
Automatic Test Case Generation for UML Activity Diagrams∗

Chen Mingsong, Qiu Xiaokang, and Li Xuandong
State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing, Jiangsu, P.R.China 210093

{chenms,qiuxk}@seg.nju.edu.cn, lxd@nju.edu.cn

ABSTRACT
The test case generation from design specifications is an im-
portant work in testing phase. In this paper, we use UML
activity diagrams as design specifications, and present an au-
tomatic test case generation approach. The approach first
randomly generates abundant test cases for a JAVA pro-
gram under testing. Then, by running the program with
the generated test cases, we can get the corresponding pro-
gram execution traces. Last, by comparing these traces with
the given activity diagram according to the specific coverage
criteria, we can get a reduced test case set which meets the
test adequacy criteria. The approach can also be used to
check the consistency between the program execution traces
and the behavior of UML activity diagrams.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Reliability

Keywords
random test case, instrumentation, UML activity diagram,
test adequacy

1. INTRODUCTION
Testing is an important part of quality assurance in the

software life-cycle. As the complexity and size of software
systems grow, more and more time and manpower are re-
quired for testing. Manual testing is so labor-intensive and

∗Supported by the National Natural Science Founda-
tion of China (No.60425204, No.60233020), the National
Grand Fundamental Research 973 Program of China
(No.2002CB312001), and by the Jiangsu Province Research
Foundation (No.BK2004080).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

error-prone that it is necessary to develop automatic testing
techniques in some circumstance. The testing process con-
sists of three parts: test case generation, test execution, and
test evaluation. Comparing with the other two parts, test
case generation is more challenging and difficult.

The Unified Modeling Language(UML) is a standard vi-
sual modeling language that is designed to specify, visualize,
construct and document the artifacts of software systems [9,
10]. UML provides a number of diagrams to describe par-
ticular aspects of software artifacts. These diagrams can
be classified depending on whether they are intended to de-
scribe structural or behavior aspects of systems. UML ac-
tivity diagrams describe the sequential or concurrent control
flows of activities. They can be used to model the dynamic
aspects of a group of objects, or the control flow of an op-
eration. Also, UML activity diagrams can be used as the
models to driven the test case generation.

In this paper, we use UML activity diagrams as design
specifications, and consider the automatic approach to test
case generation. Instead of deriving test cases from the UML
activity diagram directly, we present an indirect approach
which selects the test cases from the set of the randomly
generated test case according to a given activity diagram.
By using the method similar to [6], we first randomly gen-
erate abundant random test cases. Then, by running the
program with these test cases, we can get the corresponding
program execution traces. Last, by comparing these traces
with the activity diagram according to the specific coverage
criteria, we can prune some redundant test cases and get a
reduced test case set which meets the test adequacy crite-
ria. The approach can also be used to check the consistency
between the program execution traces and the behavior of
UML activity diagrams.

The paper is organized as follows. In next section, we
introduce UML activity diagrams and related concepts. In
section 3, we review the definition of some basic test ade-
quacy criteria, and present three test adequacy criteria for
UML activity diagrams. In section 4, the approach to au-
tomatic test case generation for UML activity diagrams is
described in detail. The related works and some conclusions
are given in the last section.

2. UML ACTIVITY DIAGRAMS

2.1 Notations
Different from the other diagrams in UML, an activity di-

agram extracts the core idea from the flow charts, the state
transition graphs, and Petri nets[8, 9]. The recent major re-

2

vision of the UML2.0 has introduced the significant changes
and additions[5]. Compared with the UML1.x, the concrete
syntax of activity diagrams remains mostly the same. But
the abstract syntax and semantics have changed drastically.
While in UML1.x, the activity diagrams have been defined
as a kind of state machine diagrams. Now, there is no con-
nection between the two, and the meaning of activity dia-
grams is being explained in terms of Petri net notions like
the token, flow, edge weight etc. In this paper, according
to UML2.0[5], we adopt the Petri net-like semantics of the
activity diagrams.

