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ABSTRACT

SAT-based approaches are promising for automated generation of
directed tests. However, due to the state space explosion problem,
these methods do not scale well for complex designs. Although
various heuristics are proposed to address test generation complex-
ity, most of them require expert knowledge regarding the detailed
structure and behavior information of designs explicitly, which lim-
its their usage. This paper proposes promising techniques to derive
profitable learnings from the SAT instance itself. The obtained self-
learnings can efficiently reduce the chance of long distance back-
tracks and improve satisfying assignment convergence rate during
the SAT search. Experimental results demonstrate that our method
can reduce the test generation time by several orders of magnitude.

Categories and Subject Descriptors

B.7.3 [Integrated Circuits]: Reliability and Testing—Test gener-

ation; D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Validation

General Terms

Verification, Algorithms, Experimentation

Keywords

Functional Validation, Test Generation, SAT

1. INTRODUCTION
Under the pressure of increasing complexity and decreasing time-

to-market, functional validation is becoming a major bottleneck in
System-on-Chip (SoC) design. To achieve a coverage goal, current
complex designs need to run trillions of random or constrained-
random tests. Therefore up to 70% of the design development ef-
forts are wasted in the validation process. As an alternative, di-
rected testing methods have been widely investigated, since they
use fewer tests and less simulation time to achieve the required
functional coverage. However, most directed test generation ap-
proaches [12] need human intervention which is laborious and error-
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prone. Therefore it is desired that the process of directed test gen-
eration can be fully automated.

As a promising method, model checking [7, 22] can be used for
automated generation of directed tests. It translates the investigated
design into a formal model and the testing target into a property in
the form of temporal logic. Then a corresponding model checker
searches the state space of the design for a counterexample of the
specified property. Such a counterexample is an assignment of vari-
ables, which can be used as a directed test to trigger the testing tar-
get. However, large designs generally involve complex interactions
among multiple components. Model checking of such designs of-
ten terminates abnormally due to the out of computation or memory
resource. To address the checking complexity, Boolean Satisfiabil-
ity (SAT) based Bounded Model Checking (BMC) [2] is proposed
to restrict the search range to find a shortest path which can falsify
the specified property. Assume that the design is M and the prop-
erty is p. SAT-based BMC unrolls the design and the property k

timesteps using the following Boolean formula:

BMC(M, p,k) = I(s0)∧
k−1∧

i=0

T (si,si+1)∧
k∨

i=0

¬p(si) (1)

It consists of three parts: i) I(s0) represents the initial state, ii)
T (si,si+1) denotes the transition from state si to state si+1, and iii)
p(si) tests whether p holds on state si. Then this formula will be
transformed to Conjunctive Norm Form (CNF) and checked by a
SAT solver. If M has a false state against p within bound k, the
Boolean formula will be evaluated to be satisfiable. The derived
satisfying assignment for this formula can be used as a directed test
against p.

Since the test generation is to find a satisfying assignment for the
checking SAT instance, the performance of SAT searching plays
an important role in determining the test generation time. To en-
able quick SAT search, various heuristics based on CNF struc-
tures (e.g., literal count [13] and variable dependencies [17]) have
been investigated. However, most of them focused on general pur-
pose SAT problems. When the test generation becomes the tar-
get, the potential improvement of SAT search can be further ex-
ploited. Learning-based approaches [3, 6] are promising candidates
to quickly achieve satisfying assignments for SAT instances. It can
be used to increase satisfying assignment convergence rate as well
as to avoid long-distance backtracks during the SAT search. There-
fore it is promising for SAT-based test generation. However, the
majority of learning-based approaches are based on the assumption
that designs should be well formed to facilitate the exploration of
the structure and behavior information, which strongly limits the
applicability of these methods. Unlike most approaches that learn
from external sources, this paper presents our self-learning tech-
niques which can exploit the profitable learnings from the SAT in-
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stance itself to accelerate test generation. It makes two major con-
tributions: i) it investigates the structure of both BMC formulas and
CNF clauses as learning objects to derive profitable self-learnings;
and ii) it proposes three promising partitioning approaches to derive
self-learnings from the SAT instances with low overhead.

The rest of the paper is organized as follows. Section 2 intro-
duces related work on efficient approaches for SAT-based model
checking and directed test generation. Section 3 presents the details
of our self-learning techniques. Section 4 provides the experimen-
tal results. Finally, Section 5 concludes the paper.

2. RELATED WORK
Model checking is being gradually employed for automated gen-

eration of directed tests. Unlike traditional Binary Decision Di-
agram (BDD) based unbounded model checking [7] which easily
suffers from the state space explosion problem, SAT-based BMC
[2] restricts the search within short possible bounds. The limited
search space can reduce BMC validation efforts drastically. There-
fore SAT-based BMC succeeds in validating many real industry
scale designs [1].

SAT solver acts like the engine of the SAT-based BMC. To im-
prove its performance, various learning-based approaches are de-
veloped. Since conflict clauses [14] can avoid repetitive conflicts,
they can be used as a kind of learning. For example, when ver-
ifying a safety property without knowing the minimum bound in
advance, incremental SAT solvers [18] try to check a series of SAT
instances with increasing bounds. During the checking, the conflict
clauses derived from small-bound SAT instances can be forwarded
to large-bound SAT instances as assignment constraints. Such con-
straints can prune the search space. Hence the overall validation
effort can be saved. To exploit more such constraints, Strichman
[18] investigated the transition symmetry indicated in Equation (1).
He found that conflict clauses derived only from transition rela-
tions can be replicated to further reduce the checking time. As
an alternative, decision ordering [13] (e.g., VSIDS [14]) plays an
important role in determining SAT searching performance, since
it can be used to avoid long-distance backtracks when encounter-
ing a conflict [17]. To enable quick checking, Zhang et al. [21]
proposed an approach which combines clever orchestration of de-
cision ordering and learned information in an incremental frame-
work for BMC. By analyzing the correlation among different SAT
instances of a property, Wang et al. [20] used the unsatisfiable core
of previously checked SAT instances to derive the decision ordering
for unchecked SAT instances. Although all the above approaches
can reduce the checking complexity, most of them focus on model
checking rather than test generation.

