4)) = 3,
CP(G(v3)) = 3, and CP(G(v5)) = 1. The [ASAP, ALAP] values
of each operations are as follows: v1 : [1,4], v2 : [1,5], v3 : [1,6],
v4 : [3,6], v5 : [5,8]. Our approach halves the [ASAP,ALAP] in-
tervals of the investigated operations. If there are k operations in-
volved in the partitioning, there will be 2k partitions generated dur-
ing the search. For example, if we handle the operations v1 and v2
only in Figure 1, there are four partitions generated as follows:

1. v1 : [1,2], v2 : [1,3], v3 : [1,6], v4 : [3,6], v5 : [5,8]
2. v1 : [1,2], v2 : [4,5], v3 : [1,6], v4 : [3,6], v5 : [5,8]
3. v1 : [3,4], v2 : [1,3], v3 : [1,6], v4 : [3,6], v5 : [5,8]
4. v1 : [3,4], v2 : [4,5], v3 : [1,6], v4 : [3,6], v5 : [5,8]

Although most present CPUs contain 4-8 cores, it does not re-
quire that the search space should be divided into 4 or 8 partitions.
If the number of partitions is small (e.g., equals to the core num-
ber), during the practical search, we can often find that some cores
are idle since they finish their sub search tasks earlier. This case is
a waste of the computation power. To fully utilize the advantage of
parallelization as well as avoid the stuck-at-local-search further, we
can divide the search space into more partitions. Thanks to the ca-
pability of state-of-the-art parallel schedulers (e.g., OpenMP [2]),
the parallel tasks can be dynamically scheduled on the limited cores
with consideration of the load balance. Generally, if there are more
operations involved in the partitioning, the search performance can
be further improved.

4.1.2 Static Upper-Bound Length Speculation
The estimation of the upper-bound length of the Sbs f plays a key

role in the RCS search. When using the BULB method on a single-
core platform, it is difficult to achieve the “tightest” estimation for
the length of Sbs f . For multi-core platforms, the situation is differ-
ent. In this case, we can speculate the upper-bound length of the
Sbs f to quickly achieve the optimal solution.

U
k

U
i

U
i−1

U
k

Uk−1

U
i−1

b) RCS search with the speculation a) RCS search without the speculation

Figure 4: An illustration of upper-bound length speculation

Before the scheduling starts, we can get an interval [globalLow,ω]
which is an estimation of the Sbs f ’s length. Initially, the value
of ω equals to the length of a feasible schedule. In the context
of multi-core computation, we can speculate the length of Sbs f
in the range of [globalLow,ω]. The basic idea of our specula-
tion method is to divide the interval [globalLow, ω] into K sub-
intervals [globalLow, U1], [globalLow, U2], . . ., [globalLow, UK]
where U1 < U2 < .. .UK , U1 = globalLow and UK = ω. Assume
that the K sub search tasks run on K cores in parallel with spec-
ulation. Due to the different initial estimation of the upper-bound
length of Sbs f , the size of the search space on each core is differ-
ent. If there are enough cores, we can guarantee that there exists
one core that runs with the initial ω that equals to the length of

the optimal schedule. As an example shown in Figure 4, it as-
sumes that Ui−1 ≤ le(Sbs f)≤Ui. Generally the smaller the upper-
bound length can be achieved, the more space will be pruned dur-
ing the search. Therefore, the core running with the estimation
[globalLow,Ui] will quickly achieve the optimal solution.

In our speculation method, the number of the cores determines
the performance of the overall search. Assume that we have n
cores and the range of estimated le(Sbs f) is [globalLow,ω], we
uniformly divide the range into segments with a size of segment =
d(ω−globalLow+1)/(n−1)e. For each CPU core, we assign an
index starting from 1 to n. On the ith core, we estimate its upper-
bound length within the range [globalLow,MIN(globalLow+(i−
1)× segment,ω)].

Unlike the partitioning method proposed in Section 4.1.1, the ter-
mination of the speculation method only needs one of the following
conditions to be satisfied:

1. The condition ω == globalLow holds on some core.
2. The ith core finishes the searching and there is a feasible

solution found in [globalLow,Ui]. And all the searches on
[globalLow,U j] (j < i) have been completed and none of
them find a possible solution smaller than U j.

In the speculation method, the CPU cores compete with each other
to achieve the best solution. If some core has won the search be-
cause one of the above conditions holds, all the other running sub
search tasks will be terminated instantly.

4.1.3 A Hybrid Approach
The partitioning approach can reduce the chance of the stuck-at-

local-search. However, when the global optimal schedule length is
not equal to globalLow, all the partitions need to be checked. In this
case, the performance of the partitioning approach is determined
by the search time of the worst partitions (i.e., partitions with least
pruning). To reduce the search time for each partition, the specula-
tion method can be applied. Due to the orthogonality of the pruning
effects between the partitioning method and the static upper-bound
speculation, they can be combined as a hybrid approach to further
reduce the searching time.