Figure 1: An Example of Activity Diagram

The syntax of the activity diagrams is similar to the orig-
inal. The model elements consist of nodes, edges and swim
lane. The nodes represent processes or process control, in-
cluding action states, activity states, decisions, forks, joins,
objects, signal senders and receivers. The edges represent
the occurring sequence of activities, objects involving the
activity, including control flows, message flows and signal
flows. Activity states and action states are denoted with
round cornered boxes. Transitions are shown as arrows.
Branches are shown as diamonds with one incoming arrow
and multiple outgoing arrows each labeled with a boolean
expression to be satisfied to choose the branch. Joins or
forks are shown by multiple arrows entering or leaving the
synchronization bar. Swim lanes represent the supplier of
activities. Figure 1 shows an activity diagram which consists
of most elements to describe an operation.

For any activity diagrams considered in this paper, one
activity is corresponding with the execution of one member
function, and one swimming lane is corresponding with one
class. Since we mainly focus on extracting essential informa-
tion to derive test cases, we formalize an activity diagram
as follows.

Definition 1. An activity diagram is a six-tuple D = (A, T,
F, C, aI , aF) where

• A = {a1, a2, . . . , am} is a finite set of activity states;

• T = {τ1, τ2, . . . , τn} is a finite set of completion tran-
sitions;

• C = {c1, c2, . . . , cn} is a finite set of guard conditions,
and ci is in correspondence with τi, Con is a mapping
from τi to ci so that Con(τi) = ci;

• F ⊆ {A × C × T} ∪ {T × C × A} is the flow relation
between the activities and transitions;

• aI ∈ A is the initial activity state, and aF ∈ A is the
final activity state, there is only one transition τ ∈ T
and corresponding c ∈ C such that (aI , c, τ) ∈ F , and
(τ ′, c′, aI) /∈ F and (aF , c′, τ ′) /∈ F for any τ ′ ∈ T and
corresponding c′ = Con(τ ′). �

At any time, the current state(denoted by CS) of an ac-
tivity diagram is represented by a set of activity states.

Definition 2. Let D = (A,T, F, C, aI , aF) be an activity
diagram. The current state CS of D is a subset of A. For
any transition τ ∈ T , let

• •τ , τ• denote the preset and postset of τ respectively,
then •τ = {a | (a, c, τ) ∈ F, Con(τ) = c, a ∈ A} and
τ• = {a | (τ, c, a) ∈ F, Con(τ) = c, a ∈ A};

• enabled(CS) denotes the set of transitions start from
CS, then enabled(CS) = {τ | •τ ⊆ CS are all com-
pleted and Con(τ) is satisfied }, for any τ ∈ T , if
τ /∈ enabled(CS), then τ ∈ disenabled(CS);

• firable(CS) denotes the set of only firable transitions
from CS at certain moment, then firable(CS)={τ | τ ∈
enabled(CS) and (CS−•τ)∩τ• = ∅}, and after some τ
was fired, the new current state CS′ = fire(CS, τ) =
(CS − •τ) ∪ τ•;

• If | CS | > 1, then we call CS a concurrent state and
the element in CS is a concurrent activity, otherwise
CS is a basic state and the element in CS is a basic
activity. �

For generating the test cases according to the approach
presented in this paper, we need to compare the the program
execution traces with the dynamic behaviors of an activity
diagram. We call such a dynamic behavior a run of the
activity diagram.

Definition 3. Let D = (A,T, F, C, aI , aF) be an activity
diagram. A run ρ of the activity diagram is a sequence of
states and transitions, let

ρ = cs0
(τ0,c0)−−−−→ cs1

(τ1,c1)−−−−→ . . .
(τn−1,cn−1)−−−−−−−−→ csn

where cs0 = {aI} is the initial state, csn = {aF } is the
final state, if the current state is csi and τi ∈ firable(csi),
csi+1 = fire(csi, τi) = (csi − •τi) ∪ τ•

i , 0 ≤ i ≤ n − 1. �

Based on above definitions, we can parse an activity dia-
gram and extract the essential information in a computer-
recognizable format, so as to be processed automatically.

3

2.2 Simple Paths
From definition 3, we can definite the path of an activity

diagram as follows.