Learning techniques have also been investigated in SAT-based
verification and test generation. In [3], Chandrasekar and Hsiao
presented an approach to generate tests for path-delay fault mod-
els. By dynamically excluding untestable paths, both static and
dynamic learning can improve the test generation time. In [10], Lu
et al. utilized the circuit topological information and signal corre-
lations to enforce a decision ordering, which enables efficient solv-
ing of circuit-based SAT problems. When checking a large set of
false properties, Chen and Mishra [4] proposed an approach that
can identify the similarity between properties and cluster them to-
gether. By sharing the learnings derived from checked properties,
the test generation time for the unchecked properties can be dras-
tically reduced. However, the first property checking becomes a
major bottleneck due to the lack of learning. To address this issue,
they proposed a property decomposition method [6]. By achiev-
ing learnings from the spatially and temporally decomposed sub-
properties, the test generation time of the original complex property

can be reduced. However, the requirement of clear understanding
of the structure and behavior information of both properties and
designs limits the applicability of these approaches.

This paper is inspired by the intra-property learning approach
presented in [5]. The basic idea of [5] is to halve the checking SAT
instance and solve one half first. By sharing the learning from the
checked half, the test generation time of the original complex prop-
erty can be reduced. However, this method does not fully inves-
tigate other potential learning objects as well as partition heuris-
tics to further reduce the test generation time. To the best of our
knowledge, most existing approaches exploit the learnings from a
set of correlated properties or sub-properties to reduce test genera-
tion time. This paper presents a promising method which can ob-
tain profitable self-learnings from various sources to improve the
test generation time.

3. OUR APPROACH
Since our goal is to efficiently generate direct tests using BMC,

our approach only focuses on safety properties. Although the bound
determination is generally hard in BMC, for directed test genera-
tion, the bound can be estimated based on the structure of designs
[4]. As shown in Equation (1), BMC encodes a property check-
ing problem into a SAT instance. One satisfying assignment of
this SAT instance can be used as a test to activate the property.
Therefore the efficiency of the search for a satisfying assignment
determines the performance of directed test generation.

Ideally, optimal SAT solvers can find a satisfying assignment
without making any decision mistakes. However, such kinds of
solvers do not exist. Currently, most SAT solvers adopt the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [8] which is widely
recognized as an efficient approach in practical searching.

while (1){
run_periodic_functions();
if (decide_next_branch()) {

while (deduce() == CONFLICT) {
blevel = analyze_conflicts();
if(blevel < 0)

return UNSAT;
}

}
else return SAT;

}

Figure 1: DPLL search procedure

Figure 1 shows the skeleton of the DPLL implementation used
in many SAT solvers, such as zChaff [14] and MiniSAT [15]. It
contains three key parts which strongly affect the process of finding
satisfying assignments.

• The function decide_next_branch decides Boolean variable
values based on decision ordering, i.e., the priority of literals.

• The function deduce propagates the effect of the new vari-
able assignment using the implication deduction.

• The function analyze_con f lict removes the effect of vari-
able assignment conflicts using proper backtracks. It marks
the reason of a conflict and creates a constraint (i.e., conflict
clauses) to avoid the same conflict in future processing.

In most DPLL-based approaches, the decision of next branch is
mainly based on the CNF statistics, which cannot properly give a
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satisfying variable assignment prediction in many situations. There-
fore, SAT search performance can be easily deteriorated because of
bad decisions, especially in the following two scenarios: i) when a
large number of implications are involved between an early incor-
rect decision and a late conflict, a costly long distance backtrack

is needed to resolve the conflict, and ii) the satisfying assignment

convergence will be disturbed due to frequent bad decisions. If all
these two scenarios can be avoided during the DPLL search, the
test generation time can be drastically improved.

Design Specification

Negation

SAT Instance

SAT Solver

Learning

Partitioning1

2

3Specification

Validation

Property

Test

Figure 2: The workflow of our method

This paper presents an approach which adopts self-learning tech-
niques to efficiently address the above two issues. Figure 2 shows
the workflow of our method. Firstly, the design specification and
a checking property are encoded into a SAT instance. Then the
SAT instance is divided into small pieces (indicated by 1©) us-
ing our partitioning heuristics. By the local search on these small
pieces of CNF clauses, proper self-learnings (indicated by 2©) can
be achieved with much lower cost compared to the original SAT in-
stance checking. However, such accumulated learnings (indicated
by 3©) are profitable, since it can effectively reduce the chance of
both long-distance backtracks and bad decision ordering predic-
tions when processing the unchecked parts. Therefore the overall
test generation time can be drastically reduced.

3.1 Self-Learning Objects
Due to lack of external learning sources, our approach tries to

exploit learnings from the checking SAT instances to enable quick
test generation. It is required that self-learnings are of high quality
that can efficiently reduce the chance of long-distance backtracks
and bad variable assignment decision as much as possible. Since
conflict clauses can be used as guards to avoid specific variable
assignment, it is a promising candidate of self-learning. As well,
decision ordering heuristics can be utilized as another self-learning
to guide the prediction of satisfying variable assignment. However,
due to the indistinct study objects, the quality and the effectiveness
of self-learnings in traditional SAT search are not well studied. In
the context of test generation, the capabilities of both self-learnings
are limited. If the learning object is set to avoid long-distance back-
tracks and accelerate satisfying assignment convergence, the poten-
tial of both self-learnings can be further exploited. The following
sub-sections present what are good objects for high quality self-
learning derivation.