Assume that we have M (M = 2k, where k is the number of oper-
ations involved in partitioning) partitions, and have N upper-bound
speculations in the range of [globalLow,ω], then the hybrid ap-
proach will derive M ∗N sub-tasks. Assume that U1 <U2 < .. .UN
are N upper-bound speculations generated using the approach in
Section 4.1.2, where U1 = globalLow and UN = ω. Since the parti-
tion with the smallest upper-bound estimation can be checked using
least time, we adopt the following strategy to check all the sub-
tasks. In total there are N iterations of the search. In the ith iter-
ation, we check all the partitions with the speculated bound Ui. If
some better schedule in the ith iteration has been found, then the
following iterations will be ignored. Otherwise, if no better sched-
ules are found in the ith iteration, then the globalLow will be safely
set to be Ui for the following iterations. Note that the termination
condition of the hybrid method is the same as the partitioning ap-
proach. Since the number of the sub-tasks using hybrid method is
larger than the partitioning approach for the same partitions, it can
strongly affect the overall search performance. To restrict the num-
ber of the generated sub-tasks in hybrid method, our approach al-
lows at most four speculations in the range [globalLow,ω]. The fol-
lowing formula shows the number of speculations when we adopt
the static speculation strategy on partitions.

o f speculations =


1 globalLow == ω

ω−globalLow+1 ω−globalLow < 4
4 ω−globalLow≥ 4

4.2 Parallel Search Task Cooperation
The search space partitioning approach divides the [ASAP,ALAP]

intervals to avoid the fierce local search. The bound speculation
method tries to achieve the tightest initial ω for the optimal sched-
ule searching, which can lead to a compact initial search space.
Both parallel heuristic methods have a strong relation with the es-
timation of the upper-bound length of the Sbs f (i.e., ω). How-
ever, both methods assume that every sub-task manages its ω inde-
pendently and searches the optimal solution without knowing the
progress of other sub search tasks, which is not time-efficient. In
this sub-section, we propose a cooperation framework which can
exchange useful bound information (i.e., global smallest ω so far)
among sub search tasks. By sharing such information, the overall
search performance can be further reduced.

4.2.1 Minimum ω Synchronization
Assume that we have k cores to run the RCS search using the par-

titioning or the speculation method. During the search, the progress
of the sub search tasks can be different. If one task explores a new
schedule which has the smallest ω among all the sub-tasks, such
information can be propagated to other sub search tasks to reduce
their search space dynamically. This is because that the ALAP val-
ues of operations are determined by the ω. If the ω can be reduced
on-the-fly, the search space can be dynamically shrunk [21].

(Minimum)

Cooperation

query

ω

query

update

Core 1

1
ω

Core 2

2

update update

query

Core k

ω
kω

Figure 5: A framework for minimum ω synchronization

Based on this observation, we developed a cooperation frame-
work that supports the minimum ω synchronization among sub search
tasks. Figure 5 shows the overview of our implementation. The co-
operation unit maintains the global minimum ω value. It supports
the query and update operations of the global minimum ω value.

Algorithm 2: Update and Query Operations of Cooperation
Update(coreID, ω′) begin

omp_set_lock(&lock);
if ω′ < global_min then

winner = coreID;
global_min = ω′;

end
omp_unset_lock(&lock);

end
QueryT() begin

Return global_min;
end
QueryW() begin

Return winner;
end

Algorithm 2 presents the details of the update and query opera-
tions for the cooperation unit in our framework. In this algorithm,
all the sub search tasks compete with each other to be the winner of
the search. The cooperation unit keeps both the current winner (de-
noted by winner) and globally minimum feasible schedule length
(denoted by global_min). To achieve minimum ω synchronization,
all the sub search tasks always monitor the change of the global
minimum ω value by using the procedures QueryT and QueryW,
and dynamically shrink the search space accordingly. When one
sub task finds a schedule with a smaller length than the winner

schedule’s, it will replace the current winner by invoking the Up-
date procedure. To avoid the race condition when updating the win-
ner and global_min information, we adopt the locking mechanism
in the Update procedure.

4.2.2 Dynamic Upper-Bound Length Speculation
Section 4.1.2 presented a static speculation method for the upper-

bound length. This method speculates upper-bound lengths of sched-
ules at the beginning of the search. However, without collaboration
between sub search tasks, the performance of the overall search
using static upper-bound length speculation only depends on the
ith sub-task with the minimum initial range [globalLow, ωi] where
ωi−1 ≤ le(Sbs f) ≤ ωi. Even if the minimum ω synchronization is
allowed between sub search tasks, this statement still holds.