Definition 4. Let D = (A, T, F, C, aI , aF) be an activity
diagram and let

ρ = cs0
(τ0,c0)−−−−→ cs1

(τ1,c1)−−−−→ . . .
(τn−1,cn−1)−−−−−−−−→ csn

be a run of D. Let the set Δi=csi+1− csi={a1, a2, . . . , am},
0 ≤ i ≤ n − 1 and m > 0. Let seqi be an arbitrary per-
mutation sequence of activities in Δi. seqi is the activity
execution segment of transition τ i in the form a1 → a2 →
. . . → am. A path of D is the sequential conjunction of all
seqi in ρ according to the consecutive order of i. The path
is in the form seq1 → seq2 → . . . → seqn−1. �

In definition 4, a path of an activity diagram is in essence
a linear execution form of a run. From the definition, we
can find that a run may have several corresponding paths
because of the arbitrary permutation.

To calculate all the paths of an activity diagram, we adopt
the depth-first search(DFS) algorithm. The existence of the
loops will result in the multi-occurrence of some activities
in a path. Because full combination of branches and loops
will result in path explosion, in this paper, we just consider
the basic paths defined as follows.

Definition 5. When calculating a path of an activity dia-
gram, if each activity in the path occurs only once, we call
such a path a basic path of the activity diagram. The dia-
gram composed by all the basic paths of an activity diagram
is called a basic activity diagram of the activity diagram. �

So far we solve the problem of infinite loops by introducing
the basic paths. But the concurrency is still a most compli-
cated issue. Because of the independency of the execution
order of the threads, like the composition of the automata,
the interleaving of the activities of distinct forked threads
will cause state explosion. Usually it requires a huge amount
of computer memory. Once such requirement excesses the
feasible limitation, the algorithm fails to return a result.
Facing with so many paths, we only have to select one rep-
resentative by adopting the same strategy of partial order
used in the model checking. This is the so-called “All from
one, one for all”[7]. We call the representative of a set of
paths a simple path of the activity diagram.

Definition 6. Let A be a set of activities of the basic activ-
ity diagram with respect to an activity diagram. A relation
R ⊆ A × A which is reflexive, antisymmetric and transitive
is a partial order relation on A. Let τ ∈ T be a completion
transition in the basic activity diagram. Any ai ∈ •τ has
the relation with any aj ∈ τ•, denoted by ai ≺ aj , which is
the partial order relation of the activity diagram and called
happen-before. �

Definition 7. In a basic activity diagram, if there exists
many basic paths that have the same set of activities and the
same partial order relation, we only select one representative
from this path set. The selected representative is called a
simple path of the activity diagram. �

3. TEST ADEQUACY CRITERIA FOR
ACTIVITY DIAGRAMS

Objective measurement of the test quality is one of the key
issues in software testing. As an essential part of any testing
method, test adequacy criterion specifies the requirement
of a particular software testing. The adequacy criteria of
activity diagrams are based on the matching between the
paths of activity diagrams and the program execution traces
of the implementation codes. They mainly deal with the
coverage of elements in activity diagrams.

The definition of test adequacy is given in [13, 14] as a
measurement function. Let p be a program, and ts be a test
case set. To generate test cases for an activity diagram, we
consider the following three test adequacy criteria:

• Activity Coverage requires that all activity states in
the activity diagram be covered. For any t ∈ ts, we
can get the program execution trace pet. If there exist
any function in pet whose corresponding activity is not
marked in the activity diagram, we mark all the cor-
responding unmarked activities of pet and record the
test case t. The value of activity coverage is the ratio
of the marked activities to all activities in the activity
diagram;

• Transition Coverage requires that all transitions in the
activity diagram be covered. For any t ∈ ts, we can
get the program execution trace pet. If for pet there
exists corresponding transition that is not marked in
the activity diagram, we mark all the corresponding
unmarked transitions for pet and record the test case
t. The value of transition coverage is the ratio of
the marked transitions to all transitions in the activity
diagram;

• Simple Path Coverage requires that all simple paths
in the activity diagram be covered. For any t ∈ ts,
we can get the program execution trace pet. If a sim-
ple path in correspondence with pet is not traversed
in the activity diagram, we then record the test case
t and put a traversed mark on the simple path. The
value of simple path coverage is the ratio of the tra-
versed simple paths to all simple paths in the activity
diagram.