3.1.1 Learn from the Structure of BMC Formulas

The structure information of BMC formulas is a good source
to achieve self-learnings. Assume that prop is a safety property
for design M and it fails at the nth clock cycle. According to the
formula shown in Equation (1), the SAT instance for prop can be
decomposed into three parts, I = I(s0), T =

∧n−1
i=0 T(si,si+1) and

P =
∨n
i=0¬prop(si). It is important to note that T only constructs

the links between states from s0 to sn without any explicit variable
assignment constraints. When a bad decision is made for a vari-
able, its effect can be propagated along one transition path easily
by deduction. If a large number variables are involved in the de-
duction through the media T , the corresponding backtracking will
be costly, since the rollback will cancel all assignments for these
variables.

Figure 3 shows two examples which can easily cause conflicts
during the SAT search for prop. As shown in Figure 3a), a tran-
sition variable V in clock cycle k (0 < k ≤ n) is determined first.
Through the deduction on other transition variables of T , its effect
will be propagated to either the part of I or the part of P. Since both
I and P indicate strong constraints for state variable assignments,
when the deduction arrives, it often causes an assignment conflict,
i.e., ¬V . If the clock cycle k is far away from the the part of I or P,
a long-distance backtrack to resolve the conflict is inevitable. As
an extreme case shown in Figure 3b), a variable V which belongs
to the nth clock cycle is decided in an early stage. Due to lack of
disturbance from the constraints imposed by transitions, the effect
of the assignment can be propagated easily to the other end, i.e., I.
Before encountering a conflict ¬V , there may be thousands of im-
plications and new decisions made during this deduction process.
Consequently resolving such a conflict is very costly.

T PI

k

TI P

b) A deduction for a property variable

a) A deduction for a transition variable

V
V V

VV

Figure 3: Two cases of variable deduction

From the above examples, we can find that there are two ma-
jor reasons that lead to long-distance backtracks: i) the constraint
imposed by the transition part T is weak; and ii) a bad decision
is made too early but detected too late. To enforce constraints on
the transition part T , one applicable way is to instrument some lo-
cal guards along the transition path, which can block the potential
long-distance backtracks in an early stage. To improve the accuracy
of Boolean variable assignment decisions in the mean time, proper
heuristics should be applied. By our observation, conflict clause
and decision ordering are two promising self-learning candidates
to address the above two problems.

Conventional DPLL-based learnings cannot be directly applied
to solve the long-distance backtracks. Since the learning object in

199



conventional SAT searching is the whole SAT instance, the derived
conflict clauses act like global improvisatory guards to avoid the
second occurrence of the same conflicts. However, it cannot pre-
vent long-distance backtracks in a proactive manner. In addition,
traditional VSIDS-based decision ordering is derived according to
the statistics of CNF clauses without considering BMC structure
information, which results in inaccuracy in decision ordering pre-
diction.

Unlike conventional methods, we set the learning object to a
small part of the checking SAT instance. In our method, the SAT
instance is divided into several smaller parts as described in Section
3.2. By checking each of them against the constraints of both I and
P, some “local” self-learnings can be achieved and applied on the
original SAT instance. The collected conflict clauses can be used as
local guards of transitions at different clock cycle. It can effectively
break down the route of long-distance backtracks. As well, since
the small SAT piece indicates the partial behavior of the original
SAT instance, its satisfying result can be useful to guide the deci-
sion ordering prediction on the original SAT instance. These ideas
may have the effect of improving the convergence rate of the SAT
search.

3.1.2 Learn from the Structure of CNF Clauses

SAT search heuristics based on CNF structure have been widely
investigated. However, most of them focus on deriving decision
ordering based on literal and clause statistics as well as variable
dependence. Few of them utilize the CNF structure to guide the
conflict clause generation to enable efficient search space pruning.
Alternatively, this paper takes the clause size into account to de-
rive high-quality conflict clauses. Since smaller conflict clauses
can prune more search space, the size of a conflict clause deter-
mines its quality. If the derived conflict clauses are of small size,
the test generation time can be improved.

For test generation, a SAT instance may consist of a large set of
CNF clauses. If all the CNF clauses are of small size, generally
the SAT search will be terminated in a reasonable time. This is be-
cause, during the SAT search of small-size clauses, the impact of
a variable decision can be instantly propagated so that variable as-
signment conflicts can be detected quickly. That means, due to the
strict constraints imposed by small clauses, only a few new deci-
sion levels are involved between the level of decisions and the level
of the corresponding conflict. Therefore, the long-distance back-
tracks can be effectively avoided. In addition, since the number of
backtracked levels determines the conflict clause size, the derived
conflict clauses are more likely to be of small size. Consequently,
the SAT search space can be efficiently pruned due to the high qual-
ity of the derive learnings.

However, most practical SAT searches encounter a mixture of
CNF clauses with both large and small size. The existence and
introduction of large clauses can strongly affect the SAT search
performance. The following is an example using a SAT instance
segment:

. . .(y∨ x1 ∨ x2 . . .∨ xk)∧ (¬y∨ x1 ∨ x2 . . .∨ xk ∨ z1 ∨ z2 . . .∨ z j) . . .

When adopting the decision sequence ¬z1, ¬z2, . . ., ¬z j, ¬x1, ¬x2,
. . ., ¬xk, a conflict of y’s assignment happens. To resolve such
conflict, a cancel of k+ j decision levels may be needed, which
involves a large set of determined Boolean variables in these lev-
els. Moreover, to avoid such scenario again, a conflict clause (x1 ∨
x2 . . .∨ xk ∨ z1 ∨ z2 . . .∨ z j) will be generated. Since SAT solvers
are not sensitive to large conflict clauses, the influence of such a
conflict clause is negligible in most scenarios.