ω ω k+1kGL Opt ω −1kω k−1 ωk−2

dynamic speculation

Figure 6: A scenario where dynamic speculation happens

In fact, during the search with collaboration, some upper-bound
length speculation can be conducted dynamically to further reduce
the overall search time. Figure 6 shows such a scenario. In this
figure, GL denotes the globalLow; Opt indicates the length of an
optimal schedule; and ωi denotes the estimated upper-bound length
for the ith decomposed sub-tasks. Assume that the kth sub search
task finds an up-to-date best schedule with length ωk. If the parti-
tioning approach is employed, then the ω of all the search partitions
can be speculated to be ω−1. The case of upper-bound speculation
method is more subtle, since all the sub-tasks search on the whole
search space. When the kth sub-task finds a better schedule, all the
search of the ith (i > k) task becomes useless. This is because that
the search progress of the ith sub-task falls behind the kth sub-task.
To avoid such situation, we dynamically speculate the upper-bound
length for all the sub-tasks whose index is no smaller than k. For
the kth task, its new upper-bound ω′k can be speculated to be ωk−1.
If the granularity (i.e., the interval [ωk,ωk+1]) of static speculation
is large, proper further speculation on the interval (ωk−1,ωk − 1)
can be performed. To make the dynamic speculation easier, for the
ith sub-tasks whose index is larger than k (i.e., i > k), its new upper-
bound ω′i can be speculated to be Max(ω′k−|i− k|,globalLow).

4.2.3 Implementation of Cooperative Sub Search Tasks
For the method using the search space partitioning, the initial

global minimum ω in the cooperation unit and the initial ω values
of each sub search task are same. During the searching, the only
difference between sub search tasks is the disjoint search space.
Therefore when any sub search task finds a smaller ω than the
queried value, it will try to update the global minimum ω. If the
update succeeds, the task who found the schedule will become the
temporary winner of competition. All the other sub-tasks will be
“notified” synchronously with the new better schedule length, and
the search space of them will be shrunk accordingly. If some win-
ner achieves a schedule whose size equals to globalLow, all the
search process will be terminated and the winner will report the
global optimal schedule which was found in its local area. Other-
wise, the overall search process will be terminated until all the sub
search tasks finish their search.

For the upper-bound speculation method, initially the global min-
imum ω in the cooperation unit is the same as the upper-bound
estimation of the whole search space, which equals to the length
of a feasible schedule. However, unlike the partitioning method,
the initial ω value of each sub search task is different. Therefore,

in the upper-bound speculation method the procedure update can-
not be invoked in the same way as in the search space partitioning
method. In the update procedure, the winner is the search task that
finds the shortest schedule. However, for the sub search tasks in
speculation method, initially ω only has a speculative value (i.e.,
there may not be a schedule of length ω). Therefore the ω value
cannot be directly used to update the winner information. Only
when the sub search task achieves a better schedule whose length
is smaller than or equal to its initial ω, the sub search task is eli-
gible to claim the winner of the search. To impose this constraint
to the decomposed sub search tasks, a Boolean variable change is
introduced to indicate the status of the sub search tasks.

done
complete / ω

4

!changed
3

5

2

 = globalLow /

1

6

ω

 > globalLow

/ = Max(QueryT() − spec, globalLow), UpdateALAP()

ω

ω

ω

ω

/ updateALAP()

ω/ = Max(− 1, globalLow)
QueryT() <

changed

ω ’<= QueryT() / = ’, update(i,)ω ω

Figure 7: Extended state machine for the ith search task

Figure 7 models the behavior of a sub search task. In this fig-
ure, ω indicates the upper-bound length found by the search task so
far, and ω′ indicates the length of a better schedule than the global
minimum ω. There are three states indicating the possible status
of the sub search task. The !changed state is an initial state, which
indicates that no new better schedule has been found since the be-
ginning of the search or since the last update of the change variable.
The changed state denotes that the search task finds a schedule that
is better than the query result. The state done represents the ter-
mination of the search task. There are 6 transitions in this state
machine.

• Transition 1 initializes the search by shrinking the search space based
on the initial ω.

• Transition 2 asserts that the search task finds a schedule which is
better than the queried one.

• Transition 3 updates the global minimum ω and set the ω of current
sub-task to be ω−1, which is a kind of dynamic speculation.

• Transition 4 terminates the search because an optimal schedule has
been found.

• Transition 5 periodically queries the global minimum ω, and shrinks
the search space accordingly. For dynamic speculation. spec equals
to 1 when adopting partitioning method. Otherwise, when adopting
static speculation method, spec equals to |i−QueryW ()|+1.

• Transition 6 asserts that all possible schedules have been explored.

By using this state machine to model the cooperation behavior of
a sub search task, we can quickly achieve a small global minimum
ω during the parallel search, which in turn prunes the search space
effectively. It is important to note the state machine in Figure 7
can be applied on both the search space partitioning method and
upper-bound speculation method for the cooperation among sub
search tasks. Theorem 4.1 proves the correctness of the proposed
cooperation framework.

THEOREM 4.1. In RCS, by using the minimum ω synchroniza-
tion and the sub-tasks modeled in Figure 7, one of the optimal so-
lutions can be found finally.

PROOF. Let le(Soptimal) be the length of the optimal schedules.
If le(Soptimal) equals to globalLow, according to the definition of
globalLow, the search will hit it and abort the whole search safely.