4. SELECTING TEST CASES FOR UML
ACTIVITY DIAGRAMS

In this section, we give the details of the automatic ap-
proach to test case generation for UML activity diagrams.
The approach first randomly generates abundant test cases
for a JAVA program under testing. Then, by running the
program with the generated test cases, we can get the cor-
responding program execution traces. Last, by comparing
these traces with the given activity diagram according to
the specific coverage criteria, we can get a reduced test case
set which meets the test adequacy criteria.

4.1 Code Instrumentation
For gathering the program execution traces, we need to

instrument the program under testing. Program instrumen-
tation is a popular technique in dynamic testing. Its main
idea is to insert some probes which are one or more test

4

Instrumentation (Clist, Mlist, Jlist)
//Clist: A list of Class names in an activity diagram;
//Mlist: A list of Method names in an activity diagram;
//Jlist: A list of JAVA code files.
begin

for each JAVA code file jcf ∈ Jlist
begin

while(curToken = jcf.nextToken()! = NULL)
if curToken==’class’ then

begin
curToken = jcf.nextToken();
if curToken is in the Clist then

curClass = curToken;
else curClass = NULL;

end
if curClass! = NULL & curToken ∈ Mlist then
begin
Insert log.write(curClass, curToken,”begin”)

as the first statement of the method;
tempToken=curToken;
Locate the curToken to the end of the method;
Insert log.write(curClass, tempToken,”end”)

as the last statement of the method;
end

endwhile
end

end

Figure 2: Instrumentation Algorithm

statements inserted in the original source code for record-
ing dynamic information. When executing the instrumented
program, the probes are executed and the execution behav-
ior data is thrown out and can be recorded.

In this paper, we apply the instrumentation technique to
trace the real execution orders of the member functions of a
program. The algorithm is given in Figure 2, which instru-
ments a JAVA program to extract the class and function
information according to the given activity diagram.

4.2 Selecting Test Cases by Activity and
Transition Coverage

Comparing with the simple path coverage, the activity
coverage and transition coverage are more simple. The main
reason is that the matching based selection can be executed
on the activity diagram directly, and can record the history
information on the activity diagram. According to the defin-
ition of coverage, when matching a program execution trace
with the activity diagram, we first need to check whether the
program execution trace is consistent with the activity dia-
gram. If the program execution trace can not match a path
of the activity diagram, the corresponding test case is irrel-
evant. Then we need to check whether the program execu-
tion trace contains some corresponding unmarked activities
or transitions. A test case, which results in a program exe-
cution trace with some unmarked activities or transitions, is
picked out as a candidate test case in the result. At the end
of the matching, the unmarked activities or transitions of
the matched program execution trace need to be marked for
the next selection. The selection process terminates when
the corresponding test adequacy criteria is satisfied.

4.3 Selecting Test Cases by Simple Path
Coverage

The complexity of selecting test cases by using path cov-
erage criterion is related to the definition of the paths of an
activity diagram and to how many defined paths in an ac-
tivity diagram. The synchronization, concurrency and loops
are the main reasons resulting in the complexity. During
selecting, the program execution traces must satisfy the se-
mantics of the synchronization such as the join and fork in
the activity diagram. Concurrency makes the execution of
the forked threads executing independently. So the number
of the combination of the activity grows drastically along
with the growth of the number of the threads. Also the
loops in an activity diagram may result in a path with in-
finite activities. In this paper, we only consider the simple
paths of an activity diagram.

Figure 3: An Example of Basic Activity Diagram

As an example of basic activity diagram in Figure 3, its
partial order relation is represented as follows:

< start >≺< a, b, c >,
< a >≺< d >,
< a >≺< e >,
< d >≺< j >,
< e >≺< j >,
< b >≺< f >,
< b >≺< g >,
< f >≺< k >,
< g >≺< k >,

< c >≺< h, i >,
< h, i >≺< l >,

< j, k, l >≺< end >.

The symbol < a > denotes a set of activities which has an
element a. Taking the concurrency into account, there are
33600 basic paths in this figure, such as :
start → a → b → c → d → j → f → k → h → i → l → end,
start → a → b → c → d → j → f → k → i → h → l → end,
start → c → b → a → d → j → f → k → h → i → l → end,
start → a → b → c → e → j → g → k → h → i → l → end,
etc.