Few of existing SAT solvers try to reduce the chance of large

conflict clause generation in a proactive manner. Most of them
drop large conflict clauses on-the-fly during the SAT search, which
is a waste of validation effort. However, learning directly from
the original SAT instance cannot affect the size of conflict clauses.
So we adopt the similar strategy as the heuristic proposed in Sec-
tion 3.1.1. The basic assumption is that a set of small CNF clauses
has a high chance to derive small-size conflict clauses. The small
CNF clauses of a large SAT instance can be grouped and check to-
gether first. The achieved small-size conflict clauses put stricter re-
strictions during the SAT search, which can efficiently avoid long-
distance backtracks. In addition, the satisfying assignment for the
small clause group is also a promising source for deriving decision
ordering for the original SAT instance.

3.2 Learning Oriented Partitioning Heuristics
Deriving self-learnings directly from a SAT instance is costly.

In our approach, a SAT instance is partitioned into small parts and
self-learnings can be achieved from them with low overhead. By
combining the local learnings together, we can economically form
a “global” learning to accelerate the original SAT searching.

3.2.1 Segmental Partitioning

When handling a large SAT instance as a whole, the effect of
a bad decision may propagate to a large range. The interleaving
of a large quantity of implications and decisions will postpone the
conflict detection. Although conflict clauses can prune the search
space, it cannot actively reduce the occurrences of long-distance
backtracks. To reduce the chance of long-distance backtracks, we
developed the segmental partitioning approach which utilizes self-
learnings to prevent long-distance backtracks. By dividing the orig-
inal SAT instance into several segments with equal size and check-
ing each of them separately, we can achieve both local conflict
clause and partial decision ordering based learnings in a short time
due to the small size of the learning objects.

P

x

C’

S=I    T

V

S ’i

V V

Figure 4: Segmental partitioning for self-learning

Figure 4 shows an example of our segmentation based partition-
ing method. Let S′i (1 ≤ i ≤ k) be a segment of I ∧ T such that

Σ
k
i=1S

′
i = (I ∧ T ) and sizeo f (S′i) = sizeo f (S′j) (1 ≤ i, j ≤ k and

i 6= j). Our method derives self-learnings by checking each seg-
ment S′i ∧P, which indicates whether the segment S′i satisfies the
property requirement described by P. Because sizeo f (P) is much
smaller than sizeo f (I∧T ), the sizeo f (S′i ∧P) is also much smaller
than sizeo f (I ∧ T ∧P). Due to the small size of a segment, self-
learnings in the form of conflict clauses and decision orderings can
be derived in a short time. In addition, such learnings are very
beneficial. By enhancing the variable assignment restrictions on
segment S′i, the derived conflict clauses can be used as local guards
to block implications which traverse through this segment. There-
fore many long-distance backtracks in the original SAT instance
can be efficiently blocked. For example, in Figure 4, the conflict
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clause C′ derived from S′i ∧P can be used as a local guard to block
a long-distance backtrack which happens in the original SAT in-
stance checking. Furthermore, since S′i ∧P is a part of I ∧ T ∧P,
the derived satisfying assignment for S′i ∧P may have a large over-
lap with the partial satisfying assignment for I ∧T ∧P. Thus, the
variable assignment for S′i ∧P can be used as a learning to tune the
decision ordering of the original SAT instance.

3.2.2 Incremental Partitioning

Segmental partition focuses on preventing long-distance back-
tracks by establishing local guards during the searching. However,
the self-learnings derived using this method only have a local view,
especially for the decision ordering based learnings.

When composing the satisfying assignments of all segments, con-
flicts arise due to the lack of global view. In addition, the con-
flict clauses derived from the local segments may neglect the long-
distance backtracks which only happen in the global search. There-
fore it is necessary to find a solution which takes both local and
global views into account.

Sk

. . . . . .

1st

2nd

kth

S1

S2

P

V

S=I    T

Figure 5: Incremental partitioning for self-learning

Figure 5 presents our incremental approach which can approxi-
mate the search range gradually to the original SAT instance. As-
sume that I ∧ T is divided into k parts (i.e., s1, s2, . . ., sk) with
same size. The incremental approach does k iterations to achieve
a satisfying assignment for the SAT instance. The first iteration
checks s1 ∧P, which is similar to the segmentation method. How-
ever, the second iteration checks s1 ∧ s2∧P, which doubles the size
of the non-property part. In our incremental method, the learnings
derived from the first iteration are forwarded to help the second
iteration checking. Thus the SAT checking time in the second it-
eration can be drastically reduced. The following iterations deal
with the remaining parts with increasing size in the same way until
the (k−1)th iteration. Finally, the kth iteration checks the original
SAT based on learnings from all previous k−1 iterations. Since the
larger SAT instance checking is based on the smaller SAT instance
checking, the overhead for incremental process is small. However,
the accumulated self-learnings in all iterations can drastically im-
prove the overall SAT checking time.

3.2.3 Clause Size Aware Partitioning

As described in Section 3.1.2, the clause size determines the
quality of the conflict clauses based self-learning. To guarantee
the high quality of the derived self-learning, we develop the clause
size aware partitioning strategy which can make the size of derived
conflict clauses as small as possible. The implementation of clause
size aware partitioning is similar to the incremental partitioning.

The only difference is that the SAT instance is partitioned based on
the size of clauses rather than the temporal order of transitions.