If le(Soptimal)! = globalLow, at any time there should be a min-
imum range [Ui−1,Ui] such that Ui−1 ≤ le(Soptimal) ≤ Ui, where
Ui−1 and Ui are the upper-bound lengths estimated statically or dy-
namically by some sub-tasks. In this case, all the sub-tasks whose
ω (upper-bound length) is smaller than Ui−1 will always stay in
state !changed until the search completes, since no better schedule
can be found to trigger the transition 2. Only the sub-task whose ω

is larger than or equal to le(Soptimal) has the chance to update the
global minimum ω on transition 2. Since the state changed indi-
cates that the sub-task find a global minimum upper-bound length
ω so far, its following job on the unexplored search space is to
find the one whose upper-bound is smaller than ω. Its new upper-
bound estimation ω− 1 can sufficiently guarantee that, if ω− 1 ≥
le(Soptimal), the optimal schedule will not be missed. Therefore, no
matter which decomposition approaches are used, the cooperation
framework can guarantee that one of the optimal solutions can be
found finally.

Algorithm 3: Algorithm for A Parallel Sub Search Task
Input: i) An HLS DFG D with resource constraints;

ii) Operation set OP = {op1, . . . ,opN} in dispatching order;
iii) Search space SP with specific [ASAP,ALAP] values;
iv) Sbs f , which is a feasible schedule and its length is ω for D;
v) S, which stores the current incomplete schedule;

vi) The ID of sub search task; and vii) Parallel strategy T ;
Output: An optimal schedule and its length for D
SubSearch(D, OP, SP, N, i, S, Sbs f , ω, ID, T) begin

1. U pdateALAP();
if i≤ N then

for step = ASAPSP(opi) to ALAPSP(opi) do
if Precedence(opi) ∧ ResAvaible(step, type(opi)) then

/* state !changed */
if QueryT ()< ω then

if T == partitioning then
2. ω = Max(QueryT ()−1,globalLow);

else
3. ω = Max(QueryT ()−1−|ID−
QueryW ()|,globalLow);

end
4. U pdateALAP();

end
5. lower = le(LBound(S));
6. ω′ = upper = le(UBound(S));
if ω′ <= QueryT () then

7. ω = upper;
8. Sbs f =UBound(S);
9. update(ID,ω);
/* state changed */
if ω == globalLow then

/* state done */
10. Terminate(Sbs f ,ω);

end
11. ω = Max(ω−1,globalLow);

end
if lower < Max(ω,globalLow+1) then

12. S(opi) = step;
13. ResOccupy(step,type(opi),delay(opi));
14. SubSearch(D,OP,SP,N, i+1,S,Sbs f ,ω, ID,T);
15. ResRestore(step,type(opi),delay(opi));

end
end

end
end
Return(Sbs f ,ω).

end

Based on the state machine presented in Figure 7, we developed
the Algorithm 3. Assume that the ID of the sub search task is i, and
tasks are running in parallel on different cores. In this algorithm,
step 1 compacts the initial search space based on the initial ω of the
specified sub search task. Steps 2-4 are involved in the !changed
state. When the queried result is smaller than the current ω, if

the partitioning method is applied, step 2 dynamically speculates
the ω with the value Max(QueryT ()− 1, globalLow). If the dy-
namic speculation is applied, step 3 speculates the ω with the value
Max(QueryT ()− 1− |i−QeuryW ()|, globalLow). Step 4 com-
pacts the search space based on the reduced upper-bound length.
Steps 5 and 6 estimate the lower-bound length and upper-bound
length of the optimal schedule based on the dispatched operations.
If the estimated upper-bound length is better than the queried result,
the search task goes into the changed state. Steps 7 and 8 replace
the up-to-date best schedule with the newly found one. Steps 9
tries to update the global minimum ω. In the changed state, if ω

equals to globalLow, step 10 will terminate the overall search. If ω

is larger than globalLow, step 11 will speculate the length of Sbs f
to be Max(ω− 1,globalLow). The steps 12-15 try to recursively
handle the unscheduled operations.

4.2.4 Our Parallel B&B Method
To parallelize the RCS search, we divide the overall search into

k sub-tasks. Assuming that the parallel search adopts the decompo-
sition strategy T . Based on T , the search space is divided into the
search space set SP = {sp1,sp2, . . . ,spk}, and the corresponding
initial upper-bound lengths are based on the upper-bound length
set Ω = {ω1,ω2, . . . ,ωk}.

Algorithm 4: Our Parallel B&B RCS Algorithm
Input: i) An HLS DFG D with resource constraints;

ii) Operation set OP = {op1, . . . ,opN} in dispatching order;
iii) Sbs f , which is a feasible schedule and its length is ω for D;
iv) S, which stores the current incomplete schedule;
v) Search space set SP = {sp1,sp2, . . . ,spk};

vi) Upper-bound length set Ω = {ω1,ω2, . . . ,ωk};
vii) Parallel strategy T ;

Output: An optimal schedule and its length for D
ParaBULB(D, N, S, Sbs f , ω,SP, Ω, T) begin

1. globalLow = le(LBound(S));
2. update(1,ω);
#pragma omp parallel for schedule(dynamic)
for i=1 to k do