5

We have defined the simple path to avoid the potential
loops and concurrency. But we have not presented a prac-
tical algorithm to search all the simple paths of an activity
diagram. It seems easy that if the activity diagram does not
contain any synchronization, we can use the traditional DFS
algorithm directly. Otherwise the common DFS algorithm
will cause the loss of paths, so we should redefine the path
coverage criterion and give an improved DFS algorithm.

Definition 8. Let AG be an activity diagram, BAG be
the basic activity diagram of AG, ps1 = {p | p is a simple
path of BAG and p contains no concurrent activity} and
ps2 = {p | p is a simple path of BAG and p contains at least
one concurrent activity}. If for any ps3 ⊆ ps2 and all the
paths of ps3 can cover all the concurrent activities of BAG
at least once, then the path set ps1 ∪ ps3 can cover all the
activity diagram. We call such a path set the simple path
coverage set of the activity diagram. �

For example, we only need two simple paths as follows:
start → a → b → c → d → f → j → k → i → h → l → end,
start → a → b → c → e → g → j → k → i → h → l → end
to cover the basic activity diagram in Figure 3. But here
it should be stated that we do not restrict the minimum
cardinality of the simple path coverage set to satisfy the
simple path coverage criterion of the activity diagram.

Figure 4 gives a detailed algorithm to calculate a set of
simple paths to cover the basic activity diagram of an activ-
ity diagram, and Figure 5 gives an supplementary descrip-
tion of a function which is used in Figure 4. DFSStack
is a stack which is used to store the states explored by the
modified DFS algorithm. StackOfF iredTransSet is also
a stack to record the set of fired transitions between two
consecutive states in the DFSStack. We use the CurTrace
to denote the sequence of activities visited according to the
states in the DFSStack. AllPath saves all the distinct ex-
plored paths which start from aI to aF . The stack provides
several operations to deal with the top element of the stack.
Statck.Pop() returns the top element of the stack and re-
moves the top element while Statck.GetTop() only returns
the top element. It is worthy to notice the set enabled(A)
and the set firable(A). The enabled(A) and firable(A)
respectively are a union of all the enabled or firable transi-
tions of elements in A. The set enabled(A) is a constant set,
but the firable(A) is not. The firable(A) varies according
to the history information of the searching. At the beginning
of the searching, for an activity act, the set enabled(act) is
the same as firable(act). The complexity of modified DFS
algorithm is no more than the common DFS, because the
modification of our algorithm does not increase the com-
plexity of common DFS.

4.4 Matching Simple Paths with Program
Execution Traces

After searching the simple path coverage set from an ac-
tivity diagram, we should select the test cases by comparing
the simple paths with program execution traces. A simple
path is in essence a non-loop trace while the program exe-
cution trace can have many loops. So a program execution
traces may be much longer than the corresponding simple
paths, and the program execution trace may contain some
activity nodes which do not exist in the corresponding sim-
ple path. Another problem which is worthy of noticing is
how to find the representative only once for a simple path.

DFSStack = ∅, StackOfF iredTransSet = ∅,
CurTrace = ∅, AllPath = ∅;
AGSimplePathGenerator(D)
cs = {aI}, precs = { }, cs firedTransSet = { };
begin

DFSStack.Push(cs);
StackOfF iredTransSet.Push(cs firedTransSet);
repeat

cs = DFSStack.Pop(); precs = DFSStack.GetTop();
StackOfF iredTransSet.Pop();
precs firedTransSet = StackOfF iredTransSet.Pop();
if ∃τ ∈ enabled(precs) & | τ• | > 1 & τ• ⊆ cs
then ModifyTrans(τ);

if firable(cs) is not empty then
begin

NxState(cs, cs firedTransSet, newCS, newTransSet);
continue;

end
if aF ∈ cs then
begin

record the curTrace from bottom to the top in
a sequence seq;

AllPath.Push back(seq);
end

if DFSStack.size() = 0 then return;
for each transition τ ′ ∈ precs firedTransSet
begin
for each activity s ∈ τ ′•
begin