Figure 6 shows our clause size aware partitioning approach. Let
k be the step size chosen to partition I+ T . (I+ T )1..k indicates
the set of clauses in I+T which have a size between 1 and k. In
an incremental order, P+(I+T )1..k is checked first. Based on the
profitable learning from the checked part, checking P+(I+T )1..2k

becomes easier. Assume that the iteration has n steps. In the (n−
1)th step, P+(I+T )1..(n−1)k will be checked. And all the learnings

collected during the (n−1) iterations will be forwarded to help the
checking of I+T +P. Since the derived small conflict clauses are
with strict constraints on variable assignments, it can effectively
prevent the long-distance backtracks. Therefore the overall SAT
performance can be improved.

large

small

1..k

..
..

..

cla
u

se size o
f (I+

T
)

P+(I+T)

P+(I+T)

1..2kP+(I+T)

Figure 6: Clause size aware partitioning for self-learning

3.3 Self-Learning Based Test Generation
Test generation using SAT-based BMC focuses on how to effi-

ciently achieve satisfying assignments quickly. Our test generation
approach tries to exploit self-learnings to boost the SAT solving
using both conflict clauses and decision orderings.

1
st

...... k−1
th th

k

Original SAT Instance

...... n
th

Figure 7: Conflict clause forwarding pattern

In our test generation framework, we collect all the conflict clauses
during the checking iterations for partitions. Figure 7 shows our
conflict clause forwarding pattern. When handling test generation
with n partitions, our method uses an array lBucket[n] of n learn-
ing buckets to store conflict clause base learnings. It is important
to note that the kth (1 < k ≤ n) partition checking is guided by
the learning stored in lBucket[1..k− 1], i.e., the learning derived
from previous k− 1 partitions. Therefore the checking time of the
kth partition can be drastically reduced. Finally all the learnings
collected from each partition checking are applied on the original
SAT instance checking. Compared to the original SAT instance
checking, the time of self-learning derivation process can be neg-
ligible. However, the achieved self-learnings are profitable, which
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can drastically reduce the complexity of the original SAT instance
checking.

Decision ordering is another kind of self-learning to accelerate
test generation in our approach. Since each partition is a subset of
the original SAT instance, it indicates partial behavior of the origi-
nal SAT instance. Therefore, the intermediate satisfying results for
the partitions may have a large overlap with the original SAT in-
stance on satisfying variable assignments. In our approach, under
the help of intermediate satisfying results, the decision ordering of
the unchecked partitions is affected and gradually tuned by the re-
sults of checked partitions. If all the collected information can be
used to derive decision ordering for the original SAT instance, the
test generation time can be drastically reduced.

Let vStat[sz][2] (sz is the number of variables in the original SAT
instance) be a 2-dimensional array which stores the accumulative
results for the checked partitions. Initially the value of all the ele-
ments of vStat[sz][2] are 1. After checking one partition, the value
of vStat will be updated. Assume that the kth partition is the latest
checked part. If the variable vi is involved in the evaluation and its
value is 1, then vStat[i][1] will be increased by 1. If the variable vi
is involved in the evaluation and its value is 0, then vStat[i][2] will
be increased by 1. Otherwise, vStat[i][ ] will remain unchanged.

In this paper, we investigate two different SAT solvers - zChaff
[16] and MiniSAT [15], which adopt different decision ordering
heuristics. zChaff supports the VSIDS heuristic, which calculates
the score (i.e., priority) for each literal l dynamically. Initially, the
score(l) equals to the literal count in the SAT instance. Then during
the SAT search, after a certain number of backtracks, score(l) will
be updated in the period function using the following formula

score(l) = score(l)/2+new_con f lict_count(l) (2)

where new_conflict_count(l) is the number of newly added con-
flict clauses which contain literal l since last update. Based on the
VSIDS framework, our method incorporates the learning informa-
tion from vStat[sz][2]. Instead of replacing the Equation (2), at the
initialization of SAT searching and periodic score decaying, our
method first calculates the literal score using the Equation (2) fol-
lowed by the Equation (3):

score(li) =











max(vi)+ step (vStat[i][1]> vStat[i][2]&li = vi)

or(vStat[i][1]< vStat[i][2]&li = v′i)

score(li) otherwise

(3)
where max(vi) =MAX(score(vi),score(v

′
i)) and the value of step

is determined by the type of partitioning. For segmental partition-
ing, step is set to be 1 since all the partitions have the similar
size. When adopting incremental or clause size aware partitioning
heuristics, the result of later checked partition will be more approx-
imate to a satisfying assignment of the original SAT instance. In
this case, step is set to be k when handling the kth partition, since it
can reflect the importance of later checked partitions.

Similar to zChaff, MiniSAT employs a variant of the VSIDS
heuristic. However, MiniSAT does not support explicit ordering
for literals. It only keeps activity scores for variables and clauses,
which cannot be used to predict the variable polarities (i.e., Boolean
values of variables). Based on the statistics collected in vStat, if a
variable has not been determined yet, its polarity can be predicted
at the beginning and the restart of the search using the following
formula:

polarity(vi) =











true (vStat[i][1]> vStat[i][2])

f alse (vStat[i][1]< vStat[i][2])

skip (vStat[i][1] = vStat[i][2])

(4)

Algorithm 1 describes our self-learnings based test generation
approach. The algorithm has three inputs: i) a formal model of the
design; ii) a specified property and its minimum satisfiable bound;
and iii) the partition strategy and the number of partitions. The first
step initializes the learning buckets lBucket[n] with no learnings
and resets the elements of vStat[sz][2] with all 1s. Step 2 encodes
the property falsification into a SAT instance in CNF format, and
step 3 divides the CNF clauses into n partitions using the specified
partitioning strategy. Then the following iterations try to collect
both conflict clause and decision ordering based learnings. In the
ith iteration, step 4 checks the ith partition based on the accumula-
tive learnings derived from all previous i−1 iterations. Step 5 col-
lects the conflict clause based self-learning derived in ith iteration
and save it in lBucket[i]. Step 6 updates the decision ordering based
learning using vStat[sz][2]. Step 7 checks the original SAT instance
using both the learnings from lBucket[1..n] and vStat[sz][2]. Fi-
nally, the algorithm reports a test tP to falsify the property P.