3. Task(i) = SubSearch(D,OP,SPi,N,1,S,Sbs f ,ωi, i,T);
if Task(winner).global_min == globalLow then

4.Return (Task(winner).Sbs f , global_min)
end
if T adopts speculation then

if winner = i then
5. Return (Task(winner).Sbs f , global_min);

end
if Task(i).ω > globalLow then

6. globalLow = Task(i).ω+1;
end

end
end
if T adopts partitioning then

7. Return (Task(winner).Sbs f , global_min);
end

end

Algorithm 4 describes our parallel B&B RCS approach. In this
algorithm, step 1 calculates the estimated globalLow. Step 2 initial-
izes the global minimum ω. Then a parallel for loop in OpenMP [2]
format is started to handle the sub search invoked by step 3 in paral-
lel. If in the half way a schedule whose size equals to globalLow is
found, then step 4 will terminate the search and report the optimal
solution. Otherwise, if the task decomposition adopts the upper-
bound speculation strategy and the winner is the sub-task that fin-
ished the searching, then the whole search can be terminated in step
5. If the task is not the winner and its best solution is larger than
globalLow, then step 6 will update the value of globalLow to be
Task(i).ω+1. If the parallel search adopts the search space parti-
tioning method, the search needs to wait for the completion of all
the sub-searches, and then step 7 reports an optimal solution.

5. CASE STUDY
To evaluate the effectiveness of our proposed parallel pruning

approaches, we conducted the experiments with different kinds of
resource constraints. We collected the following benchmarks from
the MediaBench benchmark [16] which is a standard DSP bench-
mark suite: i) ARFilter with 28 nodes and 30 edges, ii) Cosine 1
with 66 nodes and 76 edges, iii) Collapse with 56 nodes and 73
edges, and iv) Feedback with 53 nodes and 50 edges. We also used
the benchmark FDCT with 42 nodes and 52 edges from [11]. By
using the C programming language and OpenMP APIs, we imple-
mented a parallel B&B RCS prototype tool which incorporates our
decomposition approaches and cooperation framework for parallel
pruning. For comparison, we also derived constraint programming
models for the above 5 benchmarks using IBM ILOG CPLEX CP
Optimizer [13], which adopts the parallel branch-and-cut heuristic
method [22] for efficient searching. All the experimental results
were obtained on a Linux sever with 96 Intel Xeon 2.4GHz cores
and 1 TB RAM.

5.1 Results for Functional Constraints
Table 1 presents the experimental results carried out with dif-

ferent functional unit constraints on the 5 benchmarks. In this ex-
periment, we only investigated the parallelism with 8 cores. That
means, when using our B&B approach, all parallel for loops were
running on 8 parallel OpenMP threads. We only took 32 partitions
for the partition-based decomposition method, and all the 32 sub-
tasks were scheduled on the 8 threads dynamically. For the hybrid
approach, there were 128 sub-tasks (32 partitions × 4 speculation
tasks/partition) generated for the scheduling. To avoid the unex-
pected long searching time, we use the notation NA to indicate the
RCS abortion due to the time limit (i.e., 10000 seconds)

In Table 1, column 1 presents the names of the scheduled bench-
marks. Column 2 indicates the resource constraints of adders and
multipliers which are denoted by a and m respectively. Due to
the space limit, we do not show the constraints for other resource
units. Columns 3 and 4 present the initial lower-bound and upper-
bound length estimations of an optimal schedule. Column 5 shows
the length of the optimal schedule achieved finally. It is impor-
tant to note that the upper-bound lengths are achieved using the
list scheduling approach, which is widely used to achieve a near-
optimal result in many commercial tools due to the time efficiency.
Although list scheduling needs less exploration time, the perfor-
mance of the explored schedule cannot be guaranteed (e.g., for the
FDCT design with 2 adders and 2 multipliers, the c-step achieved
using list scheduling is 22, but the optimal c-step is 18). Column 6
presents the parallel solving time using the CPLEX CP Optimizer
on 8 cores. It can be found that by using the commercial constraint
solving engine, only one benchmark item can be solved within time
limit. Column 7 presents the scheduling time using the non-parallel
BULB approach [17]. By combining both the static and dynamic
upper-bound speculation methods, column 8 gives the scheduling
time using our speculation approach. Columns 9 and 10 compare
the scheduling time of partitioning method using different dynamic
upper-bound speculation strategies. The column 9 only does pure
partitioning at the beginning of the search without incorporating the
dynamic speculation of the bounds, while column 10 takes the dy-
namic upper-bound speculation into account. Both of them do not
consider the static speculation. From this table we can find that for
the simple cases (e.g., the benchmark items whose BULB searching
time is less than 1 second), there is no obvious difference between
these two approaches. However, when handling complex cases,
the one with the dynamic speculation will be a better choice. For
example, in the case of Cosine 1 with 2a,2m resources, the parti-

tioning method without dynamic speculation needs 781.34 seconds.
But when using the one with dynamic speculation, it just requires
66.74 seconds. Column 11 gives the results using hybrid method
(with both static and dynamic upper-bound speculations). To high-
light the best scheduling results, in columns 7-11, they are marked
with gray color. The last column shows the improvement of the
marked results over the scheduling time using the BULB method.
From Table 1, it can be found that our approaches can not only sur-
pass the performance of the state-of-the-art parallelized constraint
programming method, but also can improve the non-parallelized
BULB heuristics by several orders of magnitude.