CurTrace.RemoveFromTheEnd();
for each transition τi ∈ enabled(s)

firable(s) = firable(s) ∪ {τi};
end

end
until DFSStack = ∅;

end

NxState(cs, cs firedTransSet, ncs, ncs firedTransSet)
begin

for each activity act ∈ cs
if firable(act) is not empty & τ ∈ firable(act) then
if nact ∈ ncs = (cs − •τ) ∪ τ• & nact /∈ CurTrace then
begin

cs firedTransSet.add(τ);
firable(act) = firable(act) − {τ};
for each act′ ∈ τ•

CurTrace.AddToTheEnd(act′);
end

else
begin

τ.disenable(); break;
end

DFSStack.Push(cs);
StackOfF iredTransSet.Push(cs firedTransSet);
if cs and ncs do not have same activities then
begin

DFSStack.Push(ncs);
StackOfF iredTransSet.Push(ncs firedTransSet);

end
end

Figure 4: The Algorithm for Searching Simple Path
Coverage Set

6

ModifyTrans (synch)
begin

int max = 0;
for each activity act ∈ synch•

if max < |enabled(act)| then max = |enabled(act)|;
if ∃act, that |enabled(act)| = max & |firable(act)|

< max & ∃act′, that |enabled(act′)| < max &
|firable(act′)| = 0 then
for each activity nact that nact ∈ synch• &
|enabled(nact)| < max
for each transition tran ∈ enabled(nact)
firable(nact) = firable(nact) ∪ {tran};

end

Figure 5: The Algorithm of Function ModifyTrans

Here we assume that the profile name of an activity node
in an activity diagram is the same as one function name in
corresponding program.

Definition 9. Let pet be a sequence of function names in
a program execution trace, in the form f1ˆf2ˆ . . . ˆfn−1ˆfn.
Let sp be a sequence of activity node profile names of the cor-
responding simple path, in the form a1ˆa2ˆ . . . ˆam−1ˆam.
pet can match sp if an only if

1. n ≥ m and f1=a1 and fn=am;

2. The order of the functions in pet should be in accor-
dance with a path of the activity diagram;

3. Let pet set = {fi | fi is a function name in pet and
1 ≤ i ≤ n } and sp set = {ai | ai is an activity profile
name in sp and 1 ≤ i ≤ m }, then sp set ⊆ pet set. �

When a simple path is matched, we should delete this
path from the simple path coverage set. So the matching
process is terminated when the simple path coverage set is
empty. In this case we can get the test case set which cover
all the simple paths of the activity diagram according to the
simple path coverage criterion, otherwise the path coverage
and some irrelevant test case information will be reported.

4.5 Tool Prototype
The approach presented in this paper have been imple-

mented into a tool prototype AGTCG. Its graphical inter-
face is shown in Figure 6, and allows the users to construct,
edit, and analyze Activity Diagram interactively. The tool
can instrument a JAVA program according to the given ac-
tivity diagrams, and use the randomly generated test cases
to run the instrumented JAVA program, and gather the cor-
responding program execution traces. By comparing the
program execution traces with the activity diagram, the
tool gives the test case sets which satisfy the special test
adequacy criteria.

To demonstrate the usability of the tool, we implemented
a JAVA program according to the activity diagram depicted
in using Figure 1. The swimlane is mapped to the class
and the activities are mapped to the member functions. For
example, the activity a in Figure 1 is mapped to the mem-
ber function Sequential.a() and the activity e is mapped
to member function Concurrent.e(). The program has only
an input i whose type is integer. AGTCG automatically

instruments the program according to the mapping from
the activities of the activity diagram to the functions of the
program. For simplicity, the random test case generation
algorithm generates a coarse test case set which contains all
the integers rang form 0 to 100. By running the tool, we
get the results in Table 1. From the result, we can only get
the reduced valid test cases 50, 60, 80 and the correspond-
ing coverage. Also we get the test cases from 0 to 49 which
are the irrelevant test cases that generate the inconsistent
program execution traces for the activity diagram in Figure
1.