Algorithm 1: Test Generation using Self-Learnings

Inputs: i) Formal model of the design, D
ii) Property P with a satisfiable bound boundP
iii) Partitioning type type and the number of partitions n

Outputs: A test tP to falsify P

Begin
1. Initialize lBucket[1..n] and vStat[1..sz][ ];
2. CNF = BMC(D, P, boundP);
3. {p1, p2, . . . , pn} = Partition(CNF , type, n);
for i is from 1 to n do

4. (assigni,con fi) = SAT(pi, lBucket[1..i−1], vStat);
5. lBucket[i] = con fi;
6. for j is from 1 to sz do

if (assigni[ j] == 0)
vStat[ j][2]++;

else if (assigni[ j] == 1)
vStat[ j][1]++;

endfor

endfor

7. (tP, ) = SAT(CNF , lBucket[1..n], vStat);
return tP

End

4. EXPERIMENTS
By applying our proposed self-learning techniques, this section

presents the results of the benchmarks from two different sources:
i) a set of SAT instances derived from a VLIW MIPS processor [6]
and a stock exchange system OSES [23]; and ii) a set of SAT in-
stances from 10 buggy variants of 12-pipelined processors named
PIPE-SAT-1.1 [19]. All such SAT instances are pre-determined to
be satisfiable. The first benchmark set is generated by the BMC
tool NuSMV [11]. Although the second benchmark is not gener-
ated by any BMC tools, our approach can also be applied to derive
corresponding tests quickly. To evaluate the applicability of our
approach on unsatisfiable SAT instances, we also conducted the
experiment on a set of bigger variants of the pipe_ooo benchmarks
named PIPE-OOO-UNSAT-1.1 provided in [19]. We modified both
the SAT solvers MiniSAT-2.2 [15] and zChaff [16] to incorporate
our proposed partitioning and learning techniques. In these ex-
periments, all the partitioning heuristics divide SAT instances into
4 partitions. Based on the experimental results of [9], for self-
learnings, we only forward conflict clauses whose size is smaller
than 9. The experimental results are obtained on a Linux PC with
3.3GHz AMD FX-6100 processors and 4 GB RAM.
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Table 1: Test Generation Results for DLX Processor and OSES

SAT MiniSAT[15] Segmental Partitioning ([15]/[16]) Incremental Partitioning ([15]/[16]) C. S. A. Partitioning ([15]/[16]) Max
Instance /zChaff[16] cls var cls+var cls var cls+var cls var cls+var Speedup

DLX-1 1.9/104.5 3.6/72.8 4.3/22.2 3.3/23.0 4.6/133.4 4.9/28.6 3.7/24.6 3.5/23.1 4.3/6.7 3.4/6.2 0.6/16.9

DLX-2 1.5/58.0 3.5/58.5 3.3/20.8 3.1/19.0 4.3/90.0 4.5/19.1 3.8/13.9 3.8/35.3 4.1/9.5 3.2/5.7 0.5/10.2

DLX-3 0.8/32.4 1.7/26.3 2.1/12.7 1.6/15.2 2.1/189.2 2.0/8.7 2.0/11.8 1.9/16.9 2.1/5.0 1.8/3.2 0.5/10.1

DLX-4 0.2/2.1 0.5/2.4 0.6/0.8 0.5/0.5 0.7/1.5 0.6/0.7 0.5/0.6 0.5/1.4 0.5/0.8 0.5/0.7 0.4/4.2

DLX-5 0.6/7.9 1.3/6.1 1.3/4.2 1.3/3.8 1.4/9.6 1.5/4.9 1.2/2.8 1.1/6.6 1.3/2.9 1.0/2.7 0.6/2.9

DLX-6 1.1/101.3 2.6/105.0 3.0/35.5 2.7/31.0 3.2/106.1 2.8/27.2 2.9/25.6 2.6/71.7 2.6/3.7 2.3/2.9 0.5/34.9

OSES-1 0.6/5.5 0.3/0.6 0.4/18.5 0.4/4.2 0.3/6.3 0.4/1.7 0.3/0.8 0.4/1.0 0.4/0.5 0.4/0.7 2.0/11.0

OSES-2 0.6/209.3 0.5/80.2 2.1/200.1 0.9/290.6 2.2/131.1 1.6/177.6 1.1/249.0 1.1/246.6 2.3/73.1 1.0/24.8 1.2/8.4

OSES-3 4.7/121.7 1.7/89.8 9.5/181.5 1.0/238.9 0.9/89.5 2.0/140.8 9.2/269.5 1.9/74.5 1.3/6.7 5.4/35.3 5.2/18.2

OSES-4 0.9/28.8 3.5/47.3 7.9/91.4 4.0/99.6 4.0/39.0 3.4/45.2 1.0/8.7 5.1/36.4 18.6/0.8 5.0/0.9 0.9/32.0

OSES-5 0.1/21.8 0.2/20.2 0.3/8.8 0.3/5.2 0.6/12.0 0.3/3.5 0.4/2.7 0.4/21.1 0.3/0.6 0.3/0.7 0.5/36.3

OSES-6 0.9/53.8 0.3/74.4 0.4/76.5 0.4/67.4 0.7/122.8 0.5/15.2 0.7/78.8 1.2/136.4 1.4/1.7 1.5/2.3 3.0/31.6

4.1 Checking BMC-Based SAT Instances
In this case study, we derive tests to validate two designs. The

first one is a VLIW MIPS processor with five-stage pipelines. The
main testing target is to investigate all the interactions between
pipeline paths (i.e., ALU, DIV, FADD and MUL). The second de-
sign is an on-line stock exchange system (OSES), which mainly
deals with various transactions of customers’ orders (market orders
and limit orders).
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(b) The statistics of canceled variable assignments

Figure 8: Backtrack analysis for Table 1

Table 1 shows the test generation details of both designs using
various self-learning heuristics. Due to the limit of the space, we
only choose 6 typical tests for each design. All the other remaining
tests show the similar results. In Table 1, the first column shows
the index of SAT instances. For columns 2-11, we use the no-
tation MiniSAT/zChaff to denote the test generation time (in sec-
onds) using MiniSAT [15] and zChaff [16] respectively. The col-
umn 2 presents the test generation result without any improvement.