Due to the distinct decomposition strategies, the performance of
the speculation method and the partitioning method is different,
though both of them outperform the BULB approach. As an exam-
ple in ARFilter, the speculation method outperforms the partition-
ing method and hybrid method, since smaller initial upper-bound
estimation can efficiently compact the search space. But in the
Collapse case, the speculation does not work, since the compacted
search space is still large. The partitioning method can quickly
achieve the optimal result in this case, because some optimal results
exist at the boundary of some partition. Based on the synergy of
the upper-bound speculation (static and dynamic) and search space
partitioning heuristics, the hybrid approach can achieve the best
overall performance. From Table 1, we can find that the hybrid
approach outperforms other methods in 11 out of 20 benchmark
items. Especially for the hard benchmark items which need more
than 10 seconds using BULB, the hybrid approach achieves best
results in 8 out of 11 benchmark items. And for the remaining 3
out of 11 hard benchmark items, the performance difference be-
tween the hybrid approach and the optimal approach is within an
acceptable range (i.e., less than 2 times).

ARFilter_1_5 FDCT_2_2 Feedback_4_4 Cosine1_2_2 Collapse_2_2
1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

8 16 32 64 128 256 512 1024

Designs

T
im

e
 (

s
e
c
o
n
d
)

Figure 8: Partitioning method with different number of parti-
tions

ARFilter_1_5 FDCT_2_2 Feedback_4_4 Cosine1_2_2 Collapse_2_2
1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

8 16 32 64 128 256 512 1024

Designs

T
im

e
 (

s
e
c
o
n
d
)

Figure 9: Hybrid method with different number of partitions

For the speculation method, there are at most upper− lower+1
bound estimations. No further decomposition can be done. Hence,
more cores may not bring more gains. However, for the partition-
ing method, if there are n nodes, there can be at most 2n sub-tasks,
which is far more than the speculation method. In this case, all
the available cores can be fully utilized during the search. There-

Table 1: The RCS Results for the Collected Benchmarks with Limited Functional Units

Benchmark CP [13] BULB [17] Spec. (sec.) Partitioning (sec.) Hybrid Max
name # of a, m lower upper le(Sopt.) (sec.) (sec.) sspec+dspec w/o dspec. w/ dspec. part.+spec. speedup

ARFilter

1, 3 14 16 16 NA 0.31 0.02 0.40 0.39 0.39 15.50
1, 4 14 16 16 NA 0.78 0.06 1.00 0.97 1.01 13.00
1, 5 14 16 16 NA 0.77 0.07 0.98 0.98 1.03 11.00
2, 3 14 15 15 1.93 0.01 0.01 0.04 0.03 <0.01 >1.00

FDCT

1, 2 26 27 26 NA 36.91 43.89 <0.01 <0.01 <0.01 > 3691.00
2, 2 18 22 18 NA 201.59 58.31 9.90 6.95 13.99 29.00
2, 3 14 17 14 NA 19.80 6.51 7.24 3.19 2.85 6.95
2, 4 13 15 13 NA 4.07 5.06 2.69 2.22 0.87 4.68
2, 5 13 14 13 NA 0.92 0.99 1.10 1.07 0.04 23.00
3, 4 11 13 11 NA 0.55 0.50 0.78 0.77 0.67 1.10
4, 4 11 12 11 NA 0.12 0.12 0.19 0.18 0.23 1.00

Feedback
4, 4 13 14 13 NA 154.18 176.43 2.92 2.88 3.82 53.53
4, 5 13 15 13 NA NA NA 3.14 3.08 4.50 3246.75
5, 5 13 14 13 NA 4.87 5.50 0.35 0.35 1.51 13.92

Cosine 1
1, 2 28 29 28 NA 107.43 137.36 <0.01 < 0.01 < 0.01 >1.00e4
2, 2 20 23 20 NA 622.83 41.02 781.34 66.74 34.54 18.03
3, 3 16 17 16 NA 0.01 < 0.01 0.05 0.04 0.04 > 1.00

Collapse

2, 1 22 23 22 NA NA NA 0.04 0.03 0.02 > 5.00e5
2, 2 21 23 21 NA NA NA < 0.01 0.02 < 0.01 > 1.00e6
2, 3 21 23 21 NA NA NA <0.01 <0.01 < 0.01 > 1.00e6
2, 4 21 23 21 NA NA NA <0.01 < 0.01 < 0.01 > 1.00e6

* NA means that the scheduling time is larger than 10000 seconds.

fore, in our partitioning method, the number of partitions strongly
affects the scheduling performance. Figure 8 and Figure 9 analyze
the effect of the number of partitions using both the search space
partitioning method (with dynamic upper-bound speculation) and
the hybrid approach. In these figures, we only choose one typi-
cal case from each design in the Table 1. We use the notation de-
sign_m_n to denote the design with the resource of m adders and
n multipliers. Since we use 8 cores for parallelism in the com-
parison, the number of partitions starts from 8. It is important to
note that the results with 8 partitions may have already been im-
proved significantly compared to the BULB approach. From these
figures, we can find that in most cases, the more partitions involved
during the searching, the better RCS performance we can achieve.
However, in practical implementation of our approaches, more par-
titions indicate more sub-tasks. The memory allocation and the
preprocessing for a large set of sub-tasks may cause some over-
head. Interestingly, from Figure 8 and Figure 9, we can find that
there exists a performance jump point with respect to the number
of partitions. At this point, even if more partitions are generated,
the overall scheduling performance cannot be improved drastically
further. Based on the results shown in Figure 8 and Figure 9, we
can find that the number of cores × 8 (i.e., 64) could be used as
such a performance jump point for all these five designs.