Figure 6: The Interface of AGTCG

5. RELATED WORK AND CONCLUSION
Agitator[1], a commercial tool, has a similar approach to

AGTCG. It creates very simple test cases(almost random),
and then refines them to satisfy test criteria. But the key dif-
ference between Agitator and our tool is that Agitator tests
are designed for JAVA methods(Unit testing) and the crite-
ria are based on the implementation rather than a model.
At present, to our knowledge there are several distinct meth-
ods which generate test cases for different testing levels from
UML activity diagrams. In [12], a UML activity diagram is
formalized and transformed to a test case model, and the
test cases could be generated from the case model. This ap-
proach need to take the transformation cost into considera-
tion. A strategy was adopted to derive test scenarios from
activity diagrams and to generate test cases from the test
scenario in [4]. But it only gives a conceptual frame. The
systematic method was not proposed. [11] gives an approach
to generate test case from UML activity diagrams base on
Gray-Box method. It demonstrates a systematic method
to generate test cases directly from UML activity diagrams,
and many parts of this method could be automated. Unlike
above methods, our method has one distinct feature that
the execution is totally automated without manual work.
Thus it can save the testing cost and reduce the probability
of mistakes.

The approach presented in this paper supports the es-
sentially automatic test case generation according to some
test adequacy criteria for UML activity diagrams. At the

7

Table 1: Results Given by AGTCG
Input test case set the set {i | i ∈ N and 0 ≤ i ≤ 100}

Activity and Transition test coverage selected test cases irrelevant test cases
coverage criteria 52.38% & 48.15% 50, 60, 80 0–49

Simple Path test coverage selected test cases irrelevant test cases
coverage criterion 50.00% 50, 60, 80 0–49

Simple Path start → a → b → c → e → j → i → end
coverage set start → a → b → c → f → j → i → end

start → a → d → k → m → n → o → q → end
start → a → d → k → m → n → p → q → end
start → a → d → l → m → n → o → q → end
start → a → d → l → m → n → p → q → end

same time, it can also check the consistency between spec-
ifications and corresponding programs. It coincides with
Model Driven Architecture(MDA)[3] and the model driven
testing[2]. The case studies are our next work.

6. REFERENCES
[1] Agitar. Agitator and Agitar Management Dashboard

3.0. Available at http://www.agitar.com.

[2] R. Heckel and M. Lohmann. Towards Model-Driven
Testing. In TACoS - International Workshop on Test
and Analysis of Component Based Systems,in
conjunction with ETAPS2003, pages 284–291, April
2003.

[3] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture–practice and promise.
Addison-Wesley, 2003.

[4] M. Liu, M. Jin, and C. Liu. Design of Testing Scenario
Generation Based on UML Activity Diagram. The
Engineering and Application of Computer(in
Chinese), 12:122–124, 2001.

[5] OMG. UML2.0 Superstructure Specification. Available
at http://www.omg.org/#UML2.0, october 2004.

[6] C. Oriat. Jartege: A Tool for Random Generation of
Unit Tests for Java Classes. In QoSA/SOQUA, pages
242–256, 2005.

[7] D. A. Peled. All from One, One for All: On Model
Checking Using Representatives. In Proc. of the 5th

International Conference on Computer Aided

Verification (CAV
′
1993), pages 24–31. LNCS 697,

Springer, 1993.

[8] J. Peterson. Petri Nets Theory and the Modeling of
Systems. Prentice-Hall, N.J., 1981.

[9] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 2001.

[10] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language User Guide. Addison-Wesley, 2001.

[11] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng.
Generating Test Cases from UML Activity Diagram
based on Gray-Box Method. In 11th Asia-Pacific
Software Engineering Conference (APSEC 2004),
pages 284–291, 2004.

[12] M. Zhang, C. Liu, and C. Shun. Automated Test Case
Generation Based on UML Activity Diagram Model.
Journal of Beijing University of Aeronautics and
Astronautics(in Chinese), 27:433–437, August 2001.

[13] H. Zhu, P. Hall, and J. May. Software Unit Test
Coverage and Adequacy. ACM Computing Surveys,
29(4):366–427, December 1997.

[14] H. Zhu and X. He. A Methodology of Testing
High-level Petri Nets. Information and Software
Technology, 44(8):473–489, 2002.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