Columns 3-5 present the result of segmental partitioning using dif-
ferent kinds of self-learnings. Column 3 shows the result only using
conflict clauses based learning. Column 4 utilizes decision order-
ing as its single self-learning. Column 5 combines both learnings to
further improve the checking performance. Similarly, columns 6-8
and columns 9-11 indicate the test generation time using incremen-
tal and clause size aware partitioning strategies individually with
different self-learnings. For each SAT instance, we mark the best
test generation time in bold font. It is important to note that all the
results in columns 3-11 include the overhead of learning derivation.
The final column presents the speedup of our methods over unmod-
ified MiniSAT and zChaff solvers respectively using the following
formula:

max_speedup=
column2

MIN(column3, column4, . . . , column11)
(5)

In this benchmark, it can be found that the self-learnings do
not take the effect in MiniSAT searching in most cases, since the
test generation time using MiniSAT without learnings is already
small enough (i.e., smaller than 1 second). The introduction of ex-
tra learnings may degrade the search performance. However, the
self-learnings are still effective for MiniSAT in the complex sce-
narios. For example, in the case of OSES-3, we can achieve 5.2
times improvement with self-learnings. Unlike MiniSAT, zChaff
needs more time to derive tests in this benchmark. It is important
to note that in this case our self-learning techniques can reduce the
test generation time drastically. Especially the clause size aware
partitioning method is best suited to this benchmark. When em-
ploying clause size aware partitioning heuristic, 5 out of 12 SAT
instances can achieve the minimum test generation time by using
decision ordering based self-learning only, and 6 out of 12 SAT in-
stance can achieve the minimum test generation time because of the
synergy of different kinds of learnings. By using our self-learning
approaches in zChaff, a 3-37 times improvement can be achieved.

In the experiment, we assume that a long-distance backtrack in-
volves a rollback with more than 20 decision levels or a cancel of
more than 2000 variable assignments. Since zChaff needs more test
generation time in this benchmark, the effect of our self-learnings
can be observed more easily. Figure 8 analyzes the long-distance
backtrack details for Table 1 using zChaff with different partition-
ing heuristics. For each partitioning method, we only investigated
the composite learning using both conflict clauses and decision or-
derings. For each SAT instance, Figure 8a) counts the conflicts
which require backtracks with more than 20 decision levels, and
Figure 8b) indicates the number of conflicts which involve cancels
of more than 2000 variable assignments. The result shows that,
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Table 2: Test Generation Results for PIPE Processors

SAT MiniSAT[15] Segmental Partitioning ([15]/[16]) Incremental Partitioning ([15]/[16]) C. S. A. Partitioning ([15]/[16]) Max
Instance /zChaff[16] cls var cls+var cls var cls+var cls var cls+var Speedup

PIPE1 12/854 28/488 234/761 190/572 8/507 1/242 1/924 26/844 2/7 2/8 12.0/122.0

PIPE2 1/1090 1/2085 1/421 1/1 11/943 1/174 1/217 1/1124 1/11 1/11 1.0/1090.0

PIPE3 15/524 8/879 169/1185 144/1495 8/692 1/521 1/142 16/707 4/276 4/276 15.0/3.7

PIPE4 6/670 36/77 1055/162 1/12 5/311 NA/4 118/4 18/684 2/237 2/236 6.0/167.5

PIPE5 5/395 2/1345 3/2544 2/2613 9/90 2/595 10/1240 16/401 2/55 4/55 2.5/7.2

PIPE6 1/1 1/98 4/106 11/55 1/2 2/122 4/142 1/1 1/1 1/1 1.0/1.0

PIPE7 13/1117 284/505 322/2069 112/1184 450/681 6/1188 4/162 13/1059 4/38 4/39 3.3/29.4

PIPE8 2/73 6/1 44/69 91/61 7/110 NA/75 NA/76 9/73 6/30 11/30 0.3/73

PIPE9 30/3897 32/2522 2/404 2/395 43/421 3/1295 1/964 6/3874 1/1022 1/1020 30.0/9.9

PIPE10 174/907 112/647 672/973 4/497 111/446 2/139 2/118 17/661 4/148 4/147 87.0/7.7

Table 3: SAT Solving Results for UNSAT Instances of PIPE Processors

SAT MiniSAT[15] Segmental Partitioning ([15]/[16]) Incremental Partitioning ([15]/[16]) C. S. A. Partitioning ([15]/[16]) Max
Instance /zChaff[16] cls var cls+var cls var cls+var cls var cls+var Speedup

pipe2-ooo 0.3/0.06 0.1/0.05 0.04/0.08 0.05/0.09 0.1/0.06 0.1/0.10 0.1/0.10 0.3/0.08 0.1/0.19 0.1/0.13 7.5/1.2

pipe3-ooo 10.7/0.8 12.5/0.9 6.7/0.9 5.9/1.1 11.6/1.1 12.5/1.0 8.0/0.9 8.4/0.8 0.8/1.5 1.2/1.1 13.4/1.0