The core number (i.e., thread number in OpenMP) also plays
an important role during the search using the partitioning and the
hybrid approaches. Generally, the more cores are used for the par-
allel computation, the more speedup can be achieved. However, as
mentioned in Section 1, this is not true in B&B style parallel RCS.
Figure 10 and Figure 11 show the results with different number of
cores, where the search space of each design is divided into 128
partitions. From these two figures, we can find that in most cases,
when the number of cores is larger than 4, increasing the core num-
ber will be a waste of computing resources, since it cannot drasti-
cally reduce the searching time. To further reduce the scheduling
time, when more cores are available, a wise strategy is to run dis-
tinct parallel pruning approaches individually on different sets of
cores. For example, if there are 12 cores, we can equally divide
them into 3 sets and run each of our approaches on one core set.

If any one of the parallel searches finishes first, all the other two
searches can be safely terminated. By using this strategy, we can
always achieve the largest speedup over BULB as shown in Table 1.

ARFilter_1_5 FDCT_2_2 Feedback_4_4 Cosine1_2_2 Collapse_2_2
1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1 2 4 8 16 32 64

Designs

T
im

e
 (

s
e
c
o
n
d
)

Figure 10: Partitioning method with different number of cores

ARFilter_1_5 FDCT_2_2 Feedback_4_4 Cosine1_2_2 Collapse_2_2
1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1 2 4 8 16 32 64

Designs

T
im

e
 (

s
e
c
o
n
d
)

Figure 11: Hybrid method with different number of cores

5.2 Results for Area and Power Constraints
The power and area are two key factors during the hardware de-

sign. The scheduling under these two constraints can be considered
as a variant of the time-minimum resource scheduling [10]. Since
both area and power can be treated as special kinds of resources,
our proposed approach can also be used to promote the schedul-
ing performance under such non-functional constraints. We did the

experiment with the designs given in Table 1 using these two con-
straints. Due to the space limit, we only present the results for the
FDCT design. All the other designs have similar results.

We evaluate our approach on FDCT design using both power
and area constraints. FDCT only contains four types of functional
operations (i.e., +, -, *, /). Table 2 lists the RCS settings for the
functional units of these four operations.

Table 2: The Settings of the Functional Units in FDCT
Functional Operation Delay Power Energy Area

Unit Class (unit) (unit) (unit) (unit)
Adder + 1 10 10 10

Subtracter - 1 10 10 10
Multiplier * 2 20 40 40

Divider / 2 20 40 40

Figure 12 and Figure 13 show the scheduling time with the area
constraints 140 units and 100 units, respectively. For the parallel
scheduling, we use 8 cores and 32 partitions. In each figure, we use
the notation PX to denote that the power constraint is X. From these
two figures, we can find that our proposed approach (especially the
hybrid approach) can achieve several orders of magnitude improve-
ment over the BULB approach, which is consistent with the results
under the functional unit constraints in Section 5.1.

P60 P80 P100 P120
0

10

20

30

40

50

60

BULB Speculation Partition Partition (Dyn.) Hybrid

Design

T
im

e
 (

se
c o

n
d

)

Figure 12: Scheduling results with an area of 140 units

P40 P50 P60 P70
1E+0

1E+1

1E+2

1E+3

1E+4

BULB Speculation Partition Partition (Dyn.) Hybrid

Design

T
im

e
 (

se
c o

n
d

)

Figure 13: Scheduling results with an area of 100 units

6. CONCLUSIONS
This paper presented various promising bound-oriented paral-

lel pruning approaches for branch-and-bound resource constrained
scheduling during high-level synthesis. It proposed two decompo-
sition approaches: i) the search space partitioning method which
can avoid the stuck-at-local-search problem; and ii) the static and
dynamic upper-bound speculation methods which can restrict the
search space within a small bound. To further reduce the search
complexity, this paper presented a cooperation framework which
can share the search progress information among search tasks. Such
cooperation can enable both space shrinking and dynamic specula-
tion. Therefore, the overall search time under various constraints
can be drastically reduced. Experimental results demonstrated that

our method can outperform existing approaches by several orders
of magnitude.

7. ACKNOWLEDGEMENTS
This work was partially supported by the grants from Natural

Science Foundation of China (No. 61202103, 91118008, 91118007
and 61021004), State High-Tech Development Plan of China (No.
2011AA010101), Open Project of Software/Hardware Co-design
Engineering Research Center of MoE (No. 2013001), and Shang-
hai Knowledge Service Platform Project (No. ZF1213).