pipe4-ooo 94/6 142/4 118/3 111/4 114/3 77/4 197/4 50/6 13/5 10/5 9.4/2.0

pipe5-ooo 280/18 356/15 64/15 47/14 498/14 NA/12 1065/11 476/13 51/18 62/21 6.0/1.6

pipe6-ooo 731/69 NA/65 NA/64 NA/61 279/67 NA/50 NA/48 645/66 74/78 70/70 10.4/1.4

pipe7-ooo 1016/266 702/278 NA/285 NA/294 NA/303 NA/199 NA/208 NA/285 NA/304 NA/295 1.4/1.3

pipe8-ooo NA/1107 NA/1330 NA/1083 NA/1104 NA/1387 NA/772 NA/684 NA/1326 NA/1354 NA/1334 1.4/1.6

pipe9-ooo NA/1697 NA/1716 NA/1565 NA/1656 NA/1688 NA/940 NA/989 NA/1497 NA/2005 NA/1913 NA/1.8

compared to the method using zChaff, our self-learning techniques
are effective to reduce the number of long-distance backtracks. Es-
pecially, the clause size aware partitioning approach achieves the
best performance in most cases, which is consistent with the result
presented in Table 1.

4.2 Checking Non-BMC-Based SAT Instances

Our approach can not only accelerate the test generation for SAT
instances generated by BMC tools, but also it can be applied on
SAT instances derived by other tools. Table 2 shows the test gener-
ation results for buggy variants of PIPE processors which are gen-
erated by a non-BMC tool [19]. The table structure is the same as
the Table 1. The notation NA (i.e., INDETERMINATE) in the cells
of the table indicates that the search run out of the specified mem-
ory when using the MiniSAT. In this case study, we can achieve an
up to 87 times improvement using MiniSAT with our self-learning
techniques. By using zChaff, we can achieve an up to 1090 times
improvement, which is consistent with the results presented in Ta-
ble 1. It can be observed that, although it cannot always achieve the
best results, the clause size aware partition with composite learn-
ings (i.e., column 11) outperforms other methods in most cases.

4.3 Discussion
From Section 4.1 and Section 4.2, we can find that MiniSAT

needs less time than zChaff in test generation for both BMC-based
and non-BMC-based methods. Since zChaff needs longer time for
directed test generation, it implicitly needs to handle more long-
distance backtracks during the SAT search. Therefore, we can
clearly observe the effects (up to 1090 times improvement) of self-
learning methods. As a state-of-art SAT solver, MiniSAT-2.2 can
efficiently solve the simple SAT instances with less long-distance
backtracks. But it does not mean that our self-learnings are not ben-
eficial during the MiniSAT searching. In Table 2, we can find that
the more complex the test generation problem is for MiniSAT, the

more speedup can be achieved using our self-learning methods. For
example, the test generation for PIPE10 costs 174 seconds without
learnings, however by using the composite learnings as well as the
incremental partitioning, the modified MiniSAT only needs 2 sec-
onds to achieve the directed tests.

As shown in Section 4.1 and Section 4.2, the clause size aware
partitioning coupled with the composite learning can achieve the
best test generation time generally. However, no matter what SAT
solvers are used for test generation, it is true that no single heuristic
can guarantee the best performance for all cases. Resorting to the
multi-processing capability is a feasible way to address this prob-
lem. Since most present computers have multiple cores, we can
check a SAT instance with different partitioning approaches on dif-
ferent cores using the similar parallel strategy proposed in [9]. It
means that if one of the cores finishes first, all the remaining SAT
searches on the other cores can be terminated safely. In this way,
we can always achieve the best test generation performance.
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Figure 9: The analysis of the number of partitions

In our approach, the number of partitions plays an important role
in determining the test generation time. We re-conducted all the
benchmarks using both MiniSAT and zChaff with different number
of partitions. Figure 9 shows the comparison results. The height
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of each bar in the figure indicates the overall minimum test gener-
ation time (i.e., the best one in all the 9 possible options as shown
in columns 3-11 in Table 1 and Table 2) for all the SAT instances
in the same benchmark. For example, the blue bar in the cluster
DLX-zChaff indicates the overall minimum test generation time for
all the 6 DLX SAT instances using zChaff. It can be found that
MiniSAT generally needs less time than zChaff to derive tests. For
MiniSAT, the approaches using 2 partitions or 4 partitions are good
enough for test generation. And for zChaff, we can find that all
the cases using 2, 4, 6, 8 partitions can achieve a drastic improve-
ment for the three benchmarks. Especially, the methods using 4
partitions show a better performance for these three benchmarks.

Since our approach can effectively reduce long-distance back-
tracks, our self-learning can also be applied in the checking of
UNSAT instances. We applied our self-learning and partition ap-
proaches on the pipe_ooo benchmarks generated by [19]. Here we
only selected 8 out of 14 cases since the unselected ones cannot be
solved by both MiniSAT and zChaff in one hour. Table 3 shows the
checking result. Interestingly, we can find that zChaff outperforms
MiniSAT in this benchmark, and our self-learning techniques can
achieve an up to 13.4 times improvement.

5. CONCLUSIONS
Directed testing is promising for function validation, since cov-

erage requirements can be achieved using fewer tests and less sim-
ulation effort. However, most automatic directed test generation
methods, especially SAT-based approaches, are impeded by the
state space explosion problem as well as the requirement of expert
knowledge. This paper presented an efficient approach which uti-
lizes our self-learning techniques to accelerate test generation. By
exploiting high quality self-learnings to avoid long-distance back-
tracks and improve satisfying assignment convergence rate, the test
generation time using SAT-based methods can be drastically re-
duced. Since our approach does not need the structure and behavior
information of designs, it can be fully automated. The experimen-
tal results using various benchmarks demonstrated the effectiveness
(by several orders of magnitude) of our approach.
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