8. REFERENCES
[1] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Wglarz. Scheduling

Computer and Manufacturing Processes. Springer-Verlag, 1996.
[2] B. Chapman, G. Jost, and R. Pas. Using OpenMP: Portable Shared Memory

Parallel Programming. The MIT Press, 2007.
[3] M. Chen, S. Huang, G. Pu and P. Mishra. Branch-and-bound style resource

constrained scheduling using efficient structure-aware pruning. In Proceedings
of ISVLSI, 2013. To appear.

[4] H. Cherroun and P. Feautrier. An exact resource constrained-scheduler using
graph coloring technique. In Proceedings of AICCSA, pages 554–561, 2007.

[5] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers, and Z. Zhang.
High-level synthesis for FPGAs: from prototyping to deployment. IEEE TCAD,
30(4):473–491, 2011.

[6] R. Cordone, F. Ferrandi, M. D. Santambrogio, G. Palermo, and D. Sciuto. Using
speculative computation and parallelizing techniques to improve scheduling of
control based designs. In Proceedings of ASP-DAC, pages 898–904, 2006.

[7] P. Coussy, D. Gajski, M. Meredith, and A. Takach. An introduction to
high-level synthesis. Design & Test of Computers, 26(4):8–17, 2009.

[8] T. G. Crainic, B. L. Cun, and C. Roucairol. Chap1: Parallel branch-and-bound
algorithms. In Parallel Combinatorial Optimization, pages 1–28. John Wiley &
Sons Inc., 2006.

[9] C. H. Gebotys and M. I. Elmasry. Global optimization approach for
architectural synthesis. IEEE TCAD, 12(9):1266–1278, 1993.

[10] J. Hansen and M. Singh. A fast branch-and-bound approach to high-level
synthesis of asynchronous systems. In Proceedings of ASYNC, pages 107–116,
2010.

[11] S. Haynal and F. Brewer. Automata-based symbolic scheduling for looping
DFGs. IEEE Transactions on Computers, 50(3):250–267, 2001.

[12] C. T. Hwang, J. H. Lee, and Y. C. Hsu. A formal approach to the scheduling
problem in high level synthesis. IEEE TCAD, 10(4):464–475, 1991.

[13] IBM ILOG CPLEX CP Optimizer V12.3. http://www-01.ibm.com/software/
commerce/optimization/cplex-cp-optimizer/index.html.

[14] M. Langevin and E. Cerny. A recursive technique for computing lower-bound
performance of schedules. In Proceedings of ICCD, pages 16–20, 1993.

[15] G. Martin and G. Smith. High-level synthesis: past, present, and future. Design
& Test of Computers, 26(4):18–25, 2009.

[16] Media Benchmarks. http://express.ece.ucsb.edu/benchmark/.
[17] M. Narasimhan and J. Ramanujam. A fast approach to computing exact

solutions to the resource-constrained scheduling problem. ACM TODAES,
6(4):490–500, 2001.

[18] S. Ohm, F. Kurdahi, and N. Dutt. Comprehensive lower bound estimation from
behavioral descriptions. In Proceedings of ICCAD, pages 182–186, 1994.

[19] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral
synthesis of ASICs. IEEE TCAD, 8(6):661–679, 1989.

[20] N. Pothineni, P. Brisk, P. Ienne, A. Kumar, and K. Paul. A high-level synthesis
flow for custom instruction set extensions for application-specific processors. In
Proceedings of ASP-DAC, pages 707–712, 2010.

[21] G. Pu, J. He, and Z. Qiu. An optimal lower-bound algorithm for the high-level
synthesis scheduling problem. In Proceedings of DDECS, pages 151–152, 2006.

[22] T. K. Ralphs. Chap3: Parallel branch and cut. In Parallel Combinatorial
Optimization, pages 53–101. John Wiley & Sons Inc., 2006.

[23] M. Rim and R. Jain. Lower-bound performance estimation for the high-level
synthesis scheduling problem. IEEE TCAD, 13(4):451–458, 1994.

[24] A. Sharma and R. Jain. Estimating architectural resources and performance for
high-level synthesis applications. IEEE TVLSI, 1(2):175–190, 1993.

[25] J. A. Stankovic, M. Sprui, M. D. Natale, and G. C. Buttazzo. Implications of
classical scheduling results for real-time systems. IEEE Computer,
28(6):15–25, 1995.

[26] A. H. Timmer and J. A. G. Jess. Execution interval analysis under resource
constraints. In Proceedings of ICCAD, pages 454–459, 1993.

[27] G. Tiruvuri and M. Chung. Estimation of lower bounds in scheduling
algorithms for high-level synthesis. ACM TODAES, 3(2):162–180, 1998.

[28] C. Yu, Y. Wu, and S. Wang. An in-place search algorithm for the resource
constrained scheduling problem during high-level synthesis. ACM TODAES,
15(4), 2010.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130826162057
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 795
 335
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 795
 335
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 795
 335
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 795
 335
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

